説明

画像形成装置

【課題】繰り返して使用しても、耐摩耗性が維持されるとともに、像流れの発生が抑制される画像形成装置を提供する。
【解決手段】フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を含有する表面保護層を有する電子写真感光体7と、トナー粒子及びステアリン酸亜鉛を含む現像剤を収容し、電子写真感光体の表面に形成された静電潜像を現像剤により現像してトナー像を形成する現像手段11と、電子写真感光体の表面に残留する現像剤を除去するクリーニング手段13と、を備え、画像部と非画像部を有する画像密度7%の画像形成を繰り返して電子写真感光体を50000回転させた後の電子写真感光体の表面をX線光電子分光法(XPS)で分析したときの亜鉛被覆率が下記式(1)を満たす画像形成装置100。
50%≦亜鉛被覆率≦100% (1)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は画像形成装置に関する。
【背景技術】
【0002】
近年、帯電手段、露光手段、現像手段、転写手段、定着手段等を有する、いわゆるゼログラフィー方式の画像形成装置は、各部材、システムの技術進展により一層の高速化、長寿命化が図られている。
例えば、画像書き込みに使用される電子写真感光体(適宜「感光体」と記す)は、帯電手段、現像手段、転写手段、クリーニング手段などの電気的、機械的外力による傷や磨耗を抑制するため、表面層を構成する材料として機械強度の高い樹脂を使用することで、長寿命化が図られている。
【0003】
特許文献1では、結着樹脂としてエポキシ樹脂を用いた感光体が開示されている。
特許文献2では、エポキシ樹脂及びエポキシ基を有する電荷輸送材料を用いることが開示されている。
特許文献3及び4では、保護層にフェノール樹脂及び水酸基を有する電荷輸送材料を用いることが開示されている。
【0004】
また、感光体の表面に残留するトナー等を除去するクリーニング性を改善すべく、表面層の特性を改善する検討がなされている。
例えば、特許文献5では、感光体の表面層中にフッ素系樹脂粒子を分散することにより、感光体の表面層の表面エネルギーを低減する方法が開示されている。
さらに、特許文献6には、更なる高耐久化を図るにあたり、感光体表面に不飽和重合性官能基を有した化合物を重合させた保護層中にフッ素系樹脂粒子を分散することが提案されている。
さらに、特許文献7には、更なる高画質・高耐久化を図るにあたり、感光体表面に潤滑剤を供給することが提案されている。
さらに、特許文献8には、グアナミン化合物およびメラミン化合物から選択される少なくとも1種と−OH、−OCH、−NH、−SHおよび−COOHから選択される置換基の少なくとも1つを持つ電荷輸送性材料の少なくとも1種との架橋物を含み、前記架橋物をなす前記電荷輸送性材料を層中の全固形分に対して80質量%以上含有する表面層を有すると共に、前記表面層上に潤滑剤が付与された像保持体を備えた画像形成装置が提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開昭56−51749号公報
【特許文献2】特開平8−278645号公報
【特許文献3】特開2002−82469号公報
【特許文献4】特開2003−186234号公報
【特許文献5】特開昭63−221355号公報
【特許文献6】特開2005−91500号公報
【特許文献7】特開平11−338307号公報
【特許文献8】特開2010−151967号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、印刷領域などで使用される高密度画像を含む画像形成を繰り返しても、画像部/非画像部に係わらず耐摩耗性を維持するとともに、像流れの発生が抑制される画像形成装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
請求項1に係る発明は、
導電性基体、前記導電性基体上に配置されている感光層、及び、前記感光層上に配置されており、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を含有する表面保護層を有する電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナー粒子及びステアリン酸亜鉛を含む現像剤を収容し、前記電子写真感光体の表面に形成された静電潜像を前記現像剤により現像してトナー像を形成する現像手段と、
前記電子写真感光体の表面に形成されたトナー像を記録媒体に転写する転写手段と、
前記電子写真感光体の表面に残留する現像剤を除去するクリーニング手段と、
を備え、
画像部と非画像部を有する画像密度7%の画像形成を繰り返して前記電子写真感光体を50000回転させた後の前記電子写真感光体の表面をX線光電子分光法(XPS)で分析したときの亜鉛被覆率が下記式(1)を満たす画像形成装置。
50%≦亜鉛被覆率≦100% (1)
請求項2に係る発明は、
前記電子写真感光体の表面保護層が、グアナミン化合物及びメラミン化合物から選択される少なくとも1種と、アルコキシ基を有する電荷輸送物質に由来する構造と、水酸基を有する電荷輸送物質に由来する構造とを含み、
前記フッ素系樹脂粒子及び前記フッ化アルキル基含有共重合体を除いた表面保護層の全固形分に対する、前記グアナミン化合物及び前記メラミン化合物の総含有量が0.1質量%以上20質量%以下であり、
前記フッ素系樹脂粒子及び前記フッ化アルキル基含有共重合体を除いた表面保護層の全固形分に対する、前記アルコキシ基を有する電荷輸送物質に由来する構造の含有量が10質量%以上40質量%以下である請求項1に記載の画像形成装置。
請求項3に係る発明は、
前記電子写真感光体の表面のうち、前記画像部に相当する領域における亜鉛被覆率と前記非画像部に相当する領域における亜鉛被覆率との差が10%以下である請求項1又は請求項2に記載の画像形成装置。
請求項4に係る発明は、
前記フッ素系樹脂粒子が、4フッ化エチレンの重合体及び4フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体から選ばれる少なくとも1種を含む請求項1乃至請求項3のいずれか1項に記載の画像形成装置。
請求項5に係る発明は、
前記フッ化アルキル基含有共重合体が、下記構造式A及び下記構造式Bで表される繰り返し単位を含むフッ化アルキル基含有共重合体である請求項1乃至請求項4のいずれか1項に記載の画像形成装置。
【化1】


(構造式A及び構造式Bにおいて、l、m及びnは1以上の整数を、p、q、r及びsは0または1以上の整数を、tは1以上7以下の整数を、R、R、R及びRは水素原子又はアルキル基を、Xはアルキレン鎖、ハロゲン置換アルキレン鎖、−S−、−O−、−NH−又は単結合を、Yはアルキレン鎖、ハロゲン置換アルキレン鎖、−(C2z−1(OH))−又は単結合を表す。zは1以上の整数を表す。Qは−O−又は−NH−を表す。)
【発明の効果】
【0008】
請求項1に係る発明によれば、電子写真感光体の表面保護層がフッ素系樹脂粒子及びフッ化アルキル基含有共重合体を含有し、かつ、トナー粒子及びステアリン酸亜鉛を含む現像剤を用いて画像部と非画像部を有する画像密度7%の画像形成を繰り返して前記電子写真感光体を50000回転させた後の前記電子写真感光体の表面をX線光電子分光法(XPS)で分析したときの亜鉛被覆率が上記式(1)の関係を満たさない場合に比べ、画像形成を繰り返しても、感光体の耐摩耗性が維持されるとともに、像流れの発生が抑制される画像形成装置が提供される。
請求項2に係る発明によれば、電子写真感光体の表面保護層が、グアナミン化合物及びメラミン化合物から選択される少なくとも1種と、アルコキシ基を有する電荷輸送物質に由来する構造と、水酸基を有する電荷輸送物質に由来する構造とを含み、前記フッ素系樹脂粒子及び前記フッ化アルキル基含有共重合体を除いた表面保護層の全固形分に対する、前記グアナミン化合物及び前記メラミン化合物の総含有量が0.1質量%以上20質量%以下の範囲外であるか、前記フッ素系樹脂粒子及び前記フッ化アルキル基含有共重合体を除いた表面保護層の全固形分に対する、前記アルコキシ基を有する電荷輸送物質に由来する構造の含有量が10質量%以上40質量%以下の範囲外である場合に比べ、長期にわたって良好な電気特性を維持する画像形成装置が提供される。
請求項3に係る発明によれば、前記電子写真感光体の表面のうち、前記画像部に相当する領域における亜鉛被覆率と前記非画像部に相当する領域における亜鉛被覆率との差が10%を超える場合に比べ、画像部/非画像部に係わらず電子写真感光体の摩耗が全面的に抑制される画像形成装置が提供される。
請求項4に係る発明によれば、前記フッ素系樹脂粒子が、4フッ化エチレンの重合体及び4フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体から選ばれる少なくとも1種を含まない場合に比べ、耐摩耗性が維持されるとともに、像流れの発生が抑制される画像形成装置が提供される。
請求項5に係る発明によれば、電子写真感光体の表面保護層に含まれるフッ化アルキル基含有共重合体が、前記構造式A及び前記構造式Bで表される繰り返し単位を含むフッ化アルキル基含有共重合体でない場合に比べ、耐摩耗性が維持されるとともに、像流れの発生が抑制される画像形成装置が提供される。
【図面の簡単な説明】
【0009】
【図1】本実施形態で用いられる電子写真感光体の一例を示す模式断面図である。
【図2】本実施形態で用いられる電子写真感光体の他の例を示す模式断面図である。
【図3】本実施形態で用いられる電子写真感光体の他の例を示す模式断面図である。
【図4】本実施形態の画像形成装置の一例を示す概略構成図である。
【図5】本実施形態の画像形成装置の他の例を示す概略構成図である。
【図6】解像度評価の評価基準を示す図である。
【図7】(A)、(B)、(C)は、画像部と非画像部を有する画像密度7%の画像パターンの例を示す図である。
【発明を実施するための形態】
【0010】
以下、添付の図面を参照しながら、本発明の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付することとし、重複する説明は省略する。
本実施形態に係る画像形成装置は、導電性基体、前記導電性基体上に配置されている感光層、及び、前記感光層上に配置されており、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を含有する表面保護層を有する電子写真感光体と、前記電子写真感光体の表面を帯電する帯電手段と、帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、トナー粒子及びステアリン酸亜鉛を含む現像剤を収容し、前記電子写真感光体の表面に形成された静電潜像を前記現像剤により現像してトナー像を形成する現像手段と、前記電子写真感光体の表面に形成されたトナー像を記録媒体に転写する転写手段と、前記電子写真感光体の表面に残留する現像剤を除去するクリーニング手段と、を備え、画像部と非画像部を有する画像密度7%の画像形成を繰り返して前記電子写真感光体を50000回転させた後の前記電子写真感光体の表面をX線光電子分光法(XPS)で分析したときの亜鉛被覆率が下記式(1)を満たす画像形成装置である。
50%≦亜鉛被覆率≦100% (1)
【0011】
本発明者は、最表面層にフッ素系樹脂微粒子、並びにフッ化アルキル基含有共重合体を含有する電子写真感光体に、現像剤としてトナー粒子とともにステアリン酸亜鉛を供給し、50000回転後の感光体表面の亜鉛の被覆率を制御することで、潤滑剤塗布装置のような新たな部材を取り付けることなく、かつ潤滑剤塗布装置の寿命に係らず、長期にわたり繰り返し使用に対して感光体の耐摩耗性が維持されるとともに、像流れの発生が抑制されることを見出した。そして、本実施形態に係る画像形成装置では、上記のごとく、画像部と非画像部を有する画像密度7%の画像形成を繰り返し行い、50000回転後の感光体表面の亜鉛の被覆率が(1)を満たすことで、感光体の耐摩耗性が維持されるとともに、像流れの発生が抑制される。
【0012】
ここで、「画像部と非画像部を有する画像密度7%の画像」とは、全体として画像密度が7%であれば画像パターンは限定されない。例えば、図7(A)、(B)、(C)に示す画像パターンが挙げられる。
図7(A)に示す画像パターンでは、画像密度が100%の帯状画像部10Aと該帯状画像部10Aを挟むように画像密度が30%の2つの帯状画像部12Aを有し、全体として画像密度が7%となっている。なお、「画像密度」は、出力した用紙上にのっているトナーの割合(=トナーが載っている面積/用紙の面積)によって測定される値である。
図7(B)に示す画像パターンでは、画像密度100%の帯状画像部10Bは図7(A)における画像部10Aよりも細い反面、画像密度30%の帯状画像部12Bは図7(A)における画像部12Aよりも太く、全体として画像密度が7%となっている。
図7(C)に示す画像パターンでは、画像密度30%の画像部は無いが、画像密度100%の帯状画像部10Cは図7(A)における帯状画像部10Aよりも太く、全体として画像密度が7%となっている。
【0013】
本実施形態に係る画像形成装置において耐摩耗性が維持されつつ像流れの発生が抑制される理由の詳細は不明だが、以下のように推測される。
フッ素系樹脂粒子及びフッ化アルキル基含有共重合体がマイナスに帯電しやすい性質を持っていること、ステアリン酸亜鉛がプラスに帯電しやすい性質を持っているために、最表面層にフッ素系樹脂粒子及びフッ化アルキル基含有共重合体が含まれている場合、含まれていない場合に比べステアリン酸亜鉛の被覆効率が上昇することが予想される。一方、ステアリン酸亜鉛は劈開性が高いため、被覆したステアリン酸亜鉛の上に像流れの原因となる放電生成物が蓄積され、ステアリン酸亜鉛ごと放電生成物が除去されているためと考えられる。
【0014】
ここで、感光体表面における亜鉛の被覆率を規定するにあたり、本実施形態ではXPS分析からの定量化を行った。XPS分析は極表面の元素分析に有効であるが、全元素に対する亜鉛の元素比という形で測定されるため、被覆量が多くなると比の値が飽和する。飽和した時点での亜鉛の全元素に対する比の値を被覆率100%とし、一方、ステアリン酸亜鉛を全く付与しない場合の感光体表面の分析値(亜鉛の全元素に対する比の値)を0%として、被覆率を定めた。感光体表面の亜鉛の被覆率を規定することによって、潤滑剤であるステアリン酸亜鉛の実効塗布量が制御される。また、感光体表面の亜鉛の量をその被覆率によって規定すると、前述したように、ステアリン酸亜鉛の塗布量を増加させていくとXPS分析における亜鉛に関連するピークの強度は増加し、ある一定量で飽和するが、この状態をステアリン酸亜鉛が感光体の表面を100%被覆する目安として設けることで、下地の状態の影響を受けない絶対的な定量値として扱われる。
感光体の表面における亜鉛の被覆率を規定することにより、感光体の劣化が抑制され、また感光体表面を清掃する清掃手段(クリーニング手段)を有する場合には、該清掃手段の劣化が抑制される。その結果、長期にわたって良好な画質が形成される。
【0015】
以下に、XPS分析による亜鉛(Zn)の被覆率の測定方法について述べる。
本実施形態において、XPS分析による亜鉛の被覆率は、JPS 9010(日本電子(株)製)により測定した亜鉛の全元素に対する比の値に基づいて決定した。XPS分析は感光体の極表面の分析であるため、ステアリン酸亜鉛の塗布量の増加に対して亜鉛の全元素に対する比の値が飽和する。飽和した亜鉛の全元素に対する比の値を被覆率100%として感光体表面の亜鉛の被覆率を決定した。本明細書に記載の値は、当該方法によって測定されたものである。
尚、XPS分析による亜鉛の被覆率が100%になるステアリン酸亜鉛の塗布量であって最小の塗布量は次のようにして決定される。
ステアリン酸亜鉛を全く塗布しない場合の感光体表面の分析値を0%とし、感光体表面へのステアリン酸亜鉛の塗布量に対するXPS分析による亜鉛の全元素に対する比の値をプロットしたときに、塗布量の増加に従って亜鉛の全元素に対する比の値は増加するが、ある塗布量以上になると亜鉛の全元素に対する比の値が飽和して一定値を示すようになる。プロットから明らかになる変曲点における塗布量が上記被覆率が100%になるステアリン酸亜鉛の最小の塗布量となる。
【0016】
本実施形態に係る画像形成装置では、画像部と非画像部を有する画像密度7%の画像形成を繰り返し行い、50000回転後の感光体の表面の亜鉛被覆率が50%以上100%以下となるように構成し、亜鉛被覆率は50%以上90%以下であることが望ましく、55%以上70%以下であることがさらに望ましい。
また、感光体の表面のうち、画像部に相当する領域における亜鉛被覆率と非画像部に相当する領域における亜鉛被覆率との差が10%以下であることが望ましい。
潤滑剤供給装置を用いてステアリン酸亜鉛を供給する場合は、画像部・非画像部に係らず同じように供給されることになるが、クリーニング手段としてクリーニングブレードを用いている場合は、トナーと共にステアリン酸亜鉛も掻き取られてしまうため、画像部の亜鉛被覆率が低くなる傾向がある。一方で例えば、図7(A)に示すような画像パターンの画像形成を繰り返した場合、感光体表面において、画像密度100%に相当する画像部に相当する領域ではトナー粒子とともにステアリン酸亜鉛も供給されるため、トナーで掻き取られる量が非画像部に比べ多くても高い亜鉛被覆率を維持することが出来る。一方、非画像部に相当する領域ではステアリン酸亜鉛の供給量は小さくても一緒に掻き取られるトナーが存在しないこと、および感光体の幅方向(回転方向と直交する方向)の全体に渡ってクリーニングブレードやクリーニングブラシが接するようにクリーニング手段を設けることで、ステアリン酸亜鉛が感光体の幅方向全体にわって供給され、亜鉛被覆率のバラツキが抑制される。電子写真感光体表面において画像部に相当する領域の亜鉛被覆率と非画像部に相当する領域の亜鉛被覆率との差が10%以下となるようにすることで、画像部/非画像部に係わらず、感光体全面にわって摩耗及び像流れの発生がより効果的に抑制される。
【0017】
[電子写真感光体]
まず、本実施形態に係る電子写真感光体について図面を参照しつつ詳細に説明する。
図1は、本実施形態に係る電子写真用感光体の構成の一例を概略的に示し、図2及び図3はそれぞれ電子写真感光体の他の構成を概略的に示している。
図1に示す電子写真感光体7Aは、いわゆる機能分離型感光体(又は積層型感光体)であり、導電性基体4上に下引層1が設けられ、その上に電荷発生層2及び電荷輸送層3を順次形成して構成された感光層が設けられ、その上に最表面層として表面保護層5が設けられた構造を有するものである。
【0018】
図2に示す電子写真感光体7Bは、図1に示す電子写真感光体7Bと同様に、電荷発生層2と、電荷輸送層3とに機能が分離された機能分離型感光体であり、導電性基体4上に下引層1が設けられ、その上に電荷輸送層3及び電荷発生層2が順次形成された感光層が設けられ、その上に表面保護層5が設けられた構造を有するものである。
【0019】
図3に示す電子写真感光体7Cは、電荷発生材料と電荷輸送材料とを同一の層(電荷発生/電荷輸送層6)に含む機能一体型感光体であり、導電性基体4上に下引層1が設けられ、その上に電荷発生/電荷輸送層6、及び表面保護層5が順次形成された構造を有するものである。電子写真感光体7Cにおいては、電荷発生/電荷輸送層6からなる単層型の感光層が構成されている。
なお、図1乃至図3に示す電子写真感光体において、下引層1は設けても設けなくてもよい。また、下引層1と感光層との間に中間層を設けてもよい。
以下、代表例として図1に示す電子写真感光体7Aに基づいて、各要素について説明する。
【0020】
<表面保護層>
表面保護層5は、電子写真感光体7Aにおける最表面層であり、電荷発生層2及び電荷輸送層3から構成される感光層を保護するために設けられる層である。本実施形態に係る表面保護層5は、少なくともフッ素系樹脂粒子及びフッ化アルキル基含有共重合体を含んで構成される。かかる表面保護層5を有することで、感光体7Aの表面に、磨耗、傷などに対する耐性を持たせ、且つトナーの転写効率の向上が図られる。
本実施形態の画像形成装置では、主に、感光体の表面保護層に含まれるフッ素系樹脂粒子及びフッ化アルキル基含有共重合体の含有量と、現像剤に含まれるステアリン酸亜鉛の含有量を調整することにより、画像部と非画像部を有する画像密度7%の画像形成を繰り返して50000回転後の感光体表面の亜鉛被覆率が前記式(1)を満たすことが実現される。
【0021】
−フッ素系樹脂粒子−
表面保護層5がフッ素系樹脂粒子を含有することで、トナー像を転写した後の感光体の表面に残留するトナー等を除去するためのクリーニングブレード等の接触部材との摩擦力が軽減され、電子写真感光体の表面の摩耗が効果的に抑制される。その一方、残留トナーとクリーニングブレードとの間の摩擦力は保たれ、残留トナー等の異物は除去され易いと考えられる。
【0022】
表面保護層5に含まれるフッ素系樹脂粒子としては、特に限定されるものではないが、4フッ化エチレン樹脂(PTFE)、3フッ化塩化エチレン樹脂、6フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、2フッ化2塩化エチレン樹脂及びそれらの共重合体の中から1種あるいは2種以上を選択するのが望ましく、特にフッ化エチレンの重合体及び4フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体から選ばれる少なくとも1種を含むことがさらに望ましい。
【0023】
フッ素系樹脂粒子の平均一次粒径は0.05μm以上1μm以下が望ましく、更には0.1μm以上0.5μm以下が望ましい。
尚、上記フッ素系樹脂粒子の平均一次粒径は、レーザー回折式粒度分布測定装置LA−920(堀場製作所製)を用いて、フッ素系樹脂粒子が分散された分散液と同じ溶剤に希釈した測定液を屈折率1.35で測定した値である。
表面保護層5の固形分全量に対するフッ素系樹脂粒子の含有量は1質量%以上40質量%以下が望ましく、3質量%以上20質量%以下がさらに望ましい。
【0024】
−フッ化アルキル基含有共重合体−
表面保護層5がフッ化アルキル基含有共重合体を含有することで、フッ素系樹脂微粒子の分散安定性が保たれる。
表面保護層5に含まれるフッ化アルキル基含有共重合体としては、特に限定されるものではないが、下記構造式A及び構造式Bで表される繰り返し単位を含むフッ化アルキル基含有共重合体であることが望ましく、アクリル酸エステル化合物、メタクリル酸エステル化合物、等からなるマクロモノマー及びパーフルオロアルキルエチル(メタ)アクリレート、パーフルオロアルキル(メタ)アクリレートを用いて例えばグラフト重合により合成される樹脂であることがより望ましい。ここで、(メタ)アクリレートはアクリレートまたはメタクリレートを示す。
【0025】
【化2】

【0026】
構造式A及び構造式Bにおいて、l、m及びnは1以上の整数を、p、q、r及びsは0または1以上の整数を、tは1以上7以下の整数を、R、R、R及びRは水素原子又はアルキル基を、Xはアルキレン鎖、ハロゲン置換アルキレン鎖、−S−、−O−、−NH−又は単結合を、Yはアルキレン鎖、ハロゲン置換アルキレン鎖、−(C2z−1(OH))−又は単結合を表す。zは1以上の整数を表す。Qは−O−又は−NH−を表す。
【0027】
フッ化アルキル基含有共重合体の重量平均分子量は、10000以上100000以下が望ましく、さらに望ましくは30000以上100000以下である。
フッ化アルキル基含有共重合体において、構造式Aと構造式Bとの含有比、即ちl:mは、1:9乃至9:1が望ましく、3:7乃至7:3がさらに望ましい。
【0028】
構造式A及び構造式Bにおいて、R、R、R及びRで表されるアルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。R、R、R及びRとしては、水素原子、メチル基が望ましく、これらの中でもメチル基がさらに望ましい。
【0029】
フッ化アルキル基含有共重合体は、構造式(C)で表される繰り返し単位をさらに含んでもよい。構造式(C)の含有量は、構造式A及び構造式Bの含有量の合計即ちl+mとの比で、l+m:zとして10:0乃至7:3が望ましく、9:1乃至7:3がさらに望ましい。
【0030】
【化3】

【0031】
構造式(C)において、R及びRは水素原子またはアルキル基を、zは1以上の整数を表す。
尚、R、Rとしては、水素原子、メチル基、エチル基が望ましく、これらの中でもメチル基がさらに望ましい。
【0032】
表面保護層5におけるフッ化アルキル基含有共重合体の含有量は、フッ素系樹脂粒子の質量に対して1質量%以上10質量%以下であることが望ましい。
また、表面保護層5におけるフッ素系樹脂粒子及びフッ化アルキル基含有共重合体の総含有量は40質量%以下であることが望ましく、20質量%以下がより望ましい。当該総含有量が40質量%以下であれば、解像度の低下を最低限に抑えながら、耐摩耗性が向上し易い。ただし、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体の総含有量は、耐摩耗性向上の効果を確実に発現させるという観点から、1質量%以上が望ましく、3質量%以上がより望ましい。
【0033】
表面保護層5は、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体のほかに、グアナミン構造を有する化合物(以下、適宜「グアナミン化合物」と称する。)及びメラミン構造を有する化合物(以下、適宜「メラミン化合物」と称する。)から選択される少なくとも1種と、電荷輸送材料としてアルコキシ基を有する電荷輸送物質、及び、水酸基を有する電荷輸送物質とを含んで構成されることが望ましい。
グアナミン化合物及びメラミン化合物の総含有量は、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を除いた最表面層の全固形分に対して0.1質量%以上20質量%以下であり、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を除いた最表面層の全固形分に対する、アルコキシ基を有する電荷輸送物質に由来する構造の含有量が10質量%以上40質量%以下であることが望ましい。
表面保護層5が上記構成を有することで、電子写真感光体の耐摩耗性及び電気的安定性がより向上し、また像流れの発生も抑制し、良好な画質の形成が繰り返し得られ、画像形成装置の高信頼性、長寿命化がより高められる。
【0034】
−グアナミン化合物−
ここで、グアナミン化合物について説明する。本実施形態で用いるグアナミン化合物は、グアナミン骨格(構造)を有する化合物であり、例えば、アセトグアナミン、ベンゾグアナミン、ホルモグアナミン、ステログアナミン、スピログアナミン、シクロヘキシルグアナミンなどが挙げられる。
グアナミン化合物としては、特に下記一般式(A)で示される化合物及びその多量体の少なくとも1種であることが望ましい。ここで、多量体は、一般式(A)で示される化合物を構造単位として重合されたオリゴマーであり、その重合度は例えば2以上200以下(望ましくは2以上100以下)である。なお、一般式(A)で示される化合物は、一種単独で用いもよいし、2種以上を併用してもよい。特に、一般式(A)で示される化合物を2種以上混合して用いたり、それを構造単位とする多量体(オリゴマー)として用いたりすると、溶剤に対する溶解性が向上する。
【0035】
【化4】

【0036】
一般式(A)中、Rは、炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基、炭素数6以上10以下の置換若しくは未置換のフェニル基、又は炭素数4以上10以下の置換若しくは未置換の脂環式炭化水素基を示す。R乃至Rは、それぞれ独立に水素原子、−CH−OH、又は−CH−O−Rを示す。Rは、炭素数1以上10以下の直鎖状又は分鎖状のアルキル基を示す。
【0037】
一般式(A)において、Rを示すアルキル基は、炭素数が1以上10以下であるが、望ましくは炭素数が1以上8以下であり、より望ましくは炭素数が1以上5以下である。また、当該アルキル基は、直鎖状であってもよし、分鎖状であってもよい。
一般式(A)中、Rを示すフェニル基は、炭素数6以上10以下であるが、より望ましくは6以上8以下である。当該フェニル基に置換される置換基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。
一般式(A)中、Rを示す脂環式炭化水素基は、炭素数4以上10以下であるが、より望ましくは5以上8以下である。当該脂環式炭化水素基に置換される置換基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。
一般式(A)中、R乃至Rを示す「−CH−O−R」において、Rを示すアルキル基は、炭素数が1以上10以下であるが、望ましくは炭素数が1以上8以下であり、より望ましくは炭素数が1以上6以下である。また、当該アルキル基は、直鎖状であってもよし、分鎖状であってもよい。望ましくは、メチル基、エチル基、ブチル基などが挙げられる。
一般式(A)で示される化合物としては、特に望ましくは、Rが炭素数6以上10以下の置換若しくは未置換のフェニル基を示し、R乃至Rがそれぞれ独立に−CH−O−Rで示される化合物である。また、Rは、メチル基又はn−ブチル基から選ばれることが望ましい。
一般式(A)で示される化合物は、例えば、グアナミンとホルムアルデヒドとを用いて公知の方法(例えば、実験化学講座第4版、28巻、430ページ)で合成される。
【0038】
以下、一般式(A)で示される化合物の具体例を示すが、これらに限られるわけではない。また、以下の具体例は、単量体のものを示すが、これらを構造単位とする多量体(オリゴマー)であってもよい。
【0039】
【化5】

【0040】
【化6】

【0041】
【化7】

【0042】
【化8】

【0043】
一般式(A)で示される化合物の市販品としては、例えば、”スーパーベッカミン(R)L−148−55、スーパーベッカミン(R)13−535、スーパーベッカミン(R)L−145−60、スーパーベッカミン(R)TD−126”以上大日本インキ社製、”ニカラックBL−60、ニカラックBX−4000”以上日本カーバイド社製、などが挙げられる。
【0044】
また、一般式(A)で示される化合物(多量体を含む)は、合成後又は市販品の購入後、残留触媒の影響を取り除くために、トルエン、キシレン、酢酸エチル、などの適当な溶剤に溶解し、蒸留水、イオン交換水などで洗浄してもよいし、イオン交換樹脂で処理して除去してもよい。
【0045】
−メラミン化合物−
次に、メラミン化合物について説明する。本実施形態で用いるメラミン化合物としては、メラミン骨格(構造)を有する化合物であり、特に下記一般式(B)で示される化合物及びその多量体の少なくとも1種であることが望ましい。ここで、多量体は、一般式(B)で示される化合物を構造単位として重合されたオリゴマーであり、その重合度は例えば2以上200以下(望ましくは2以上100以下)である。なお、一般式(B)で示される化合物又はその多量体は、一種単独で用いもよいし、2種以上を併用してもよい。また、前記一般式(A)で示される化合物又はその多量体と併用してもよい。特に、一般式(B)で示される化合物は、2種以上混合して用いたり、それを構造単位とする多量体(オリゴマー)として用いたりすると、溶剤に対する溶解性が向上する。
【0046】
【化9】

【0047】
一般式(B)中、R乃至R11はそれぞれ独立に、水素原子、−CH−OH、−CH−O−R12を示し、R12は炭素数1以上5以下の分岐してもよいアルキル基を示す。当該アルキル基としてはメチル基、エチル基、ブチル基などが挙げられる。
一般式(B)で示される化合物は、例えば、メラミンとホルムアルデヒドとを用いて公知の方法で(例えば、実験化学講座第4版、28巻、430ページのメラミン樹脂と同様に)合成される。
【0048】
以下、一般式(B)で示される化合物の具体例を示すが、これらに限られるわけではない。また、以下の具体例は、単量体のものを示すが、これらを構造単位とする多量体(オリゴマー)であってもよい。
【0049】
【化10】

【0050】
一般式(B)で示される化合物の市販品としては、例えば、スーパーメラミNo.90(日本油脂社製)、スーパーベッカミン(R)TD−139−60(大日本インキ社製)、ユーバン2020(三井化学)、スミテックスレジンM−3(住友化学工業)、ニカラックMW−30(日本カーバイド社製)、などが挙げられる。
また、一般式(B)で示される化合物(多量体を含む)は、合成後又は市販品の購入後、残留触媒の影響を取り除くために、トルエン、キシレン、酢酸エチル、などの適当な溶剤に溶解し、蒸留水、イオン交換水などで洗浄してもよいし、イオン交換樹脂で処理して除去してもよい。
【0051】
−電荷輸送性材料−
次に、電荷輸送性材料について説明する。表面保護層に含まれる電荷輸送性材料としては、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つものが挙げられる。特に、電荷輸送性材料としては、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基を少なくとも2つ(さらには3つ)持つものが挙げられる。この如く、電荷輸送性材料に反応性官能基(当該置換基)が増えることで架橋密度が上がり、より強度の高い架橋膜が得られ、電子写真感光体の磨耗が抑制される。
【0052】
電荷輸送性材料としては、下記一般式(I)で示される化合物であることが望ましい。
F−((−R−X)n1(Rn2−Y)n3 (I)
一般式(I)中、Fは正孔輸送能を有する化合物から誘導される有機基、R及びRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基を示し、n1は0又は1を示し、n2は0又は1を示し、n3は1以上4以下の整数を示す。Xは酸素、NH、又は硫黄原子を示し、Yは−OH、−OCH、−NH、−SH、又は−COOHを示す。
一般式(I)中、Fを示す正孔輸送能を有する化合物から誘導される有機基における正孔輸送能を有する化合物としては、アリールアミン誘導体が挙げられる。アリールアミン誘導体としては、トリフェニルアミン誘導体、テトラフェニルベンジジン誘導体が挙げられる。
【0053】
そして、一般式(I)で示される化合物は、下記一般式(II)で示される化合物であることが望ましい。一般式(II)で示される化合物は、特に、電荷移動度、酸化などに対する安定性等に優れる。
【0054】
【化11】

【0055】
一般式(II)中、Ar乃至Arは、同一でも異なっていてもよく、それぞれ独立に置換若しくは未置換のアリール基を示し、Arは置換若しくは未置換のアリール基又は置換若しくは未置換のアリーレン基を示し、Dは−(−R−X)n1(Rn2−Yを示し、cはそれぞれ独立に0又は1を示し、kは0又は1を示し、Dの総数は1以上4以下である。また、R及びRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基を示し、n1は0又は1を示し、n2は0又は1を示し、Xは酸素、NH、又は硫黄原子を示し、Yは−OH、−OCH、−NH、−SH、又は−COOHを示す。
【0056】
一般式(II)中、Dを示す「−(−R−X)n1(Rn2−Y」は、一般式(I)と同様であり、R及びRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基である。また、n1として望ましくは、1である。また、n2として望ましくは、1である。また、Xとして望ましくは、酸素である。また、Yとして望ましくは水酸基である。
なお、一般式(II)におけるDの総数は、一般式(I)におけるn3に相当し、望ましくは、2以上4以下であり、さらに望ましくは3以上4以下である。つまり、一般式(I)や一般式(II)において、Dの総数を、望ましくは一分子中に2以上4以下、さらに望ましくは3以上4以下とすると、架橋密度が上がり、より強度の高い架橋膜が得られ、特にクリーニングブレードを用いた際の電子写真感光体の回転トルクが低減され、ブレードへのダメージの抑制や、電子写真感光体の磨耗が抑制される。この詳細は不明であるが、反応性官能基の数が増すことで、架橋密度の高い硬化膜が得られ、電子写真感光体の極表面の分子運動が抑制されてブレード部材表面分子との相互作用が弱まるためと推測される。
一般式(II)中、Ar乃至Arとしては、下記式(1)乃至(7)のうちのいずれかであることが望ましい。なお、下記式(1)乃至(7)は、Ar乃至Arの各々に連結され得る「−(D)C1」乃至「−(D)C4」を総括的に示した「−(D)」と共に示す。
【0057】
【化12】

【0058】
式(1)乃至(7)中、Rは水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルキル基もしくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基からなる群より選ばれる1種を表し、R10乃至R12はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、Arは置換又は未置換のアリーレン基を表し、D及びcは一般式(II)における「D」、「c」と同様であり、sはそれぞれ0又は1を表し、tは1以上3以下の整数を表す。
ここで、式(7)中のArとしては、下記式(8)又は(9)で表されるものが望ましい。
【0059】
【化13】

【0060】
式(8)、(9)中、R13及びR14はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、tは1以上3以下の整数を表す。
また、式(7)中のZ’としては、下記式(10)乃至(17)のうちのいずれかで表されるものが望ましい。
【0061】
【化14】

【0062】
式(10)乃至(17)中、R15及びR16はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基もしくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、Wは2価の基を表し、q及びrはそれぞれ1以上10以下の整数を表し、tはそれぞれ1以上3以下の整数を表す。
上記式(16)乃至(17)中のWとしては、下記(18)乃至(26)で表される2価の基のうちのいずれかであることが望ましい。但し、式(25)中、uは0以上3以下の整数を表す。
【0063】
【化15】

【0064】
また、一般式(II)中、Arは、kが0のときはAr乃至Arの説明で例示された上記(1)乃至(7)のアリール基であり、kが1のときはかかる上記(1)乃至(7)のアリール基から所定の水素原子を除いたアリーレン基である。
一般式(I)で示される化合物の具体例としては、以下に示す化合物I−1乃至I−34が挙げられる。なお、上記一般式(I)で示される化合物は、これらにより何ら限定されるものではない。
【0065】
【化16】

【0066】
【化17】

【0067】
【化18】

【0068】
【化19】

【0069】
【化20】

【0070】
【化21】

【0071】
【化22】

【0072】
【化23】

【0073】
本実施形態における感光体の表面保護層は、耐摩耗性、画質特性、電気特性などの観点から、電荷輸送性材料として、アルコキシ基を有する電荷輸送物質と、水酸基を有する電荷輸送物質とを含んで構成されることが望ましい。以下、アルコキシ基を有する電荷輸送物質と水酸基を有する電荷輸送物質をまとめて「特定の電荷輸送性材料」と記す場合がある。
【0074】
表面保護層5中における、グアナミン化合物及びメラミン化合物の総含有量は、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を除いた最表面層の全固形分に対して0.1質量%以上20質量%以下であり、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を除いた最表面層の全固形分に対する、アルコキシ基を有する電荷輸送物質に由来する構造の含有量が10質量%以上40質量%以下であること望ましい。
グアナミン化合物(例えば、一般式(A)で示される化合物)及びメラミン化合物(例えば、一般式(B)で示される化合物)の総含有量が上記範囲内であれば、上記範囲未満である場合に比べて緻密な膜となり、耐摩耗性が向上し、上記範囲外である場合に比べて電気特性や耐ゴースト性が向上する。
【0075】
また、アルコキシ基を有する電荷輸送物質に由来する構造の含有量が上記範囲内であれば、上記範囲未満である場合に比べ、電気特性の低下が抑制されるとともに、感光体の外部から電気的或いは機械的なストレスが感光体に付与された場合における耐性がより高まる。
なお、表面保護層5中における、上記電荷輸送性材料の総含有量や、上記グアナミン化合物及びメラミン化合物の総含有量は、表面保護層を形成するための塗布液におけるこれらの化合物の固形分濃度を調整することによって制御される。
【0076】
−その他の成分−
表面保護層5には、グアナミン化合物(例えば一般式(A)で示される化合物)及びメラミン化合物(例えば一般式(B)で示される化合物)から選択される少なくとも1種と、上記電荷輸送性材料(例えば一般式(I)で示される化合物)との架橋物と共に、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキッド樹脂などを混合して用いてもよい。また、強度を向上させるために、スピロアセタール系グアナミン樹脂(例えば「CTU−グアナミン」(味の素ファインテクノ(株)))など、一分子中の官能基のより多い化合物を当該架橋物中の材料に共重合させることも効果的である。
表面保護層5には、放電生成ガスを吸着しすぎないように、放電生成ガスによる酸化を効果的に抑制する目的で、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂などの他の熱硬化性樹脂を混合してもよい。
【0077】
また、表面保護層5には界面活性剤を添加することが望ましく、用いる界面活性剤としては、フッ素原子、アルキレンオキサイド構造、シリコーン構造のうち少なくとも一種類を含む界面活性剤であれば特に制限はないが、上記構造を複数有するものが電荷輸送性有機化合物との親和性・相溶性が高く、表面保護層形成用塗布液の成膜性が向上し、表面保護層5のシワ・ムラが抑制される。
【0078】
フッ素原子を有する界面活性剤としては、様々なものが挙げられる。フッ素原子及びアクリル構造を有する界面活性剤として具体的には、ポリフローKL600(共栄社化学社製)、エフトップEF−351、EF−352、EF−801、EF−802、EF−601(以上、JEMCO社製)などが挙げられる。アクリル構造を有する界面活性剤とは、アクリルもしくはメタクリル化合物などのモノマーを重合もしくは共重合したものが主に挙げられる。
また、フッ素原子を有する界面活性剤としては、例えば、パーフルオロアルキル基を持つ界面活性剤が挙げられ、さらに具体的には、パーフルオロアルキルスルホン酸類(例えば、パーフルオロブタンスルホン酸、パーフルオロオクタンスルホン酸など)、パーフルオロアルキルカルボン酸類(例えば、パーフルオロブタンカルボン酸、パーフルオロオクタンカルボン酸など)、パーフルオロアルキル基含有リン酸エステルが挙げられる。パーフルオロアルキルスルホン酸類、及びパーフルオロアルキルカルボン酸類は、その塩及びそのアミド変性体であってもよい。
パーフルオロアルキルスルホン酸類の市販品としては、例えばメガファックF−114(大日本インキ化学工業株式会社製)、エフトップEF−101、EF102、EF−103、EF−104、EF−105、EF−112、EF−121、EF−122A、EF−122B、EF−122C、EF−123A(以上、JEMCO社製)、A−K、501(以上、ネオス社製)などが挙げられる。
パーフルオロアルキルカルボン酸類の市販品としては、例えばメガファックF−410(大日本インキ化学工業株式会社製)、エフトップ EF−201、EF−204(以上、JEMCO社製)などが挙げられる。
パーフルオロアルキル基含有リン酸エステルの市販品としては、メガファックF−493、F−494(以上、大日本インキ化学工業株式会社製)エフトップ EF−123A、EF−123B、EF−125M、EF−132、(以上、JEMCO社製)などが挙げられる。
【0079】
アルキレンオキサイド構造を持つ界面活性剤としてはポリエチレングリコール、ポリエーテル消泡剤、ポリエーテル変性シリコーンオイルなどが挙げられる。
ポリエチレングリコールとしては数平均分子量が2000以下のものが望ましく、数平均分子量が2000以下のポリエチレングリコールとしては、ポリエチレングリコール2000(数平均分子量2000)、ポリエチレングリコール600(数平均分子量600)、ポリエチレングリコール400(数平均分子量400)、ポリエチレングリコール200(数平均分子量200)等が挙げられる。
また、ポリエーテル消泡剤としては、PE−M、PE−L(以上、和光純薬工業社製)、消泡剤No.1、消泡剤No.5(以上、花王社製)等が挙げられる。
【0080】
シリコーン構造を有する界面活性剤としては、ジメチルシリコーン、メチルフェニルシリコーン、ジフェニルシリコーンやそれらの誘導体のような一般的なシリコーンオイルが挙げられる。
【0081】
さらに、フッ素原子、アルキレンオキサイド構造の両方を有する界面活性剤としてはアルキレンオキサイド構造もしくはポリアルキレン構造を側鎖に有するものや、アルキレンオキサイドもしくはポリアルキレンオキサイド構造の末端がフッ素を含む置換基で置換されたものなどが挙げられる。アルキレンオキサイド構造を有する界面活性剤として、具体的には、例えば、メガファックF−443、F−444、F−445、F−446(以上、大日本インキ化学工業株式会社製)、POLY FOX PF636、PF6320、PF6520、PF656(以上、北村化学社製)などが挙げられる。
【0082】
また、アルキレンオキサイド構造、シリコーン構造の両方を有する界面活性剤としてはKF351(A)、KF352(A)、KF353(A)、KF354(A)、KF355(A)、KF615(A)、KF618、KF945(A)、KF6004(以上、信越化学工業社製)、TSF4440、TSF4445、TSF4450、TSF4446、TSF4452、TSF4453、TSF4460(以上、GE東芝シリコン社製)、BYK−300、302、306、307、310、315、320、322、323、325、330、331、333、337、341、344、345、346、347、348、370、375、377,378、UV3500、UV3510、UV3570等(以上、ビックケミー・ジャパン株式会社社製)が挙げられる。
【0083】
界面活性剤の含有量は、表面保護層5のフッ素系樹脂粒子、あるいはフッ化アルキル基含有共重合体を除いた場合の固形分量に対して、望ましくは0.01質量%以上1質量%以下、より望ましくは0.02質量%以上0.5質量%以下である。フッ素原子を有する界面活性剤の含有量を0.01質量%以上とすることでシワ・ムラが抑制などの塗膜欠陥の防止効果がより大きくなる傾向にある。また、フッ素原子を有する界面活性剤の含有量を1質量%以下とすることで、当該フッ素原子を有する界面活性剤と硬化樹脂の分離しにくくなり、得られる硬化物の強度が維持される傾向にある。
【0084】
表面保護層5には、さらに、膜の成膜性、可とう性、潤滑性、接着性を調整するなどの目的から、他のカップリング剤、フッ素化合物を混合してもよい。各種シランカップリング剤、及び市販のシリコーン系ハードコート剤が用いられる。
シランカップリング剤としては、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、等が用いられる。市販のハードコート剤としては、KP−85、X−40−9740、X−8239(以上、信越シリコーン社製)、AY42−440、AY42−441、AY49−208(以上、東レダウコーニング社製)等が用いられる。
【0085】
また、撥水性等の付与のために、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、3−(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、1H,1H,2H,2H−パーフルオロアルキルトリエトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H−パーフルオロオクチルトリエトシキシラン、等の含フッ素化合物を加えても良い。シランカップリング剤は任意の量で使用されるが、含フッ素化合物の量は、架橋膜の成膜性の観点から、フッ素を含まない化合物に対して質量で0.25倍以下とすることが望ましい。
【0086】
また、表面保護層5の放電ガス耐性、機械強度、耐傷性、粒子分散性、粘度コントロール、トルク低減、磨耗量コントロール、ポットライフの延長などの目的でアルコールに溶解する樹脂を加えてもよい。
ここで、アルコールに溶解する樹脂とは、炭素数5以下のアルコールに1質量%以上溶解する樹脂を意味する。アルコール系溶剤に溶解する樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂などのポリビニルアセタール樹脂(たとえば積水化学社製エスレックB、K等)、ポリアミド樹脂、セルロ−ス樹脂、ポリビニルフェノール樹脂などがあげられる。特に、電気特性の点でポリビニルアセタール樹脂、ポリビニルフェノール樹脂が望ましい。
【0087】
当該樹脂の重量平均分子量は2,000以上100,000以下が望ましく、5,000以上50,000以下がより望ましい。樹脂の分子量が2,000未満であると樹脂の添加による効果が不充分となる傾向にあり、また、100,000を超えると溶解度が低下して添加量が制限され、さらには塗布時に製膜不良を招く傾向にある。
また、当該樹脂の添加量はフッ素系樹脂粒子、あるいはフッ化アルキル基含有共重合体を除いた場合において1質量%以上40質量%以下が望ましく、1質量%以上30質量%以下がより望ましく、5質量%以上20質量%以下がさらに望ましい。当該樹脂の添加量が1質量%未満であると樹脂の添加による効果が不十分となる傾向にあり、また、40質量%を超えると高温高湿下(例えば28℃、85%RH)での画像ボケが発生しやすくなる。
【0088】
表面保護層5には、帯電装置で発生するオゾン等の酸化性ガスによる劣化を防止する目的で、酸化防止剤を添加することが望ましい。感光体表面の機械的強度を高め、感光体が長寿命になると、感光体が酸化性ガスに長時間にわたって接触することになるため、酸化耐性が要求される。酸化防止剤としては、ヒンダードフェノール系又はヒンダードアミン系が望ましく、有機イオウ系酸化防止剤、フォスファイト系酸化防止剤、ジチオカルバミン酸塩系酸化防止剤、チオウレア系酸化防止剤、ベンズイミダゾール系酸化防止剤、などの公知の酸化防止剤を用いてもよい。
酸化防止剤の添加量としてはフッ素系樹脂粒子及びフッ化アルキル基含有共重合体を除いた場合において20質量%以下が望ましく、10質量%以下がより望ましい。
【0089】
ヒンダードフェノール系酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノール、2,5−ジ−t−ブチルヒドロキノン、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナマイド、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、2,6−ジ−t−ブチル−4−エチルフェノール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、2,5−ジ−t−アミルヒドロキノン、2−t−ブチル−6−(3−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)等が挙げられる。
【0090】
また、ヒンダードフェノール系酸化防止剤の市販品としては、「イルガノックス1076」、「イルガノックス1010」、「イルガノックス1098」、「イルガノックス245」、「イルガノックス1330」、「イルガノックス3114」、「イルガノックス1076」、「3,5−ジ−t−ブチル−4−ヒドロキシビフェニル」等が挙げられる。
ヒンダードアミン系酸化防止剤としては、「サノールLS2626」、「サノールLS765」、「サノールLS770」、「サノールLS744」、「チヌビン144」、「チヌビン622LD」、「マークLA57」、「マークLA67」、「マークLA62」、「マークLA68」、「マークLA63」が挙げられ、チオエーテル系として「スミライザ−TPS」、「スミライザーTP−D」が挙げられ、ホスファイト系として「マーク2112」、「マークPEP−8」、「マークPEP−24G」、「マークPEP−36」、「マーク329K」、「マークHP−10」等が挙げられる。
【0091】
更に、表面保護層5には、残留電位を下げる目的、又は強度を向上させる目的で、各種粒子を添加してもよい。粒子の一例として、ケイ素含有粒子が挙げられる。ケイ素含有粒子とは、構成元素にケイ素を含む粒子であり、具体的には、コロイダルシリカ及びシリコーン粒子等が挙げられる。
ケイ素含有粒子として用いられるコロイダルシリカは、平均粒径1nm以上100nm以下、望ましくは10nm以上30nm以下のシリカを、酸性もしくはアルカリ性の水分散液、アルコール、ケトン、エステル等の有機溶媒中に分散させたものから選ばれ、一般に市販されているものを使用してもよい。
【0092】
表面保護層5中のコロイダルシリカの固形分含有量は、特に限定されるものではないが、製膜性、電気特性、強度の面から、表面保護層5のフッ素系樹脂粒子、あるいはフッ化アルキル基含有共重合体を除いた場合の固形分量を基準として、0.1質量%以上50質量%以下、望ましくは0.1質量%以上30質量%以下の範囲で用いられる。
ケイ素含有粒子として用いられるシリコーン粒子は、シリコーン樹脂粒子、シリコーンゴム粒子、シリコーン表面処理シリカ粒子から選ばれ、一般に市販されているものが使用される。これらのシリコーン粒子は球状で、その平均粒径は望ましくは1nm以上500nm以下、より望ましくは10nm以上100nm以下である。シリコーン粒子は、化学的に不活性で、樹脂への分散性に優れる小径粒子であり、さらに十分な特性を得るために必要とされる含有量が低いため、架橋反応を阻害することなく、電子写真感光体の表面性状が改善される。すなわち、強固な架橋構造中にバラツキが小さく取り込まれた状態で、電子写真感光体の表面の潤滑性、撥水性を向上させ、長期にわたって良好な耐磨耗性、耐汚染物付着性が維持される。
【0093】
保護層5中のシリコーン粒子の含有量は、保護層5のフッ素系樹脂粒子、あるいはフッ化アルキル基含有共重合体を除いた場合の固形分量を基準として、望ましくは0.1質量%以上30質量%以下、より望ましくは0.5質量%以上10質量%以下である。
【0094】
また、その他の粒子としては、ZnO−Al、SnO−Sb、In−SnO、ZnO−TiO、ZnO−TiO、MgO−Al、FeO−TiO、TiO、SnO、In、ZnO、MgO等の半導電性金属酸化物が挙げられる。
【0095】
また、同様な目的でシリコーンオイル等のオイルを添加してもよい。シリコーンオイルとしては、ジメチルポリシロキサン、ジフェニルポリシロキサン、フェニルメチルシロキサン等のシリコーンオイル;アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシル変性ポリシロキサン、カルビノール変性ポリシロキサン、メタクリル変性ポリシロキサン、メルカプト変性ポリシロキサン、フェノール変性ポリシロキサン等の反応性シリコーンオイル;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状ジメチルシクロシロキサン類;1,3,5−トリメチル−1.3.5−トリフェニルシクロトリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7,9−ペンタメチル−1,3,5,7,9−ペンタフェニルシクロペンタシロキサン等の環状メチルフェニルシクロシロキサン類;ヘキサフェニルシクロトリシロキサン等の環状フェニルシクロシロキサン類;(3,3,3−トリフルオロプロピル)メチルシクロトリシロキサン等のフッ素含有シクロシロキサン類;メチルヒドロシロキサン混合物、ペンタメチルシクロペンタシロキサン、フェニルヒドロシクロシロキサン等のヒドロシリル基含有シクロシロキサン類;ペンタビニルペンタメチルシクロペンタシロキサン等のビニル基含有シクロシロキサン類等が挙げられる。
【0096】
また、表面保護層5には、金属、金属酸化物、カーボンブラック等の導電性粒子を添加してもよい。金属としては、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレス等、又はこれらの金属をプラスチックの粒子の表面に蒸着したもの等が挙げられる。金属酸化物としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ、アンチモンをドープした酸化ジルコニウム等が挙げられる。これらは単独で用いることも、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、単に混合してもよいし、固溶体や融着の形にしてもよい。
導電性粒子の平均粒径は保護層の透明性の点で0.3μm以下、特に0.1μm以下が望ましい。
【0097】
表面保護層5には、グアナミン化合物(例えば一般式(A)で示される化合物)及びメラミン化合物(例えば一般式(B)で示される化合物)や電荷輸送材料の硬化を促進するために硬化触媒を使用してもよい。硬化触媒として酸系の触媒を望ましく用いられる。酸系の触媒としては、酢酸、クロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、シュウ酸、マレイン酸、マロン酸、乳酸などの脂肪族カルボン酸、安息香酸、フタル酸、テレフタル酸、トリメリット酸などの芳香族カルボン酸、メタンスルホン酸、ドデシルスルホン酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸、などの脂肪族、及び芳香族スルホン酸類などが用いられるが、含硫黄系材料を用いることが望ましい。
硬化触媒として含硫黄系材料を用いることにより、この含硫黄系材料がグアナミン化合物(例えば一般式(A)で示される化合物)及びメラミン化合物(例えば一般式(B)で示される化合物)や電荷輸送材料の硬化触媒として優れた機能を発揮し、硬化反応を促進して得られる表面保護層5の機械的強度がより向上される。
【0098】
更に、電荷輸送性材料として上記一般式(I)(一般式(II)含む)で表される化合物を用いる場合、含硫黄系材料は、これら電荷輸送性材料に対するドーパントとしても優れた機能を発揮し、得られる機能層の電気特性がより向上される。その結果、電子写真感光体を形成した場合に、機械強度、成膜性及び電気特性の全てが高水準で達成される。
硬化触媒としての含硫黄系材料は、常温(例えば25℃)、又は、加熱後に酸性を示すものが望ましく、接着性、ゴースト、電気特性の観点で有機スルホン酸及びその誘導体の少なくとも1種が特に望ましい。保護層5中におけるこれらの触媒の存在は、XPS等により容易に確認される。
【0099】
有機スルホン酸及び/又はその誘導体としては、例えば、パラトルエンスルホン酸、ジノニルナフタレンスルホン酸(DNNSA)、ジノニルナフタレンジスルホン酸(DNNDSA)、ドデシルベンゼンスルホン酸、フェノールスルホン酸等が挙げられる。これらの中でも、触媒能、成膜性の観点から、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸が望ましい。また、硬化性樹脂組成物中で、ある程度解離されれば、有機スルホン酸塩を用いてもよい。
【0100】
また、一定以上の温度をかけたときに触媒能力が高くなる、所謂、熱潜在性触媒を用いることで、液保管温度では触媒能が低く、硬化時に触媒能が高くなるため、硬化温度の低下と、保存安定性が両立される。
熱潜在性触媒として、たとえば有機スルホン化合物等をポリマーで粒子状に包んだマイクロカプセル、ゼオライトの如く空孔化合物に酸等を吸着させたもの、プロトン酸及び/又はプロトン酸誘導体を塩基でブロックした熱潜在性プロトン酸触媒や、プロトン酸及び/又はプロトン酸誘導体を一級もしくは二級のアルコールでエステル化したもの、プロトン酸及び/又はプロトン酸誘導体をビニルエーテル類及び/又はビニルチオエーテル類でブロックしたもの、三フッ化ホウ素のモノエチルアミン錯体、三フッ化ホウ素のピリジン錯体などがあげられる。
中でも、触媒能、保管安定性、入手性、コストの面でプロトン酸及び/又はプロトン酸誘導体を塩基でブロックしたものが望ましい。
【0101】
熱潜在性プロトン酸触媒のプロトン酸として、硫酸、塩酸、酢酸、ギ酸、硝酸、リン酸、スルホン酸、モノカルボン酸、ポリカルボン酸類、プロピオン酸、シュウ酸、安息香酸、アクリル酸、メタクリル酸、イタコン酸、フタル酸、マレイン酸、ベンゼンスルホン酸、o、m、p−トルエンスルホン酸、スチレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。また、プロトン酸誘導体として、スルホン酸、リン酸等のプロトン酸のアルカリ金属塩又はアルカリ土類金属円などの中和物、プロトン酸骨格が高分子鎖中に導入された高分子化合物(ポリビニルスルホン酸等)等が挙げられる。プロトン酸をブロックする塩基として、アミン類が挙げられる。アミン類は、1級、2級又は3級アミンに分類される。特に制限はなく、いずれも使用してもよい。
1級アミンとして、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、セカンダリーブチルアミン、アリルアミン、メチルヘキシルアミン等が挙げられる。
【0102】
2級アミンとして、ジメチルアミン、ジエチルアミン、ジn−プロピルアミン、ジイソプロピルアミン、ジn−ブチルアミン、ジイソブチルアミン、ジt−ブチルアミン、ジヘキシルアミン、ジ(2−エチルヘキシル)アミン、N−イソプロピルN−イソブチルアミン、ジ(2−エチルヘキシル)アミン、ジセカンダリーブチルアミン、ジアリルアミン、N−メチルヘキシルアミン、3−ピペコリン、4−ピペコリン、2,4−ルペチジン、2,6−ルペチジン、3,5−ルペチジン、モルホリン、N−メチルベンジルアミン等が挙げられる。
3級アミンとして、トリメチルアミン、トリエチルアミン、トリn−プロピルアミン、トリイソプロピルアミン、トリn−ブチルアミン、トリイソブチルアミン、トリt−ブチルアミン、トリヘキシルアミン、トリ(2−エチルヘキシル)アミン、N−メチルモルホリン、N,N−ジメチルアリルアミン、N−メチルジアリルアミン、トリアリルアミン、N,N−ジメチルアリルアミン、N,N,N’,N’ーテトラメチルー1,2ージアミノエタン、N,N,N’,N’ーテトラメチルー1,3ージアミノプロパン、N,N,N’,N’ーテトラアリルー1,4ージアミノブタン、Nーメチルピペリジン、ピリジン、4ーエチルピリジン、Nープロピルジアリルアミン、3−ジメチルアミノプロパノ−ル、2−エチルピラジン、2,3−ジメチルピラジン、2,5−ジメチルピラジン、2,4−ルチジン、2,5−ルチジン、3,4−ルチジン、3,5−ルチジン、2,4,6−コリジン、2−メチル−4−エチルピリジン、2−メチル−5−エチルピリジン、N,N,N’,N’ −テトラメチルヘキサメチレンジアミン、N−エチル−3−ヒドロキシピペリジン、3−メチル−4−エチルピリジン、3−エチル−4−メチルピリジン、4−(5−ノニル)ピリジン、イミダゾ−ル、N−メチルピペラジン等が挙げられる。
【0103】
市販品としては、キングインダストリーズ社製の「NACURE2501」(トルエンスルホン酸解離、メタノール/イソプロパノール溶媒、pH6.0以上pH7.2以下、解離温度80℃)、「NACURE2107」(p−トルエンスルホン酸解離、イソプロパノール溶媒、pH8.0以上pH9.0以下、解離温度90℃)、「NACURE2500」(p−トルエンスルホン酸解離、イソプロパノール溶媒、pH6.0以上pH7.0以下、解離温度65℃)、「NACURE2530」(p−トルエンスルホン酸解離、メタノール/イソプロパノール溶媒、pH5.7以上pH6.5以下、解離温度65℃)、「NACURE2547」(p−トルエンスルホン酸解離、水溶液、pH8.0以上pH9.0以下、解離温度107℃)、「NACURE2558」(p−トルエンスルホン酸解離、エチレングリコール溶媒、pH3.5以上pH4.5以下、解離温度80℃)、「NACUREXP−357」(p−トルエンスルホン酸解離、メタノール溶媒、pH2.0以上pH4.0以下、解離温度65℃)、「NACUREXP−386」(p−トルエンスルホン酸解離、水溶液、pH6.1以上pH6.4以下、解離温度80℃)、「NACUREXC―2211」(p−トルエンスルホン酸解離、pH7.2以上pH8.5以下、解離温度80℃)、「NACURE5225」(ドデシルベンゼンスルホン酸解離、イソプロパノール溶媒、pH6.0以上pH7.0以下、解離温度120℃)、「NACURE5414」(ドデシルベンゼンスルホン酸解離、キシレン溶媒、解離温度120℃)、「NACURE5528」(ドデシルベンゼンスルホン酸解離、イソプロパノール溶媒、pH7.0以上pH8.0以下、解離温度120℃)、「NACURE5925」(ドデシルベンゼンスルホン酸解離、pH7.0以上pH7.5以下、解離温度130℃)、「NACURE1323」(ジノニルナフタレンスルホン酸解離、キシレン溶媒、pH6.8以上pH7.5以下、解離温度150℃)、「NACURE1419」(ジノニルナフタレンスルホン酸解離、キシレン/メチルイソブチルケトン溶媒、解離温度150℃)、「NACURE1557」(ジノニルナフタレンスルホン酸解離、ブタノール/2−ブトキシエタノール溶媒、pH6.5以上pH7.5以下、解離温度150℃)、「NACUREX49−110」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度90℃)、「NACURE3525」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH7.0以上pH8.5以下、解離温度120℃)、「NACUREXP−383」(ジノニルナフタレンジスルホン酸解離、キシレン溶媒、解離温度120℃)、「NACURE3327」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度150℃)、「NACURE4167」(リン酸解離、イソプロパノール/イソブタノール溶媒、pH6.8以上pH7.3以下、解離温度80℃)、「NACUREXP−297」(リン酸解離、水/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度90℃、「NACURE4575」(リン酸解離、pH7.0以上pH8.0以下、解離温度110℃)等が挙げられる。
【0104】
これらの熱潜在性触媒は単独又は二種類以上組み合わせても使用される。
ここで、触媒の配合量は、上記グアナミン化合物(例えば一般式(A)で示される化合物)及びメラミン化合物(例えば一般式(B)で示される化合物)から選択される少なくとも1種の量(塗布液におけるフッ素系樹脂粒子、あるいはフッ化アルキル基含有共重合体を除いた場合の固形分濃度)に対し、0.1質量%以上50質量%以下の範囲であることが望ましく、特に10質量%以上30質量%以下が望ましい。この配合量が上記範囲未満であると、触媒活性が低すぎることがあり、上記範囲を超えると耐光性が悪くなることがある。なお、耐光性とは、感光層が室内光などの外界からの光にさらされたときに、照射された部分が濃度低下を起こす現象のことを言う。原因は、明らかではないが、特開平5−099737号公報にあるように、光メモリー効果と同様の現象が起こっているためであると推定される。
【0105】
−表面保護層の形成−
以上の構成の表面保護層5は、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を含み、望ましくは、グアナミン化合物(一般式(A)で示される化合物)及びメラミン化合物(一般式(B)で示される化合物)から選択される少なくとも1種と前記特定の電荷輸送性材料とを含む表面保護層形成用塗布液を用いて形成される。この表面保護層形成用塗布液は、必要に応じて、表面保護層5の任意の他の構成成分が添加される。
表面保護層形成用塗布液の調製は、無溶媒で行うか、必要に応じてメタノール、エタノール、プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類等の溶剤を用いて行ってもよい。かかる溶剤は1種を単独で又は2種以上を混合して使用されるが、望ましくは沸点が100℃以下のものである。溶剤としては、特に、少なくとも1種以上の水酸基を持つ溶剤(例えば、アルコール類等)を用いることがよい。
溶剤量は任意に設定されるが、少なすぎるとグアナミン化合物(例えば一般式(A)で示される化合物)及びメラミン化合物(例えば一般式(B)で示される化合物)が析出しやすくなるため、グアナミン化合物(例えば一般式(A)で示される化合物)及びメラミン化合物(例えば一般式(B)で示される化合物)から選択される少なくとも1種の1質量部に対し0.5質量部以上30質量部以下、望ましくは1質量部以上20質量部以下で使用される。
【0106】
また、上記成分を反応させて塗布液を得るときには、単純に混合、溶解させるだけでもよいが、室温(例えば25℃)以上100℃以下、望ましくは、30℃以上80℃以下で10分以上100時間以下、望ましくは1時間以上50時間以下で加温してもよい。また、この際に超音波を照射することも望ましい。これにより、恐らく部分的な反応が進行し、塗膜欠陥が少なく膜厚のバラツキが少ない膜が得られやすくなる。
そして、表面保護層形成用塗布液を電荷輸送層3の上に、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法により塗布した後、必要に応じて例えば温度100℃以上170℃以下で加熱して硬化させることで、表面保護層5が得られる。
表面保護層5の膜厚は、望ましくは1μm以上15μm以下、より望ましくは3μm以上10μm以下である。表面保護層5の膜厚が1μm以上であれば、長寿命を達成しやすく、15μm以下であれば良好な電気特性を達成しやすい。
【0107】
<導電性基体>
導電性基体4としては、例えば、アルミニウム、銅、亜鉛、ステンレス、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等の金属又は合金を用いて構成される金属板、金属ドラム、及び金属ベルト、又は、導電性ポリマー、酸化インジウム等の導電性化合物やアルミニウム、パラジウム、金等の金属又は合金を塗布、蒸着又はラミネートした紙、プラスチックフィルム、ベルト等が挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
【0108】
電子写真感光体がレーザープリンターに使用される場合、レーザー光を照射する際に生じる干渉縞を防止するために、導電性基体4の表面は、中心線平均粗さRaで0.04μm以上0.5μm以下に粗面化することが望ましい。Raが0.04μm未満であると、鏡面に近くなるので干渉防止効果が不十分となる傾向があり、Raが0.5μmを越えると、被膜を形成しても画質が粗くなる傾向がある。なお、非干渉光を光源に用いる場合には、干渉縞防止の粗面化は特に必要なく、導電性基体4の表面の凹凸による欠陥の発生が防げるため、より長寿命化に適する。
粗面化の方法としては、研磨剤を水に懸濁させて導電性基体4の表面に吹き付けることによって行う湿式ホーニング、又は回転する砥石に導電性基材4を圧接し、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が望ましい。
【0109】
また、他の粗面化の方法としては、導電性基体4の表面を粗面化することなく、導電性又は半導電性粉体を樹脂中に分散させて、導電性基材4を構成する支持体の表面上に層を形成し、その層中に分散させる粒子により粗面化する方法も望ましく用いられる。
ここで、陽極酸化による粗面化処理は、アルミニウムを陽極とし、電解質溶液中で陽極酸化することによりアルミニウム表面に酸化膜を形成するものである。電解質溶液としては、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、陽極酸化により形成された多孔質陽極酸化膜は、そのままの状態では化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、陽極酸化膜の微細孔を加圧水蒸気又は沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが望ましい。
【0110】
陽極酸化膜の膜厚については、0.3μm以上15μm以下が望ましい。この膜厚が0.3μm未満であると、注入に対するバリア性が乏しく効果が不十分となる傾向がある。他方、15μmを超えると、繰り返し使用による残留電位の上昇を招く傾向にある。
また、導電性基体4には、酸性水溶液による処理又はベーマイト処理を施してもよい。
【0111】
酸性水溶液による処理としては、例えば、リン酸、クロム酸及びフッ酸を含む酸性処理液による処理が挙げられる。リン酸、クロム酸及びフッ酸を含む酸性処理液による処理は、以下のようにして実施される。先ず、酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲が望ましい。処理温度は、42℃以上48℃以下が望ましいが、処理温度を高く保つことにより、当該処理温度の範囲よりも低い場合に比べ一層速く、かつ厚い被膜が形成される。被膜の膜厚は、0.3μm以上15μm以下が望ましい。0.3μm未満であると、注入に対するバリア性が乏しく効果が不十分となる傾向がある。他方、15μmを超えると、繰り返し使用による残留電位の上昇を招く傾向がある。
【0112】
ベーマイト処理は、90℃以上100℃以下の純水中に5分間以上60分間以下浸漬すること、又は90℃以上120℃以下の加熱水蒸気に5分間以上60分間以下接触させることにより行われる。被膜の膜厚は、0.1μm以上5μm以下が望ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の他種に比べ被膜溶解性の低い電解質溶液を用いて陽極酸化処理をしてもよい。
【0113】
<下引層>
下引層1は、例えば、結着樹脂に無機粒子を含有して構成される。
無機粒子としては、粉体抵抗(体積抵抗率)10Ω・cm以上1011Ω・cm以下のものが望ましく用いられる。これは下引層1はリーク耐性、キャリアブロック性獲得のために適切な抵抗を得ることが必要であるためである。なお、上記範囲の下限よりも無機粒子の抵抗値が低いと十分なリーク耐性が得られず、この範囲の上限よりも高いと残留電位の上昇を引き起こしてしまう懸念がある。
中でも、上記抵抗値を有する無機粒子としては、酸化錫、酸化チタン、酸化亜鉛、酸化ジルコニウム等の無機粒子(導電性金属酸化物)を用いるのが望ましく、特に酸化亜鉛は望ましく用いられる。
無機粒子は表面処理を行ったものでもよく、表面処理の異なるもの、又は、粒子径の異なるものなど2種以上混合して用いてもよい。
無機粒子の体積平均粒径は50nm以上2000nm以下(望ましくは60以上1000以下)の範囲であることが望ましい
また、無機粒子としては、BET法による比表面積が10m/g以上のものが望ましく用いられる。比表面積値が10m/g未満のものは帯電性低下を招きやすく、良好な電子写真特性を得にくい傾向がある。
【0114】
さらに、無機粒子と共にアクセプター性化合物を含有させることで、電気特性の長期安定性、キャリアブロック性に優れた下引層が得られる。
アクセプター性化合物としては、所望の特性が得られるものならばいかなるものでも使用されるが、クロラニル、ブロモアニル等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾールや2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)1,3,4−オキサジアゾール等のオキサジアゾール系化合物、キサントン系化合物、チオフェン化合物、3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物等の電子輸送性物質などが望ましく、特にアントラキノン構造を有する化合物が望ましい。さらに、ヒドロキシアントラキノン系化合物、アミノアントラキノン系化合物、アミノヒドロキシアントラキノン系化合物等、アントラキノン構造を有するアクセプター性化合物が望ましく用いられ、具体的にはアントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が挙げられる。
【0115】
これらのアクセプター性化合物の含有量は所望の特性が得られる範囲であれば任意に設定してもよいが、望ましくは無機粒子に対して0.01質量%以上20質量%以下含有される。さらに電荷蓄積防止と無機粒子の凝集を防止する観点から0.05質量%以上10質量%以下が望ましい。無機粒子の凝集は、導電路形成にバラツキが生じやすくなり、繰り返し使用時に残留電位の上昇など維持性の悪化を招きやすくなるだけでなく、黒点などの画質欠陥も引き起こしやすくなる。
アクセプター化合物は、下引層の塗布時に添加するだけでもよいし、無機粒子表面にあらかじめ付着させておいてもよい。無機粒子表面にアクセプター化合物を付与させる方法としては、乾式法又は湿式法が挙げられる。
【0116】
乾式法にて表面処理を施す場合には、無機粒子をせん断力の大きなミキサ等で攪拌しながら、直接又は有機溶媒に溶解させたアクセプター化合物を滴下、乾燥空気や窒素ガスとともに噴霧させることによってバラツキが生じることなく処理される。添加又は噴霧する際には溶剤の沸点以下の温度で行われることが望ましい。溶剤の沸点以上の温度で噴霧すると、バラツキが生じることなく攪拌される前に溶剤が蒸発し、アクセプター化合物が局部的にかたまってしまいバラツキのない処理がされ難く、望ましくない。添加又は噴霧した後、さらに100℃以上で焼き付けを行ってもよい。焼き付けは所望の電子写真特性が得られる温度、時間であれば任意の範囲で実施される。
【0117】
湿式法としては、無機粒子を溶剤中で攪拌、超音波、サンドミルやアトライター、ボールミル等を用いて分散し、アクセプター化合物を添加し攪拌又は分散したのち、溶剤除去することでバラツキが生じることなく処理される。溶剤除去方法はろ過又は蒸留により留去される。溶剤除去後にはさらに100℃以上で焼き付けを行ってもよい。焼き付けは所望の電子写真特性が得られる温度、時間であれば任意の範囲で実施される。湿式法においては表面処理剤を添加する前に無機粒子含有水分の除去も行われ、その例として表面処理に用いる溶剤中で攪拌加熱しながら除去する方法、溶剤と共沸させて除去する方法を用いてもよい。
【0118】
また、無機粒子はアクセプター化合物を付与する前に表面処理を施してもよい。表面処理剤としては所望の特性が得られるものであればよく、公知の材料から選択される。例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、界面活性材等が挙げられる。特に、シランカップリング剤は良好な電子写真特性を与えるため望ましく用いられる。さらにアミノ基を有するシランカップリング剤は下引層1に良好なブロッキング性を与えるため望ましく用いられる。
アミノ基を有するシランカップリング剤としては、所望の電子写真感光体特性を得られるものであればいかなる物でも用いてもよいが、具体的例としてはγ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン等が挙げられるが、これらに限定されるものではない。
【0119】
シランカップリング剤は2種以上混合して使用してもよい。前記アミノ基を有するシランカップリング剤と併用して用いてもよいシランカップリング剤の例としては、ビニルトリメトキシシラン、γ−メタクリルオキシプロピル−トリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−クロルプロピルトリメトキシシラン等が挙げられるが、これらに限定されるものではない。
【0120】
これらの表面処理剤を用いた表面処理方法は、公知の方法であればいかなる方法でも使用されるが、乾式法又は湿式法を用いることが望ましい。また、アクセプター付与とカップリング剤等による表面処理を一緒に行ってもよい。
下引層1中の無機粒子に対するシランカップリング剤の量は、所望の電子写真特性が得られる量であれば任意に設定されるが分散性向上の観点から、無機粒子に対して0.5質量%以上10質量%以下が望ましい。
【0121】
下引層1に含有される結着樹脂としては、良好な膜が形成されるもので、かつ、所望の特性が得られるものであれば公知のいかなるものでも使用されるが、例えば、ポリビニルブチラール等のアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂等の公知の高分子樹脂化合物、また電荷輸送性基を有する電荷輸送性樹脂やポリアニリン等の導電性樹脂等が用いられる。中でも上層の塗布溶剤に不溶な樹脂が望ましく用いられ、特にフェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂等が望ましく用いられる。これらを2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。
【0122】
下引層形成用塗布液中の、表面にアクセプター化合物を付与した無機粒子(アクセプター性を付与した金属酸化物)と結着樹脂、又は、無機粒子と結着樹脂との比率は所望する電子写真感光体特性を得られる範囲で任意に設定される。
【0123】
下引層1には、電気特性向上、環境安定性向上、画質向上のために種々の添加物を用いてもよい。添加物としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料が用いられる。シランカップリング剤は前述のように無機粒子の表面処理に用いられるが、添加剤としてさらに下引層形成用塗布液に添加してもよい。
【0124】
添加剤としてのシランカップリング剤の具体例としては、ビニルトリメトキシシラン、γ−メタクリルオキシプロピル−トリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−クロルプロピルトリメトキシシラン等が挙げられる。
【0125】
また、ジルコニウムキレート化合物の例としては、ジルコニウムブトキシド、ジルコニウムアセト酢酸エチル、ジルコニウムトリエタノールアミン、アセチルアセトネートジルコニウムブトキシド、アセト酢酸エチルジルコニウムブトキシド、ジルコニウムアセテート、ジルコニウムオキサレート、ジルコニウムラクテート、ジルコニウムホスホネート、オクタン酸ジルコニウム、ナフテン酸ジルコニウム、ラウリン酸ジルコニウム、ステアリン酸ジルコニウム、イソステアリン酸ジルコニウム、メタクリレートジルコニウムブトキシド、ステアレートジルコニウムブトキシド、イソステアレートジルコニウムブトキシド等が挙げられる。
【0126】
チタニウムキレート化合物の例としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。
【0127】
アルミニウムキレート化合物の例としては、アルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。
これらの化合物は単独に若しくは複数の化合物の混合物又は重縮合物として用いてもよい。
【0128】
下引層形成用塗布液を調製するための溶媒としては、公知の有機溶剤、例えば、アルコール系、芳香族系、ハロゲン化炭化水素系、ケトン系、ケトンアルコール系、エーテル系、エステル系等から任意で選択される。溶媒として、具体的には、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤が用いられる。
また、これらの溶剤は単独又は2種以上混合して用いてもよい。混合する際、使用される溶剤としては、混合溶剤として結着樹脂を溶かし得る溶剤であれば、いかなるものでも使用される。
【0129】
下引層形成用塗布液を調製する際の無機粒子の分散方法としては、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカーなどの公知の方法が用いられる。
【0130】
さらに、下引層1を設けるときに用いる塗布方法としては、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
このようにして得られた下引層形成用塗布液を用い、導電性基体上に下引層1が成膜される。
また、下引層1は、ビッカース硬度が35以上とされていることが望ましい。
【0131】
さらに、下引層1は、所望の特性が得られるのであれば、いかなる厚さに設定されるが、厚さ15μm以上が望ましく、さらに望ましくは15μm以上50μm以下とされていることが望ましい。
下引層1の厚さが15μm未満であるときには、充分な耐リーク性能が得られ難く、また、50μm以上であるときには、長期使用した場合に残留電位が残りやすくなるため画像濃度異常を招きやすい欠点がある。
【0132】
また、下引層1の表面粗さ(十点平均粗さ)はモアレ像防止のために、使用される露光用レーザー波長λの1/4n(nは上層の屈折率)から1/2λまでに調整される。
表面粗さ調整のために下引層中に樹脂などの粒子を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等が用いられる。
ここで、下引層1は、結着樹脂及び導電性金属酸化物を含み、且つ厚み20μmにおける波長950nmの光に対する光透過率が40%以下(望ましくは10%以上35%以下、より望ましくは15%以上30%以下)であることが望ましい。長寿命化を目標とした電子写真感光体において、安定した高画質を維持することが必要である。架橋型最表面層(保護層)を用いる場合にも同様の特性が求められる。架橋型最表面層(表面保護層)を使用した場合、多くの場合硬化のために酸触媒が用いられ、最表面層(表面保護層)中の固形分に対して量が多いほど膜強度が得られ、耐刷性を高められるため長寿命化が図られる。
【0133】
一方でバルク中の残留触媒が電荷のトラップサイトとなるため、光疲労耐性が低くなりメンテナンス時などの光曝露等によって画像濃度ムラが生じる原因となる。この耐光性(光疲労耐性)は、材料(特に電荷輸送材料、酸触媒)の量を最適化することで実使用上問題ないレベルまでは改善されるが、通常のオフィスなどより明るい環境、例えばショウルームなどの場所での照射や、電子写真感光体表面に付着した異物を観察するときなどの高輝度かつ長時間の曝露に対しては十分とはいえるものではなく、さらなる長寿命化を図るために硬化触媒を増やし、膜強度を高める必要があるが、その場合、耐光性が十分ではなくなることある。そこで、上記所定の光透過率(即ち光透過率が低い)を有する下引層1を用いることによって、電子写真感光体への入射光を下引層1が吸収することにより、強度の強い光に対する耐光性に優れ、長期に渡り安定して画像が得られる。即ち、導電性基体表面からの反射光が減るため、高輝度かつ長時間の光曝露に対して耐光性(光疲労耐性)が獲得されると共に、例えば、硬化触媒量を増やし最表面層(表面保護層)の強度を高め耐刷性を向上させても、長寿命化が実現される。
【0134】
なお、上記下引層1の光透過率は次のようにして測定される。下引層形成用塗布液を、ガラスプレート上に乾燥後の厚さが20μmとなるように塗布し、乾燥後、分光光度計を用いて波長950nmでの膜の光透過率を測定する。光度計による光透過率は、分光光度計として装置名「Spectrophotometer(U−2000)」、日立社製を用いる。
この下引層1の光透過率は、前記、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカー等を用いた分散時の分散時間を調整することで、制御される。分散時間は、特に限定しないが、5分から1000時間の任意の時間が望ましく、さらには30分から10時間がより望ましい。分散時間を長くすると、光透過率は低下する傾向にある。
【0135】
また、表面粗さの調整のために下引層1の表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等が用いられる。
下引層1は、導電性基体4上に塗布した前述の下引層形成用塗布液を乾燥させることで得られる。通常、乾燥は、溶剤が蒸発して製膜される温度で行われる。
【0136】
<電荷発生層>
電荷発生層2は電荷発生材料及び結着樹脂を含有する層である。
電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料、ジブロモアントアントロン等の縮環芳香族顔料、ペリレン顔料、ピロロピロール顔料、フタロシアニン顔料、酸化亜鉛、三方晶系セレン等が挙げられる。これらの中でも、近赤外域のレーザー露光に対しては、金属及又は無金属フタロシアニン顔料が望ましく、特に、特開平5−263007号公報、特開平5−279591号公報等に開示されたヒドロキシガリウムフタロシアニン、特開平5−98181号公報等に開示されたクロロガリウムフタロシアニン、特開平5−140472号公報、特開平5−140473号公報等に開示されたジクロロスズフタロシアニン、特開平4−189873号公報、特開平5−43823号公報等に開示されたチタニルフタロシアニンがより望ましい。また、近紫外域のレーザー露光に対してはジブロモアントアントロン等の縮環芳香族顔料、チオインジゴ系顔料、ポルフィラジン化合物、酸化亜鉛、三方晶系セレン等がより望ましい。電荷発生材料としては、380nm以上500nmの露光波長の光源を用いる場合には無機顔料が望ましく、700nm以下800nmの露光波長の光源を用いる場合には、金属及び無金属フタロシアニン顔料が望ましい。
【0137】
電荷発生材料としては、600nm以上900nm以下の波長域での分光吸収スペクトルにおいて、810nm以上839nm以下の範囲に最大ピーク波長を有するヒドロキシガリウムフタロシアニン顔料を用いることが望ましい。このヒドロキシガリウムフタロシアニン顔料は、従来のV型ヒドロキシガリウムフタロシアニン顔料とは異なるものであり、より優れた分散性が得られるため望ましい。このように、分光吸収スペクトルの最大ピーク波長を従来のV型ヒドロキシガリウムフタロシアニン顔料よりも短波長側にシフトさせることにより、顔料粒子の結晶配列が制御された微細なヒドロキシガリウムフタロシアニン顔料となり、電子写真感光体の材料として用いた場合に、優れた分散性と、十分な感度、帯電性及び暗減衰特性とが得られる。
【0138】
また、上記の810nm以上839nm以下の範囲に最大ピーク波長を有するヒドロキシガリウムフタロシアニン顔料は、平均粒径が特定の範囲であり、且つ、BET比表面積が特定の範囲であることが望ましい。具体的には、平均粒径が0.20μm以下であることが望ましく、0.01μm以上0.15μm以下であることがより望ましく、一方、BET比表面積が45m/g以上であることが望ましく、50m/g以上であることがより望ましく、55m/g以上120m/g以下であることが特に望ましい。平均粒径は、体積平均粒径(d50平均粒径)でレーザ回折散乱式粒度分布測定装置(LA−700、堀場製作所社製)にて測定した値である。また、BET式比表面積測定器(島津製作所製:フローソープII2300)を用い窒素置換法にて測定した値である。
【0139】
平均粒径が0.20μmより大きい場合、又は比表面積値が45m/g未満である場合は、顔料粒子が粗大化しているか、又は顔料粒子の凝集体が形成されており、電子写真感光体の材料として用いた場合の分散性や、感度、帯電性及び暗減衰特性といった特性に欠陥が生じやすい傾向にあり、それにより画質欠陥を生じやすい傾向にある。
また、上記ヒドロキシガリウムフタロシアニン顔料の最大粒径(一次粒子径の最大値)は、1.2μm以下であることが望ましく、1.0μm以下であることがより望ましく、より望ましくは0.3μm以下である。かかる最大粒径が上記範囲を超えると、微小黒点が発生しやすい傾向にある。
【0140】
更に、感光体が蛍光灯などに暴露されたことに起因する濃度ムラをより確実に抑制する観点から、上記ヒドロキシガリウムフタロシアニン顔料は、平均粒径が0.2μm以下、最大粒径が1.2μm以下であり、且つ、比表面積値が45m/g以上であることが望ましい。
また、上記のヒドロキシガリウムフタロシアニン顔料は、CuKα特性X線を用いたX線回折スペクトルにおいて、ブラッグ角度(2θ±0.2°)7.5°、9.9°、12.5°、16.3°、18.6°、25.1°及び28.3°に回折ピークを有するものであることが望ましい。
【0141】
また、上記のヒドロキシガリウムフタロシアニン顔料は、25℃から400℃まで昇温したときの熱重量減少率が2.0%以上4.0%以下であることが望ましく、2.5%以上3.8%以下であることがより望ましい。なお、熱重量減少率は熱天秤等により測定される。上記熱重量減少率が4.0%を超えると、ヒドロキシガリウムフタロシアニン顔料に含有される不純物が電子写真感光体に影響を及ぼし、感度特性、繰り返し使用時における電位の安定性や画像品質の低下が生じる傾向にある。また、2.0%未満であると、感度の低下が生じる傾向にある。これは、ヒドロキシガリウムフタロシアニン顔料が結晶中に微量含有する溶剤分子との相互作用によって増感作用を示すことに起因すると考えられる。
【0142】
上記のヒドロキシガリウムフタロシアニン顔料を電子写真感光体の電荷発生材料として用いた場合には、感光体の最適な感度や優れた光電特性が得られる点、及び感光層に含まれる結着樹脂中への分散性に優れているので画質特性に優れる点で特に有効である。
ここで、ヒドロキシガリウムフタロシアニン顔料の平均粒径及びBET比表面積を規定することによって,初期のかぶりや黒点の発生を抑えられることが知られてきたが,長期使用によりかぶりや黒点が発生するという問題があった.これに対し,後述する所定の最表面層(グアナミン化合物及びメラミン化合物から選択される少なくとも1種と特定の電荷輸送材料とを用いた架橋膜からなる保護層)を組み合わせることによって,従来の最表面層及び電荷発生層の組み合わせで問題となっていた長期間の使用によるかぶりや黒点の発生が抑えられる。これは,長期使用によって発生する膜磨耗や帯電能力の低下が前記保護層を使用することによって抑制されるためであると考えられる。また,電気特性改善(残留電位低減)に効果がある電荷輸送層の薄膜化に対しても、従来感光体では発生してしまうかぶりや黒点の抑制も実現される。
【0143】
電荷発生層2に使用される結着樹脂としては、広範な絶縁性樹脂から選択され、また、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。望ましい結着樹脂としては、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。電荷発生材料と結着樹脂の配合比は質量比で10:1から1:10までの範囲内であることが望ましい。ここで、「絶縁性」とは、ここで、「絶縁性」とは体積抵抗率が1013Ωcm以上であることをいう。
【0144】
電荷発生層2は、電荷発生材料及び結着樹脂を所定の溶剤中に分散した塗布液を用いて形成される。
分散に用いる溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等が挙げられ、これらは1種を単独で又は2種以上を混合して用いられる。
【0145】
また、電荷発生材料及び結着樹脂を溶剤中に分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の通常の方法が用いられる。これらの分散方法により、分散による電荷発生材料の結晶型の変化が防止される。さらにこの分散の際、電荷発生材料の平均粒径を0.5μm以下、望ましくは0.3μm以下、さらに望ましくは0.15μm以下にすることが有効である。
また、電荷発生層2を形成する際には、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
このようにして得られる電荷発生層2の膜厚は、望ましくは0.1μm以上5.0μm以下、さらに望ましくは0.2μm以上2.0μm以下である。
【0146】
<電荷輸送層>
電荷輸送層3は、電荷輸送材料と結着樹脂を含有して、又は高分子電荷輸送材を含有して形成される。
電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン等のフルオレノン化合物、キサントン系化合物、ベンゾフェノン系化合物、シアノビニル系化合物、エチレン系化合物等の電子輸送性化合物、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物などの正孔輸送性化合物があげられる。これらの電荷輸送材料は1種を単独で又は2種以上を混合して用いられるが、これらに限定されるものではない。
電荷輸送材料としては電荷移動度の観点から、下記構造式(a−1)で示されるトリアリールアミン誘導体、及び下記構造式(a−2)で示されるベンジジン誘導体が望ましい。
【0147】
【化24】

【0148】
構造式(a−1)中、Rは、水素原子又はメチル基を示す。nは1又は2を示す。Ar及びArは各々独立に置換若しくは未置換のアリール基、−C−C(R)=C(R10)(R11)、又は−C−CH=CH−CH=C(R12)(R13)を示し、R乃至R13はそれぞれ独立に水素原子、置換若しくは未置換のアルキル基、又は置換若しくは未置換のアリール基を表す。置換基としてはハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、又は炭素数1以上3以下のアルキル基で置換された置換アミノ基を示す。
【0149】
【化25】

【0150】
構造式(a−2)中、R14及びR14’は同一でも異なってもよく、各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、を示す。R15、R15’、R16、及びR16’は同一でも異なってもよく、各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、炭素数1以上2以下のアルキル基で置換されたアミノ基、置換若しくは未置換のアリール基、−C(R17)=C(R18)(R19)、又は−CH=CH−CH=C(R20)(R21)を示し、R17乃至R21は各々独立に水素原子、置換若しくは未置換のアルキル基、又は置換若しくは未置換のアリール基を表す。m及びnは各々独立に0以上2以下の整数を示す。
【0151】
ここで、上記構造式(a−1)で示されるトリアリールアミン誘導体、及び上記構造式(a−2)で示されるベンジジン誘導体のうち、特に、「−C−CH=CH−CH=C(R12)(R13)」を有するトリアリールアミン誘導体、及び「−CH=CH−CH=C(R20)(R21)」を有するベンジジン誘導体が、電荷移動度、保護層との接着性、前画像の履歴が残ることで生じる残像(以下「ゴースト」と言う場合がある)などの観点で優れ望ましい。
【0152】
電荷輸送層3に用いる結着樹脂は、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーンアルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等が挙げられる。また、特開平8−176293号公報、特開平8−208820号公報に開示されているポリエステル系高分子電荷輸送材等高分子電荷輸送材を用いてもよい。これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。電荷輸送材料と結着樹脂との配合比は質量比で10:1から1:5までが望ましい。
【0153】
特に、結着樹脂としては、特に限定しないが、粘度平均分子量50000以上80000以下のポリカーボネート樹脂、及び粘度平均分子量50000以上80000以下のポリアリレート樹脂の少なくとも1種が良好な成膜が得やすいことから望ましい。
また、電荷輸送材料として高分子電荷輸送材を用いてもよい。高分子電荷輸送材としては、ポリ−N−ビニルカルバゾール、ポリシランなどの電荷輸送性を有する公知のものが用いられる。特に、特開平8−176293号公報、特開平8−208820号公報等に開示されているポリエステル系高分子電荷輸送材は、他種に比べ高い電荷輸送性を有しており、特に望ましいものである。高分子電荷輸送材はそれだけでも成膜されるが、結着樹脂と混合して成膜してもよい。
【0154】
電荷輸送層3は、上記構成材料を含有する電荷輸送層形成用塗布液を用いて形成される。電荷輸送層形成用塗布液に用いる溶剤としては、ベンゼン、トルエン、キシレン、クロルベンゼン等の芳香族炭化水素類、アセトン、2−ブタノン等のケトン類、塩化メチレン、クロロホルム、塩化エチレン等のハロンゲン化脂肪族炭化水素類、テトラヒドロフラン、エチルエーテル等の環状もしくは直鎖状のエーテル類等の通常の有機溶剤を単独又は2種以上混合して用いられる。また、上記各構成材料の分散方法としては、公知の方法が使用される。
電荷輸送層形成用塗布液を電荷発生層2の上に塗布する際の塗布方法としては、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
電荷輸送層3の膜厚は、望ましくは5μm以上50μm以下、より望ましくは10μm以上30μm以下である。
【0155】
なお、上記では、図1に示される電子写真感光体7Aが有する機能分離型の感光層の例を説明したが、例えば、図3に示される電子写真感光体7Cが有する単層型感光層6(電荷発生/電荷輸送層)中の電荷発生材料の含有量は、10質量%以上85質量%以下程度、望ましくは20質量%以上50質量%以下である。また、電荷輸送材料の含有量は5質量%以上50質量%以下とすることが望ましい。単層型感光層6(電荷発生/電荷輸送層)の形成方法は、電荷発生層2や電荷輸送層3の形成方法と同様である。単層型感光層(電荷発生/電荷輸送層)6の膜厚は5μm以上50μm以下程度が望ましく、10μm以上40μm以下とするのがさらに望ましい。
【0156】
なお、図1乃至図3に示した電子写真感光体7A、7B、7Cにおいて感光層を構成する各層には、画像形成装置中で発生するオゾンや酸化性ガス、あるいは光、熱による感光体の劣化を防止する目的で、感光層を構成する各層中に酸化防止剤、光安定剤、熱安定剤等の添加剤を添加してもよい。例えば、酸化防止剤としては、ヒンダードフェノール、ヒンダードアミン、パラフェニレンジアミン、アリールアルカン、ハイドロキノン、スピロクロマン、スピロインダノン及びそれらの誘導体、有機硫黄化合物、有機燐化合物等があげられる。
【0157】
光安定剤の例としては、ベンゾフェノン、ベンゾトリアゾール、ジチオカルバメート、テトラメチルピペリジン等の誘導体が挙げられる。また、感度の向上、残留電位の低減、繰り返し使用時の疲労低減等を目的として、少なくとも1種の電子受容性物質が含有させる。使用される電子受容物質としては、例えば、無水コハク酸、無水マレイン酸、ジブロム無水マレイン酸、無水フタル酸、テトラブロム無水フタル酸、テトラシアノエチレン、テトラシアノキノジメタン、o−ジニトロベンゼン、m−ジニトロベンゼン、クロラニル、ジニトロアントラキノン、トリニトロフルオレノン、ピクリン酸、o−ニトロ安息香酸、p−ニトロ安息香酸、フタル酸が挙げられる。これらの中でも、フルオレノン系、キノン系やCl−、CN−、NO−等の電子吸引性置換基を有するベンゼン誘導体が特に望ましい。
【0158】
さらに、図1乃至図3に示した電子写真感光体7A、7B、7Cにおける表面保護層5を、ブレード部材の場合と同様にフッ素系樹脂を含有する水性分散液で処理すると、さらなるトルク低減が図れるとともに転写効率の向上も図れるため望ましい。
【0159】
画像形成装置/プロセスカートリッジ
図4は、実施形態に係る画像形成装置を示す概略構成図である。画像形成装置100は、図4に示すように、電子写真感光体7を備えるプロセスカートリッジ300と、露光装置9と、転写装置40と、中間転写体50とを備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7を露光する位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。
【0160】
図4におけるプロセスカートリッジ300は、ハウジング内に、電子写真感光体7、帯電装置8、現像装置11及びクリーニング装置13を一体に支持している。クリーニング装置13は、クリーニングブレード131(ブレード部材)を有しており、クリーニングブレード131は、電子写真感光体7の表面に接触するように配置されている。
【0161】
[帯電手段]
帯電装置8としては、例えば、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等が使用される。また、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器も使用される。なお、本実施形態では、耐摩耗性や高速時における帯電能力の観点から、感光体と接触せずに帯電を行う非接触型の帯電手段を用いることが望ましい。
なお、図示しないが、画像の安定性を高める目的で、電子写真感光体7の周囲には、電子写真感光体7の温度を上昇させ、相対温度を低減させるための感光体加熱部材を設けてもよい。
【0162】
[静電潜像形成手段]
静電潜像形成手段となる露光装置9としては、例えば、感光体7の表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、所望の像様に露光する光学系機器等が挙げられる。光源の波長は感光体の分光感度領域にあるものが使用される。半導体レーザーの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザーや青色レーザーとして400nm以上450nm以下近傍に発振波長を有するレーザーも利用してもよい。また、カラー画像形成のためにはマルチビーム出力をするタイプの面発光型のレーザー光源も有効である。
【0163】
[現像手段]
現像装置11としては、例えば、磁性若しくは非磁性の一成分系現像剤又は二成分系現像剤等を接触又は非接触させて現像する一般的な現像装置を用いて行ってもよい。その現像装置としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、上記一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが望ましい。
【0164】
<トナー>
以下、現像装置11に使用されるトナーについて説明する。
本実施形態のトナーは、少なくともトナー粒子及びステアリン酸亜鉛を含む。ステアリン酸亜鉛はトナー粒子の表面に外添される外添剤として含まれることが望ましい。
またトナー粒子は、少なくとも結着樹脂を含み、必要に応じて離型剤、着色剤等のその他の成分を含んでもよい。
以下、トナーに含まれる各成分について説明する。
【0165】
−結着樹脂−
本実施形態において、結着樹脂は、低温定着性が得られる点で、結晶性樹脂を含むことが望ましい。
一般にトナーに用いられる結着樹脂として、結晶性樹脂を用いると、低温定着性が得られるものの、高温高湿下での放置によりトナー帯電性が変化し、転写効率が下がり、さらにフィルミングが起こりやすくなるという傾向にある。しかし、本実施形態に係る静電荷像現像用トナーを用いることにより、低温定着性を損なわずに、フィルミングが抑えられる。
【0166】
ここで本実施形態におけるトナー粒子に含まれる結晶性樹脂について説明する。結晶性樹脂とは、下記の熱特性と分子量により定義される。すなわち、結晶性樹脂は、示差走査熱量測定(DSC)において、階段状の吸熱量変化ではなく、明確な吸熱ピークを有する。具体的には、昇温速度10℃/minで測定した際の吸熱ピークの半値幅が8℃以内であり、かつ、ゲルパーミエーションクロマトグラフィー(GPC)における重量平均分子量Mwが4,000以上50,000以下である樹脂を結晶性樹脂と定義する。
測定方法に関しては、示差走査熱量計((株)島津製作所製:DSC−60A)を用いて、サンプル量8mg、基準補正材料はアルミナ粉体を用い、昇温速度10℃/minで測定した際の高温側のベースラインに対し吸熱ピークの半値幅が8℃以内であることを意味する。
【0167】
GPCは「HLC−8120GPC、SC−8020(東ソー(株)製)装置」を用い、カラムは「TSKgel、SuperHM−H(東ソー(株)製6.0mmID×15cm)」を2本用い、溶離液としてTHF(テトラヒドロフラン)を用いる。実験条件としては、試料濃度0.5%、流速0.6ml/min.、サンプル注入量10μl、測定温度40℃、IR検出器を用いて実験を行う。また、検量線を東ソー(株)製「polystylene標準試料TSK standard」:「A−500」、「F−1」、「F−10」、「F−80」、「F−380」、「A−2500」、「F−4」、「F−40」、「F−128」、「F−700」の10サンプルから作成した場合の重量平均分子量Mwである。
【0168】
結晶性樹脂の重量平均分子量Mwは、4,000以上50,000以下であり、望ましくは6,000以上30,000以下、より望ましくは7,000以上15,000以下である。
結晶性樹脂の重量平均分子量Mwが4,000以上であると、定着時にトナーが紙等の記録媒体の表面へしみ込むために生じる定着ムラの発生が抑制され、また、定着された画像の折り曲げに対する耐性が良好であるので望ましい。重量平均分子量Mwが50,000以下であると、溶融時の粘度低下制御が良好であり、オフセット等の問題を生じないので望ましい。
【0169】
前記結晶性樹脂としては、結晶性を持つ樹脂であれば特に制限はなく、具体的には、結晶性ポリエステル樹脂、結晶性ビニル系樹脂が挙げられるが、定着時の紙への接着性や帯電性、及び、望ましい範囲での融点調整の観点から、結晶性ポリエステル樹脂が望ましい。また、適度な融点をもつ脂肪族系の結晶性ポリエステル樹脂がより望ましい。
また、結晶性樹脂単独では樹脂自身の強度が非結晶性樹脂に比べて低く、粉体の信頼性に問題が生じる場合がある。特に、高温下での保管により、現像機内でのブロッキングの発生や、感光体上へのフィルミングが起こりやすくなるという問題が生じる場合がある。そこで、強度改善が期待される方法として、結晶性樹脂と非結晶性樹脂を混合して用いることが望ましい。
以下、本実施形態で用いられる結着樹脂について、結晶性樹脂と非結晶性樹脂とに分けて説明する。
【0170】
(結晶性樹脂)
結晶性樹脂は、トナーを構成する成分のうち、5乃至30%の範囲で使用されることが望ましく、より望ましくは8から20%の範囲である。結晶性樹脂の割合(質量比)が30%以上では良好な定着特性は得られるものの、定着像中の相分離構造がかたより、定着画像の強度、特に引っかき強度が低下し、傷がつきやすくなるといった問題を呈することがある。一方、5%未満では、結晶性樹脂由来のシャープメルト性が得られず、単純に非結晶性樹脂の可塑化し、良好な低温定着性を確保しつつ、耐トナーブロッキング性、画像保存性を保つことが困難となる場合がある。
なお、「結晶性樹脂」とは、示差走査熱量測定(DSC)において、階段状の吸熱量変化ではなく、明確な吸熱ピークを有するものを指す。具体的には、昇温速度10℃/minで測定した際の吸熱ピークの半値幅が6℃以内であることを意味する。一方、半値幅が6℃を超える樹脂や、明確な吸熱ピークが認められない樹脂は、非結晶性樹脂を意味するが、本実施形態における非結晶性樹脂としては、明確な吸熱ピークが認められない樹脂を用いることが望ましい。
【0171】
結晶性樹脂としては、結晶性を持つ樹脂であれば特に制限はなく、具体的には、結晶性ポリエステル樹脂、結晶系ビニル系樹脂が挙げられるが、定着時の紙への定着性や帯電性、及び望ましい範囲での融点調整の観点から結晶性ポリエステルが望ましい。また更に適度な融点をもつ脂肪族系の結晶性ポリエステル樹脂がより望ましい。
結晶性ポリエステル樹脂や、その他すべてのポリエステル樹脂は、多価カルボン酸成分と多価アルコール成分とから合成される。なお、本実施形態においては、前記ポリエステル樹脂として市販品を使用してもよいし、合成したものを使用してもよい。
多価カルボン酸成分としては、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、1,9−ノナンジカルボン酸、1,10−デカンジカルボン酸、1,12−ドデカンジカルボン酸、1,14−テトラデカンジカルボン酸、1,18−オクタデカンジカルボン酸等の脂肪族ジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、ナフタレン−2,6−ジカルボン酸、マロン酸、メサコニン酸等の二塩基酸等の芳香族ジカルボン酸、などが挙げられ、さらに、これらの無水物やこれらの低級アルキルエステルも挙げられるがこの限りではない。
【0172】
3価以上のカルボン酸成分としては、例えば、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、1,2,4−ナフタレントリカルボン酸等、及びこれらの無水物やこれらの低級アルキルエステルなどが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
また、多価カルボン酸酸成分としては、前述の脂肪族ジカルボン酸や芳香族ジカルボン酸の他に、スルホン酸基を持つジカルボン酸成分が含まれていることが望ましい。前記スルホン酸基を持つジカルボン酸は、顔料等の色材の分散が良好になる点で有効である。また、樹脂全体を水に乳化或いは懸濁して、粒子を作成する際に、スルホン酸基があれば、後述するように、界面活性剤を使用しなくても、乳化或いは懸濁される。
【0173】
このようなスルホン基を持つジカルボン酸としては、例えば、2−スルホテレフタル酸ナトリウム塩、5−スルホイソフタル酸ナトリウム塩、スルホコハク酸ナトリウム塩等が挙げられるが、これらに限定されない。また、これらの低級アルキルエステル、酸無水物等も挙げられる。これらスルホン酸基を有する2価以上のカルボン酸成分は、ポリエステルを構成する全カルボン酸成分に対して0から20モル%、望ましくは0.5から10モル%含有する。スルホン酸基を有する2価以上のカルボン酸成分の含有量が少ないと、乳化粒子の経時安定性が悪くなる一方、10モル%を超えると、ポリエステル樹脂の結晶性が低下するばかりではなく、凝集後、粒子が融合する工程に悪影響を与え、トナー径の調整が難しくなるという不具合が生じる場合がある。
【0174】
さらに、前述の脂肪族ジカルボン酸や芳香族ジカルボン酸の他に、2重結合を持つジカルボン酸成分を含有することがより望ましい。2重結合を持つジカルボン酸は、2重結合を介して、ラジカル的に架橋結合させ得る点で、定着時のホットオフセットを防ぐ為に好適に用いられる。このようなジカルボン酸としては、例えばマレイン酸、フマル酸、3−ヘキセンジオイック酸、3−オクテンジオイック酸等が挙げられるが、これらに限定されない。また、これらの低級エステル、酸無水物等も挙げられる。これらの中でもコストの点で、フマル酸、マレイン酸等が望ましく挙げられる。
【0175】
多価アルコール成分としては、脂肪族ジオールが望ましく、主鎖部分の炭素数が7から20である直鎖型脂肪族ジオールがより望ましい。前記脂肪族ジオールが分岐型では、ポリエステル樹脂の結晶性が低下し、融点が降下してしまう為、耐トナーブロッキング性、画像保存性、及び低温定着性が悪化してしまう場合がある。また、炭素数が7未満であると、芳香族ジカルボン酸と縮重合させる場合、融点が高くなり、低温定着が困難となることがある一方、20を超えると実用上の材料の入手が困難となり易い。前記炭素数としては14以下であることがより望ましい。
【0176】
脂肪族ジオールとしては、具体的には、例えば、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,14−エイコサンデカンジオールなどが挙げられるが、これらに限定されるものではない。これらのうち、入手容易性を考慮すると1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオールが望ましい。
【0177】
3価以上のアルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールなどが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
多価アルコール成分のうち、前記脂肪族ジオール成分の含有量が80モル%以上であることが望ましく、より望ましくは、90%以上である。前記脂肪族ジオール成の含有量が80モル%未満では、ポリエステル樹脂の結晶性が低下し、融点が降下する為、耐トナーブロッキング性、画像保存性及び、低温定着性が悪化してしまう場合がある。
【0178】
なお、必要に応じて、酸価や水酸基価の調製等の目的で、酢酸、安息香酸等の1価の酸や、シクロヘキサノールベンジルアルコール等の1価のアルコールも使用してもよい。
結晶性ポリエステル樹脂の製造方法としては、特に制限はなく、酸成分とアルコール成分とを反応させる一般的なポリエステル重合法で製造され、例えば、直接重縮合、エステル交換法等が挙げられ、モノマーの種類によって使い分けて製造する。
【0179】
結晶性ポリエステル樹脂の製造は、重合温度180℃から230℃の間で行われ、必要に応じて反応系内を減圧にし、縮合時に発生する水やアルコールを除去しながら反応させる。モノマーが反応温度下で溶解又は相溶しない場合は、高沸点の溶剤を溶解補助剤として加え溶解させても良い。重縮合反応においては、溶解補助溶剤を留去しながら行う。共重合反応において相溶性の悪いモノマーが存在する場合は、あらかじめ相溶性の悪いモノマーと、そのモノマーと重縮合予定の酸又はアルコールとを縮合させておいてから主成分と共に重縮合させると良い。
【0180】
結晶性ポリエステル樹脂の製造時に使用される触媒としては、例えば、ナトリウム、リチウム等のアルカリ金属化合物;マグネシウム、カルシウム等のアルカリ土類金属化合物;亜鉛、マンガン、アンチモン、チタン、スズ、ジルコニウム、ゲルマニウム等の金属化合物;亜リン酸化合物、リン酸化合物、及びアミン化合物等が挙げられ、具体的には、以下の化合物が挙げられる。
触媒としては、例えば、酢酸ナトリウム、炭酸ナトリウム、酢酸リチウム、炭酸リチウム、酢酸カルシウム、ステアリン酸カルシウム、酢酸マグネシウム、酢酸亜鉛、ステアリン酸亜鉛、ナフテン酸亜鉛、塩化亜鉛、酢酸マンガン、ナフテン酸マンガン、チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトライソプロキシド、チタンテトラブトキシド、三酸化アンチモン、トリフェニルアンチモン、トリブチルアンチモン、ギ酸スズ、シュウ酸スズ、テトラフェニルスズ、ジブチルスズジクロライド、ジブチルスズオキシド、ジフェニルスズオキシド、ジルコニウムテトラブトキシド、ナフテン酸ジルコニウム、炭酸ジルコニール、酢酸ジルコニール、ステアリン酸ジルコニール、オクチル酸ジルコニール、酸化ゲルマニウム、トリフェニルホスファイト、トリス(2,4−t−ブチルフェニル)ホスファイト、エチルトリフェニルホスホニウムブロマイド、トリエチルアミン、トリフェニルアミン等の化合物が挙げられる。
【0181】
結晶性樹脂の融点としては、望ましくは50から100℃であり、より望ましくは60から80℃である。前記融点が50℃より低いとトナーの保存性や、定着後のトナー画像の保存性が問題となる場合がある一方、100℃より高いと従来のトナーに比べて十分な低温定着が得られない場合がある。また結晶性の樹脂には、複数の融解ピークを示す場合があるが、本実施形態においては、最大のピークをもって融点とみなす。
【0182】
一方、結晶性ビニル系樹脂としては、(メタ)アクリル酸アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸セチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オレイル、(メタ)アクリル酸ベヘニル等の長鎖アルキル、アルケニルの(メタ)アクリル酸エステルを用いたビニル系樹脂が挙げられる。なお、本明細書において、「(メタ)アクリル」なる記述は、「アクリル」及び「メタクリル」のいずれをも含むことを意味するものである。
【0183】
(非結晶性樹脂)
非結晶樹脂としては、公知の樹脂材料が用いられるが、非結晶性ポリエステル樹脂が特に望ましい。非結晶性ポリエステル樹脂とは、主として多価カルボン酸類と多価アルコール類との縮重合により得られるものである。
非結晶性ポリエステル樹脂を用いる場合には、樹脂の酸価の調整やイオン性界面活性剤などを用いて乳化分散することにより、樹脂粒子分散液が容易に調製される点で有利である。
【0184】
多価カルボン酸の例としては、テレフタル酸、イソフタル酸、無水フタル酸、無水トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、などの芳香族カルボン酸類、無水マレイン酸、フマール酸、コハク酸、アルケニル無水コハク酸、アジピン酸などの脂肪族カルボン酸類、シクロヘキサンジカルボン酸などの脂環式カルボン酸類が挙げられる。これらの多価カルボン酸が1種又は2種以上用いられる。これら多価カルボン酸の中、芳香族カルボン酸を使用することが望ましく、また良好なる定着性を確保するために架橋構造あるいは分岐構造をとるためにジカルボン酸とともに3価以上のカルボン酸(トリメリット酸やその酸無水物等)を併用することが望ましい。
【0185】
多価アルコールの例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、ネオペンチルグリコール、グリセリン、などの脂肪族ジオール類、シクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールAなどの脂環式ジオール類、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などの芳香族ジオール類が挙げられる。これら多価アルコールが1種又は2種以上用いられる。これら多価アルコールの中、芳香族ジオール類、脂環式ジオール類が望ましく、このうち芳香族ジオールがより望ましい。また良好なる定着性を確保するため、架橋構造あるいは分岐構造をとるためにジオールとともに3価以上の多価アルコール(グリセリン、トリメチロールプロパン、ペンタエリスリトール)を併用してもよい。
【0186】
なお、多価カルボン酸と多価アルコールとの重縮合によって得られたポリエステル樹脂に、さらにモノカルボン酸、および/またはモノアルコールを加えて、重合末端のヒドロキシル基、および/またはカルボキシル基をエステル化し、ポリエステル樹脂の酸価を調整しても良い。モノカルボン酸としては酢酸、無水酢酸、安息香酸、トリクロル酢酸、トリフルオロ酢酸、無水プロピオン酸等が挙げられ、モノアルコールとしてはメタノール、エタノール、プロパノール、オクタノール、2エチルヘキサノール、トリフルオロエタノール、トリクロロエタノール、ヘキサフルオロイソプロパノール、フェノールなどが挙げられる。
【0187】
ポリエステル樹脂は上記多価アルコールと多価カルボン酸を常法に従って縮合反応させることによって製造される。例えば、上記多価アルコールと多価カルボン酸、必要に応じて触媒を入れ、温度計、撹拌器、流下式コンデンサを備えた反応容器に配合し、不活性ガス(窒素ガス等)の存在下、150から250℃で加熱し、副生する低分子化合物を連続的に反応系外に除去し、所定の酸価に達した時点で反応を停止させ、冷却し、目的とする反応物を取得することによって製造される。
このポリエステル樹脂の合成に使用する触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫オキサイド等の有機金属やテトラブチルチタネート等の金属アルコキシドなどのエステル化触媒が挙げられる。このような触媒の添加量は、原材料の総量に対して0.01から1.00質量%とすることが望ましい。
【0188】
本実施形態においてトナーに使用される非結晶性樹脂は、テトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフイー(GPC)法による分子量測定で、重量平均分子量(Mw)が5000から1000000であることが望ましく、更に望ましくは7000から500000であり、数均分子量(Mn)は2000から10000であることが望ましく、分子量分布Mw/Mnが1.5から100であることが望ましく、更に望ましくは2から60である。
重量平均分子量及び数平均分子量が上記範囲より小さい場合には、低温定着性には効果的ではある一方で、耐ホットオフセット性が著しく悪くなるばかりでなく、トナーのガラス転移点を低下させる為、トナーのブロッキング等保存性にも悪影響を及ぼす場合がある。一方、上記範囲より分子量が大きい場合には、耐ホットオフセット性は充分付与されるものの、低温定着性は低下する他、トナー中に存在する結晶性ポリエステル相の染み出しを阻害する為、ドキュメント保存性に悪影響を及ぼす場合がある。したがって、上述の条件を満たすことによって低温定着性と耐ホットオフセット性、ドキュメント保存性を両立し得ることが容易となる。
【0189】
樹脂の分子量は、THF可溶物を、東ソー社製GPC・HLC−8120、東ソー社製カラム・TSKgel SuperHM−M(15cm)を使用し、THF溶媒で測定し、単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して分子量を算出する。ポリエステル樹脂の酸価(樹脂1gを中和するに必要なKOHのmg数)は、前記のような分子量分布を得やすいことや、乳化分散法によるトナー粒子の造粒性を確保しやすいことや、得られるトナーの環境安定性(温度・湿度が変化した時の帯電性の安定性)を良好なものに保ちやすいことなどから、1から30mgKOH/gであることが望ましい。
ポリエステル樹脂の酸価は、原料の多価カルボン酸と多価アルコールの配合比と反応率により、ポリエステルの末端のカルボキシル基を制御することによって調整される。また、多価カルボン酸成分として無水トリメリット酸を使用することによって、ポリエステルの主鎖中にカルボキシル基を有するものが得られる。
【0190】
公知の非結晶性樹脂として、スチレンアクリル系樹脂を使用してもよい。この場合使用される単量体としては、例えば、スチレン、パラクロロスチレン、α−メチルスチレン等のスチレン類:アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸ラウリル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸ラウリル、メタクリル酸2−エチルヘキシル等のビニル基を有するエステル類:アクリロニトリル、メタクリロニトリル等のビニルニトリル類:ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類:ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン類:エチレン、プロピレン、ブタジエンなどのポリオレフィン類:などの単量体の重合体、これらを2種以上組み合せて得られる共重合体又はこれらの混合物が挙げられ、さらにはエポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂等、非ビニル縮合系樹脂、あるいはこれらと前記ビニル系樹脂との混合物やこれらの共存下でビニル系単量体を重合する際に得られるグラフト重合体等も使用される。
【0191】
非結晶性樹脂のガラス転移温度は、35から100℃であることが望ましく、貯蔵安定性とトナーの定着性のバランスの点から、50から80℃であることがより望ましい。ガラス転移温度が35℃未満であると、トナーが貯蔵中又は現像器中でブロッキング(トナーの粒子が凝集して塊になる現象)を起こしやすい傾向にある。一方、ガラス転移温度が100℃を超えると、トナーの定着温度が高くなってしまい望ましくない。
非結晶性樹脂の軟化点は80から130℃の範囲に存在することが望ましく、より望ましくは90から120℃の範囲である。軟化点が80℃以下の場合は、定着後及び保管時のトナー及びトナーの画像安定性が悪化する場合がある。また軟化点が130℃以上の場合は、低温定着性が悪化してしまう場合がある。
【0192】
非結晶性樹脂の軟化点の測定はフローテスター(島津社製:CFT−500C)を用いて測定し、予熱:80℃/300sec、プランジャー圧力:0.980665MPa、ダイサイズ:1mmφ×1mm、昇温速度:3.0℃/minの条件下における溶融開始温度と溶融終了温度との中間温度を軟化点とする。
結晶性ポリエステルの樹脂粒子分散液の作製については、例えば、樹脂の酸価の調整やイオン性界面活性剤などを用いて乳化分散することにより、調製される。
樹脂粒子分散液の粒子径は、例えばレーザー回析式粒度分布測定装置(LA−700堀場製作所製)で測定される。
【0193】
−ステアリン酸亜鉛−
本実施形態で用いるトナーはステアリン酸亜鉛を有する。
ステアリン酸亜鉛の平均粒径は、感光体への被覆を効率的に行うという観点から、0.1μm以上10μm以下であることが望ましく、0.2μm以上8μm以下であることがより望ましい。
トナー(トナー粒子及び外添剤)に対するステアリン酸亜鉛の含有量は、画像部と非画像部を有する画像密度7%の画像形成を繰り返して前記電子写真感光体を50000回転させた後の前記電子写真感光体の表面をX線光電子分光法(XPS)で分析したときの亜鉛被覆率が50%以上100%以下となるようにする観点から、0.01質量%以上2質量%以下が望ましく、0.05質量%以上1質量%以下がより望ましい。
【0194】
−外添剤−
また、本実施形態のトナーにはステアリン酸亜鉛と併用して、公知の外添剤を外添してもよい。外添剤としては例えばシリカ、アルミナ、チタニア、炭酸カルシウム、炭酸マグネシウム、リン酸三カルシウムなどの無機粒子が利用される。外添剤の添加方法は特に限定されないが、乾燥状態で剪断力を加えてトナー粒子表面に添加してもよい。
【0195】
外添剤として使用される無機粒子として詳細には、望ましくは一次粒径が5nm以上2μm以下の範囲であり、より望ましくは5nm以上500nm以下の範囲である粒子である。これらは必要に応じて2種以上組み合わせて用いることが望ましい。特に、中心粒径が100nm以上の外添剤は、トナー表面への付着力が弱く、長期の使用においても構造変化が少なく、さらに、小粒径品の構造を維持する上でも有用である。
また、BET法による比表面積は20m2/g以上500m2/g以下の範囲であることが望ましい。トナーに混合される割合は0.01質量%以上5質量%以下の範囲であることが望ましく、より望ましくは0.01質量%以上2.0質量%以下の範囲である。
【0196】
このような無機粒子としては、例えば、シリカ粉末、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化硅素、窒化硅素などが挙げられるが、シリカ粉末が特に望ましい。
なお、ここでいうシリカ粉末はSi−O−Si結合を有する粉末であり、乾式法及び湿式法で製造されたもののいずれもが含まれる。また、無水二酸化ケイ素の他、ケイ酸アルミニウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸マグネシウム、ケイ酸亜鉛などいずれでもよいが、SiOを85質量%以上含むものが望ましい。
これらシリカ粉末の具体例としては種々の市販のシリカがあるが、表面に疎水性基を有するものが望ましく、例えばAEROSIL R−972、R−974、R−805、R−812(以上、アエロジル社製)、タラックス500(タルコ社製)等が挙げられる。その他シランカップリング剤、チタンカップリング剤、シリコーンオイル、側鎖にアミンを有するシリコーンオイル等で処理されたシリカ粉末などが使用可能である。
【0197】
−着色剤−
本実施形態のトナーに用いられる着色剤としては、公知の着色剤であれば特に限定されない。例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等のカーボンブラック、ベンガラ、紺青、酸化チタン等の無機顔料、ファストイエロー、ジスアゾイエロー、ピラゾロンレッド、キレートレッド、ブリリアントカーミン、パラブラウン等のアゾ顔料、銅フタロシアニン、無金属フタロシアニン等のフタロシアニン顔料、フラバントロンイエロー、ジブロモアントロンオレンジ、ペリレンレッド、キナクリドンレッド、ジオキサジンバイオレット等の縮合多環系顔料が挙げられる。
また、クロムイエロー、ハンザイエロー、ベンジジンイエロー、スレンイエロー、キノリンイエロー、パーマネントオレンジGTR、ピラロゾンオレンジ、バルカンオレンジ、ウオッチヤングレッド、パーマネントレッド、デュポンオイルレッド、リソールレッド、ローダミンBレーキ、レーキレッドC、ローズベンガル、アニリンブルー、ウルトラマリンブルー、カルコオイルブルー、メチレンブルークロライド、フタロシアニンブルー、フタロシアニングリーン、マラカイトグリーンオクサレート、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・57:1、C.I.ピグメント・イエロー12、C.I.ピグメント・イエロー97、C.I.ピグメント・イエロー17、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:3などの種々の顔料などが例示され、これらを1種又は2種以上を併せて使用される。
【0198】
本実施形態のトナーにおける、前記着色剤の含有量としては、結着樹脂100質量部に対して、1質量部以上30質量部以下が望ましいが、また、必要に応じて表面処理された着色剤を使用したり、顔料分散剤を使用したりすることも有効である。前記着色剤の種類を適宜選択することにより、イエロートナー、マゼンタトナー、シアントナー、ブラックトナー等が得られる。
【0199】
−離型剤−
本実施形態のトナーは離型剤を含有してもよい。本実施形態のトナーに用いられる離型剤としては、公知の離型剤であれば特に限定されないが、例えば、カルナウバワックス、ライスワックス、キャンデリラワックス等の天然ワックス、低分子量ポリプロピレン、低分子量ポリエチレン、サゾールワックス、マイクロクリスタリンワックス、フィッシャートロピッシュワックス、パラフィンワックス、モンタンワックス等の合成或いは鉱物・石油系ワックス、脂肪酸エステル、モンタン酸エステル等のエステル系ワックスなどが挙げられるが、これに限定されるものではない。また、これらの離型剤は、1種単独で用いてもよく、2種以上併用してもよい。
離型剤の融点は、保存性の観点から、50℃以上であることが望ましく、60℃以上であることがより望ましい。また、耐オフセット性の観点から、110℃以下であることが望ましく、100℃以下であることがより望ましい。
離型剤の含有量は、結着樹脂100質量部に対して、1質量部以上30質量部以下の範囲内であることが望ましく、2質量部以上20質量部以下の範囲内であることがより望ましい。離型剤の含有量が1質量部未満であると離型剤添加の効果がなく、高温でのホットオフセットを引き起こす場合がある。一方、30質量部を超えると、帯電性に悪影響を及ぼす他、トナーの機械的強度が低下する為、現像機内でのストレスで破壊されやすくなり、キャリア汚染などを引き起こす場合がある。また、カラートナーとして用いた場合、定着画像中にドメインが残留し易くなり、OHP透明性が悪化するという問題が生じる場合がある。
【0200】
−その他の成分−
トナー粒子は、帯電制御剤、磁性材料等のその他の成分を含んでもよい。
帯電制御剤としては、公知のものが使用されるが、アゾ系金属錯化合物、サリチル酸の金属錯化合物、極性基を含有するレジンタイプの帯電制御剤が用いられる。湿式製法でトナーを製造する場合、イオン強度の制御と廃水汚染の低減の点で水に溶解しにくい素材を使用することが望ましい。また、トナーとしては、磁性材料を内包する磁性トナー及び磁性材料を含有しない非磁性トナーのいずれであってもよい。
【0201】
−トナーの製造方法−
トナーに含まれるトナー粒子の製造方法は特に限定されないが、例えば、結着樹脂、着色剤及び離型剤、必要に応じて帯電制御剤等を加えて混練、粉砕、分級する混練粉砕法;混練粉砕法にて得られた粒子を機械的衝撃力又は熱エネルギーにて形状を変化させる方法;結着樹脂の重合性単量体を乳化重合させ、形成された分散液と、着色剤及び離型剤、必要に応じて帯電制御剤等の分散液とを混合し、凝集、加熱融着させ、トナー粒子を得る乳化重合凝集法;結着樹脂を得るための重合性単量体と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法;結着樹脂と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液とを水系溶媒に懸濁させて造粒する溶解懸濁法等が挙げられる。
また上記方法で得られたトナーをコアにして、さらに凝集粒子を付着、加熱融合してコアシェル構造をもたせる製造方法等、公知の方法が使用される。なお、トナーの製造方法としては、形状制御、粒度分布制御の観点から水系溶媒にて製造する懸濁重合法、乳化重合凝集法、溶解懸濁法が望ましく、乳化重合凝集法が特に望ましい。
【0202】
上記の中でも好適なトナー粒子の製造方法の一例について説明する。
前記トナー粒子の好適な製造方法としては、例えば、少なくとも樹脂粒子が分散され、必要に応じて着色剤粒子及び離型剤粒子が分散された分散液中で、凝集粒子を形成する凝集工程と、前記凝集粒子を加熱して該凝集粒子を融合する融合工程と、を含む湿式製法が挙げられる。この方法によりトナー粒子を得ることは、シャープな粒度分布を有する小粒子径トナーが製造されるとともに、高画質カラー画像を形成するカラートナーが得られる観点から好適である。
【0203】
凝集工程では、少なくとも前記結着樹脂を含む樹脂粒子分散液を用い、必要に応じて更に着色剤分散液と離型剤分散液などのその他の成分を添加混合して調製された分散液を混合し、そこに凝集剤を加え、攪拌しながら加熱することにより樹脂粒子等を凝集させて凝集粒子を形成する。
凝集粒子の体積平均粒径は2から9μmの範囲にあることが望ましい。このようにして形成された凝集粒子に、樹脂粒子(追加粒子)を追加添加し、凝集粒子の表面に被覆層を形成してもよい(付着工程)。この付着工程において追加添加する樹脂粒子(追加粒子)は、上述の凝集工程において使用した樹脂粒子分散液と同じものでもよく、異なるものでもよい。
また、上述の凝集工程又は付着工程に使用する樹脂は、外部添加剤を遊離させやすくするために、比較的分子量の高い樹脂を混合することが望ましい。具体的にはZ平均分子量Mzが100000から500000の樹脂が望ましい。
【0204】
次いで、融合工程では、例えば、樹脂のガラス転移点以上の温度、一般には70から120℃に加熱処理して凝集粒子を融合させ、トナー粒子含有液(トナー粒子分散液)を得る。次いで、得られたトナー粒子含有液は、遠心分離または吸引濾過により処理して、トナー粒子を分離し、イオン交換水によって1から3回洗浄する。その際pHを調整することで洗浄効果がより高められる。その後、トナー粒子を濾別し、イオン交換水によって1から3回洗浄し、乾燥することによって、トナー粒子が得られる。
【0205】
−その他の粒子−
またトナーには滑性粒子を添加してもよい。滑性粒子としては、グラファイト、二硫化モリブデン、滑石、脂肪酸、脂肪酸金属塩等の固体潤滑剤や、ポリプロピレン、ポリエチレン、ポリブテン等の低分子量ポリオレフィン類、加熱により軟化点を有するシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪族アミド類やカルナバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等の植物系ワックス、ミツロウの動物系ワックス、モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の鉱物、石油系ワックス、及びそれらの変性物が使用される。これらは、1種を単独で、又は2種以上を併用して使用される。但し、平均粒径としては0.1μm以上10μm以下の範囲が望ましく、上記化学構造のものを粉砕して、粒径をそろえてもよい。トナーへの添加量は望ましくは0.05質量%以上2.0質量%以下、より望ましくは0.1質量%以上1.5質量%以下の範囲である。
【0206】
またトナーには、電子写真感光体表面の付着物、劣化物除去の目的等で、無機粒子、有機粒子、該有機粒子に無機粒子を付着させた複合粒子等を加えてもよい。
無機粒子としては、シリカ、アルミナ、チタニア、ジルコニア、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸マグネシウム、酸化亜鉛、酸化クロム、酸化セリウム、酸化アンチモン、酸化タングステン、酸化スズ、酸化テルル、酸化マンガン、酸化ホウ素、炭化ケイ素、炭化ホウ素、炭化チタン、窒化ケイ素、窒化チタン、窒化ホウ素等の各種無機酸化物、窒化物、ホウ化物等が好適に使用される。
また、上記無機粒子を、テトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等のチタンカップリング剤、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)γ−アミノプロピルトリメトキシシラン塩酸塩、ヘキサメチルジシラザン、メチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトエリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フェニルトリメトキシシラン、o−メチルフェニルトリメトキシシラン、p−メチルフェニルトリメトキシシラン等のシランカップリング剤等で処理を行ってもよい。また、シリコーンオイル、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸金属塩によって疎水化処理したものも望ましく使用される。
有機粒子としては、スチレン樹脂粒子、スチレンアクリル樹脂粒子、ポリエステル樹脂粒子、ウレタン樹脂粒子等が挙げられる。
【0207】
粒子径としては、個数平均粒子径で望ましくは5nm以上1000nm以下、より望ましくは5nm以上800nm以下、さらに望ましくは5nm以上700nm以下でのものが使用される。平均粒子径が、上記下限値未満であると、研磨能力に欠ける傾向があり、他方、上記上限値を超えると、電子写真感光体表面に傷を発生しやすくなる傾向がある。また、上述した粒子と滑性粒子との添加量の和が0.6質量%以上であることが望ましい。
【0208】
トナーに添加されるその他の無機酸化物としては、粉体流動性、帯電制御等の為、1次粒径が40nm以下の小径無機酸化物を用い、更に付着力低減や帯電制御の為、それより大径の無機酸化物を添加することが望ましい。これらの無機酸化物粒子は公知のものが使用されるが、精密な帯電制御を行う為にはシリカと酸化チタンを併用することが望ましい。
また、小径無機粒子については表面処理することにより、分散性が高くなり、粉体流動性を上げる効果が大きくなる。さらに、炭酸カルシウム、炭酸マグネシウム等の炭酸塩や、ハイドロタルサイト等の無機鉱物を添加することも放電精製物を除去するために望ましい。
【0209】
(静電荷像現像剤)
本実施形態の静電荷像現像剤(以下、「現像剤」と称す場合がある。)は、本実施形態のトナーを含むものであり、目的に応じて他の成分を配合してもよい。
具体的には、本実施形態のトナーを単独で用いると一成分系の静電荷像現像剤として調製され、また、キャリアと組み合わせて用いると二成分系の静電荷像現像剤として調製される。二成分系の静電荷像現像剤とする場合、トナー濃度は1質量%以上10質量%以下の範囲とすることが望ましい。
ここでキャリアには特に制限はなく、それ自体公知のキャリアが挙げられ、例えば、特開昭62−39879号公報、特開昭56−11461号公報等に記載された芯材が樹脂層で被覆されたキャリア(樹脂被覆キャリア)等の公知のキャリアが使用される。
【0210】
樹脂被覆キャリアの芯材としては、鉄粉、フェライト、マグネタイトなどの造型物が挙げられ、その平均径は30μm以上200μm以下程度である。
被覆層を形成する被覆樹脂としては、例えば、スチレン、パラクロロスチレン、α−メチルスチレン等のスチレン類、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸ラウリル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸n−プロピル、メタクリル酸ラウリル、メタクリル酸2−エチルヘキシル等のα−メチレン脂肪酸モノカルボン酸類、ジメチルアミノエチルメタクリレート等の含窒素アクリル類、アクリロニトリル、メタクリロニトリル等のビニルニトリル類、2−ビニルピリジン、4−ビニルピリジン等のビニルピリジン類、ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類、ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン類、エチレン、プロピレン等のオレフィン類、弗化ビニリデン、テトラフルオロエチレン、ヘキサフルオロエチレン等のビニル系フッ素含有モノマー等の単独重合体、又は2種類以上のモノマーからなる共重合体、メチルシリコーン、メチルフェニルシリコーン等のシリコーン類、ビスフェノール、グリコール等を含有するポリエステル類、エポキシ樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂、ポリカーボネート樹脂等が挙げられる。これらの樹脂は、1種単独で用いてもよいし、あるいは2種以上併用してもよい。
【0211】
被覆樹脂量は、芯材100質量部に対して0.1質量部以上10質量部以下の範囲が望ましく、0.5質量部以上3.0質量部以下の範囲がより望ましい。キャリアの製造には、例えば加熱型ニーダー、加熱型ヘンシェルミキサー、UMミキサーなどが使用され、被覆樹脂の量によっては、加熱型流動転動床、加熱型キルンなどが使用される。静電荷像現像剤におけるトナーとキャリアとの混合比には特に制限はなく、目的に応じて選択される。
【0212】
[転写手段]
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
【0213】
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体50の形態としては、ベルト状以外にドラム状のものが用いられる。
【0214】
[クリーニング手段]
クリーニング装置13は、電子写真感光体の表面に接するクリーニングブレード131およびクリーニングブラシ132を備え、転写後に感光体表面に残留する現像剤を除去する。
クリーニングブレード131としては、例えば、支持部材(支持部)とゴム部材を備えたものが使用される。ゴム部材は、感光体(不図示)表面へ圧接させる部材であり、エッジ層及びベース層からなる2層構造を有して構成されてもよい。
クリーニングブレード131の感光体に対する圧接力は、10N/m以上80N/m以下であることが望ましく、より望ましくは15N/m以上60N/m以下であり、さらに望ましくは20N/m以上50N/m以下である。この圧接力を上記範囲とすることで、トナー除去能が向上されると共に、感光体表面への局所的な力が働くことが抑制される。結果、感光体表面の局所的な磨耗が抑制され、長期にわたって繰り返し良好な画像が得られ易い。
クリーニングブラシ132は、感光体ドラム7の回転軸と平行に延びた中心線から放射状に延びた毛(ブラシ繊維)を有する。ブラシ繊維の材質としては、公知の材質を用いることが可能であるが、その中でも、ナイロン、アクリル又はポリプロピレンが好ましく、この中でも特にナイロンが長期安定性に優れるため好ましい。ブラシ表面の繊維太さは2デニール以上17デニール以下の範囲が好ましく、さらに好ましくは3デニール以上10デニール以下の範囲である。
ブラシ表面の繊維長さ(起毛の接着層厚は含まない)は2.5mm以上7mm以下の範囲が好ましく、さらに好ましくは3mm以上6.5mm以下の範囲である。またブラシ表面の繊維密度は、15×103本/inch2以上200×103本/inch2以下(23.4本/mm2以上310本/mm2以下)の範囲が好ましく、さらに好ましくは20×103本/inch2以上80×103本/inch2以下(31.0本/mm2以上124本/mm2以下)の範囲である。
【0215】
画像形成装置100は、上述した各装置の他に、例えば、感光体7に対して光除電を行う光除電装置を備えていてもよい。
【0216】
図5は、他の実施形態に係る画像形成装置を示す概略断面図である。画像形成装置120は、図5に示すように、プロセスカートリッジ300を4つ搭載したタンデム方式のフルカラー画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
タンデム型の画像形成装置に本実施形態の電子写真感光体を用いた場合、4本の感光体の電気特性が安定することから、より長期に渡ってカラーバランスの優れた画質が得られる。
【0217】
また、本実施形態に係る画像形成装置(プロセスカートリッジ)において、現像装置(現像手段)は、磁性体を有する現像剤保持体を備え、磁性キャリア及びトナーを含む2成分系現像剤で静電潜像を現像するものであることが望ましい。この構成では、一成分系現像剤、特に非磁性一成分現像剤の場合に比べ、カラー画像でよりきれいな画質が得られ、更に高水準で高画質化及び高寿命化が実現される。
【実施例】
【0218】
以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。尚、以下において「部」は、特に断りのない限り質量基準である。
【0219】
−感光体の作製−
酸化亜鉛(平均粒子径70nm:テイカ社製:比表面積値15m/g)100質量部をトルエン500質量部と攪拌混合し、シランカップリング剤(KBM603:信越化学社製)1.25質量部を添加し、2時間攪拌した。その後トルエンを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛顔料を得た。
前記表面処理を施した酸化亜鉛100質量部を500質量部のテトラヒドロフランと攪拌混合し、アリザリン1質量部を50質量部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、さらに60℃で減圧乾燥を行い、アリザリン付与酸化亜鉛顔料を得た。
【0220】
このアリザリン付与酸化亜鉛顔料60質量部と硬化剤ブロック化イソシアネート スミジュール3175(住友バイエルンウレタン社製)13.5質量部とブチラール樹脂BM−1(積水化学社製)15質量部をメチルエチルケトン85質量部に溶解した溶液38質量部と、メチルエチルケトン 25質量部とを混合し、1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い、分散液を得た。
得られた分散液に触媒としてジオクチルスズジラウレート 0.005質量部、シリコーン樹脂粒子トスパール145(GE東芝シリコーン社製) 40質量部を添加し、170℃、40分の乾燥硬化を行い、下引層形成用塗布液を得た。
この塗布液を浸漬塗布法にて直径60mm、長さ357mm、肉厚1mmのアルミニウム基材上に浸漬塗布し、厚さ20μmの下引層を得た。
【0221】
<電荷発生層>
次いで、電荷発生物質としてX線回折スペクトルにおけるブラッグ角(2θ±0.2°)が、7.4°、16.6°、25.5°、28.3°に強い回折ピークを持つクロロガリウムフタロシアニン結晶1質量部を、ポリビニルブチラール樹脂(商品名:エスレックBM−S、積水化学社製)1質量部とともに酢酸ブチル100質量部に加え、ガラスビーズとともにペイントシェーカーで1時間処理して分散させた。その後、得られた塗布液を前記下引層の表面に浸漬塗布し、100℃にて10分間加熱乾燥して、膜厚約0.2μmの電荷発生層を形成した。
【0222】
<電荷輸送層>
更に、下記式で示される化合物1を2.1質量部、下記構造式1で示される高分子化合物(粘度平均分子量:39,000)2.9質量部をテトラヒドロフラン10質量部及びトルエン5質量部に溶解して得られた塗布液を、電荷発生層の表面に浸漬塗布し、135℃にて35分間加熱乾燥して、膜厚24μmの電荷輸送層を形成した。
【0223】
【化26】

【0224】
【化27】

【0225】
<表面保護層>
4フッ化エチレン樹脂粒子としてルブロンL−2(ダイキン工業製)10部、及び下記構造式2で表される繰り返し単位を含むフッ化アルキル基含有共重合体(重量平均分子量50,000、l:m=1:1、s=1、n=60)0.5部をシクロペンタノン40部に十分に攪拌混合して、4フッ化エチレン樹脂粒子懸濁液を作製した。
【0226】
次に、前述の化学式I−8で表される化合物を70部、化学式I−26で表される化合物を25部、ベンゾグアナミン樹脂(ニカラックBL−60、三和ケミカル社製)を5部、それぞれシクロペンタノン220部に加えて、十分に溶解混合した後に、前記4フッ化エチレン樹脂粒子懸濁液を加えて、攪拌混合した。
次いで、微細な流路をもつ貫通式チャンバーを装着した高圧ホモジナイザー(吉田機械興業製 YSNM−1500AR)を用いて、700kgf/cmまで昇圧しての分散処理を25回繰返した後、NACURE5225(キングインダストリー社製)を0.1部加えて表面保護層形成用塗布液を調製した。この表面保護層形成用塗布液を浸漬塗布法で電荷輸送層の上に塗布して155℃で35分間乾燥し、膜厚約8μmの表面保護層を形成して得た感光体を、感光体1とした。
【0227】
【化28】

【0228】
[感光体2]
感光体1の表面保護層の形成において、ルブロンL−2(ダイキン工業製)を5部、フッ化アルキル基含有共重合体を0.25部、シクロペンタノンを20部に変更し、十分に攪拌混合して、4フッ化エチレン樹脂粒子懸濁液を作製した。それ以降は感光体1と同様にして得られた感光体を、感光体2とした。
【0229】
[感光体3]
感光体1の表面保護層の形成において、ルブロンL−2(ダイキン工業製)を3部、フッ化アルキル基含有共重合体0.15部、シクロペンタノンを12部に変更し、十分に攪拌混合して、4フッ化エチレン樹脂粒子懸濁液を作製した。それ以降は感光体1と同様にして得られた感光体を、感光体3とした。
【0230】
[感光体4]
感光体1の表面保護層の形成において、ルブロンL−2(ダイキン工業製)を20部、フッ化アルキル基含有共重合体1.0部、シクロペンタノンを80部に変更し、十分に攪拌混合して、4フッ化エチレン樹脂粒子懸濁液を作製した。それ以降は感光体1と同様にして得られた感光体を、感光体4とした。
【0231】
[感光体5]
感光体1の表面保護層の形成において、ベンゾグアナミン樹脂をメチル化メラミン樹脂(B−2:ニカラックMW−30HM、三和ケミカル社製)に変更した以外は感光体1と同様にして得られた感光体を、感光体5とした。
【0232】
[感光体6]
感光体1の表面保護層の形成において、化学式I−8で表される化合物を95部、化学式I−26で表される化合物を0部に変更した以外は感光体1と同様にして得られた感光体を、感光体6とした。
【0233】
[感光体7]
感光体1の表面保護層の形成において、化学式I−8で表される化合物を85部、化学式I−26で表される化合物を10部に変更した以外は感光体1と同様にして得られた感光体を、感光体7とした。
【0234】
[感光体8]
感光体1の表面保護層の形成において、化学式I−8で表される化合物を60部、化学式I−26で表される化合物を20部、ベンゾグアナミン樹脂を20部に変更した以外は感光体1と同様にして得られた感光体を、感光体8とした。
【0235】
[感光体9]
感光体1の表面保護層の形成において、化学式I−8で表される化合物を70部、化学式I−26で表される化合物を29.9部、ベンゾグアナミン樹脂を0.1部に変更した以外は感光体1と同様にして得られた感光体を、感光体9とした。
【0236】
[感光体10]
感光体1の表面保護層の形成において、化学式I−8で表される化合物を47.5部、化学式I−26で表される化合物を47.5部に変更した以外は感光体1と同様にして得られた感光体を、感光体10とした。
【0237】
[感光体11]
感光体8の表面保護層の形成において、化学式I−26で表される化合物を下記式で表される化合物2に変更した以外は感光体8と同様にして得られた感光体を、感光体11とした。
【0238】
【化29】

【0239】
[感光体12]
感光体1の表面保護層の形成において、化学式I−8で表される化合物を化学式I−16で表される化合物に変更した以外は感光体1と同様にして得られた感光体を、感光体12とした。
【0240】
[感光体13]
感光体12の表面保護層の形成において、ベンゾグアナミン樹脂をメチル化メラミン樹脂に変更した以外は感光体12と同様にして得られた感光体を、感光体13とした。
【0241】
[感光体14]
電荷輸送層の形成までは感光体1と同様にして作製した。
4フッ化エチレン樹脂粒子としてルブロンL−2(ダイキン工業製)10部、及び前記構造式2で表される繰り返し単位を含むフッ化アルキル基含有共重合体(重量平均分子量50,000、l:m=1:1、s=1、n=60)0.5部をシクロペンタノン40部に十分に攪拌混合して、4フッ化エチレン樹脂粒子懸濁液を作製した。
【0242】
次に、下記に示す構成材料を、イソプロピルアルコール5質量部、テトラヒドロフラン3質量部、蒸留水0.3質量部に溶解させ、イオン交換樹脂(アンバーリスト15E)0.5質量部を加え、室温で攪拌することにより24時間加水分解を行った。
【0243】
−構成材料−
・下記構造の化合物5 : 2質量部
・メチルトリメトキシシラン : 2質量部
・テトラメトキシシラン : 0.5質量部
・コロイダルシリカ : 0.3質量部
【0244】
【化30】

【0245】
上記加水分解したものからイオン交換樹脂を濾過分離した液に対し、アルミニウムトリスアセチルアセトナート(Al(aqaq))を0.1質量部、3,5−ジ−t−ブチル−4−ヒドロキシトルエン(BHT)0.4質量部を加え、十分に溶解混合した後に、前記4フッ化エチレン樹脂粒子懸濁液を加えて、攪拌混合した。その後、微細な流路をもつ貫通式チャンバーを装着した高圧ホモジナイザー(吉田機械興業製 YSNM−1500AR)を用いて、700kgf/cmまで昇圧しての分散処理を20回繰返した。その後、ジメチルポリシロキサン(グラノール450、共栄社化学)を1部、NACURE5225(キングインダストリー社製)を0.1部加えて保護層形成用塗布液を調製した。この塗布液を前記電荷輸送層の上にリング型浸漬塗布法により塗布し、室温で30分風乾した後、170℃で1時間加熱処理して硬化し、膜厚8μmの表面保護層を形成した。
得られた感光体を、感光体14とした。
【0246】
[感光体15]
電荷輸送層の形成までは感光体1と同様にして作製した。
次に、前述の化学式I−8で表される化合物を70部、化学式I−26で表される化合物を25部、ベンゾグアナミン樹脂(ニカラックBL−60、三和ケミカル社製)を5部、それぞれシクロペンタノン240部に加えて、十分に溶解混合した後に、ジメチルポリシロキサン(グラノール450、共栄社化学)を0.1部、NACURE5225(キングインダストリー社製)を0.1部加え保護層形成用塗布液を調製した。この表面保護層形成用塗布液を浸漬塗布法で電荷輸送層の上に塗布し155℃で35分乾燥し、膜厚約8μmの表面保護層を形成した感光体を、感光体15とした。
【0247】
[感光体16]
電荷輸送層の形成までは感光体1と同様にして作製した。
感光体1の表面保護層の形成において、化学式I−8で表される化合物を60部、化学式I−26で表される化合物を15部、ベンゾグアナミン樹脂を25部に変更した以外は感光体1と同様にして得られた感光体を、感光体16とした。
【0248】
[感光体17]
感光体1において表面保護層を形成しなかったこと以外は感光体1と同様にして得られた感光体を、感光体17とした。
【0249】
表1に感光体の表面保護層に含まれる主な成分を示す。
【0250】
【表1】

【0251】
<トナー母粒子1の製造例>
〔顔料分散液の調製〕
C.I.ピグメントブルーB15:3 : 20質量部
酢酸エチル : 75質量部
溶媒除去したディスパロンDA−703−50 : 4質量部
(ポリエステル酸アマイドアミン塩、楠本化成(株)製) ソルスパース5000(顔料誘導体、ゼネカ(株)製) : 1質量部
以上の成分をサンドミルを用いて溶解/分散し、顔料分散液を作製した。
【0252】
〔離型剤分散液の調製〕
離型剤としてパラフィンワックス(融点89℃)30部と酢酸エチル270部をDCPミルSF−12(日本アイリッヒ製)を用い10℃に冷却した状態で、湿式粉砕し、離型剤分散液を作製した。
【0253】
〔結晶性樹脂の合成〕
アジピン酸153部、1,6−ヘキサンジオール118部、ジブチルスズオキシド0.08部を、窒素置換したフラスコに入れ、170℃で4時間、さらに減圧下210℃で4時間反応させ、重量平均分子量(Mw)12,000、融点68℃の結晶性樹脂を得た。
【0254】
〔非結晶性樹脂(1)の合成〕
テレフタル酸ジメチル97部、イソフタル酸ジメチル78部、無水ドデセニルコハク酸27部、ビスフェノールA−エチレンオキサイド付加物174部、ビスフェノールA−プロピレンオキサイド付加物189部、ジブチルスズオキシド0.08部を、窒素置換したフラスコに入れ、150℃で4時間、さらに減圧下200℃で6時間反応させ後、無水トリメリット酸8部を加え、さらに減圧下30分反応させ、重量平均分子量(Mw)55,000、ガラス転移点(Tg)56℃の非結晶性樹脂(1)を得た。
【0255】
〔非結晶性樹脂(2)の合成〕
テレフタル酸ジメチル97部、イソフタル酸ジメチル78部、無水ドデセニルコハク酸27部、ビスフェノールA−エチレンオキサイド付加物164部、ビスフェノールA−プロピレンオキサイド付加物179部、ジブチルスズオキシド0.08部を、窒素置換したフラスコに入れ、150℃で4時間、さらに減圧下200℃で6時間反応させ、重量平均分子量(Mw)13000、ガラス転移点(Tg)60℃の非結晶性樹脂(2)を得た。
【0256】
前記結晶性樹脂10部、非結晶性樹脂(1)66部、非結晶性樹脂(2)60部、顔料分散液を34部、離型剤分散液75部、酢酸エチル56部を加え、均一になるまでよく撹拌した(この液をA液とした)。
炭酸カルシウム45部と水55部との比率で分散した炭酸カルシウム分散液124部と、セロゲンBS−H(第一工業製薬(株))の2%水溶液99部と、水160部とをホモジナイザー(ウルトラタラックス:IKA社製)を用いて5分間撹拌した(この液をB液とした)。さらにホモジナイザー(ウルトラタラックス:IKA社製)を用いて前記B液345部を10,000rpmで撹拌している中に前記A液250部を加え、1分間撹拌し混合液を懸濁し、室温常圧でプロペラ型撹拌機を用いて撹拌し、溶媒を除去した。次に塩酸を加えて、炭酸カルシウムを溶解した後、イオン交換水の添加混合と、ろ別による水洗とを、ろ液の電気伝導度が2μS/cmとなるまで繰り返した後、真空乾燥機で乾燥した。エルボジェット分級機を用いて微粉及び粗粉を除き、体積平均粒径6.4μmのシアントナー母粒子1を得た。
【0257】
<キャリア1の製造例>
Mn−Mgフェライト粒子(体積平均粒径=40μm) : 1,000質量部
スチレン(St)/メチルメタクリレート(MMA)樹脂 : 23質量部
(共重合比25:75)
カーボンブラック : 2質量部
トルエン : 400質量部
以上の組成物を減圧加熱型ニーダーに投入して混合し、70℃に加熱しながら減圧乾燥した。得られたものを粒度メッシュ200のSUS篩にて篩分し、キャリア1を得た。
【0258】
<外添剤1>
市販のルチル型酸化チタン(n−デシルトリメトキシシラン処理)、体積平均粒径20nmを用意した。
【0259】
<外添剤2>
気相法で作製したシリカ微粒子(ジメチルシリコーンオイル処理)、体積平均粒径12nmを用意した。
【0260】
<亜鉛含有粒子の製造例>
〔ステアリン酸亜鉛1の製造例〕
エタノール5,000部にステアリン酸1,145部を加え、75℃で混合したものに、水酸化亜鉛200部を少しずつ加えていき、投入終了後から1時間混合した。混合後20℃まで冷却し、生成物をろ別してエタノール及び反応残渣を除き、取り出した生成固形物を加熱型真空乾燥機を用いて150℃で3時間乾燥させた。乾燥機から取り出し放冷後、ステアリン酸亜鉛の固形物を得た。
ステアリン酸亜鉛の固形物をジェットミルで粉砕した後、エルボージェット分級機(マツボー製)で分級し、個数平均粒径2.6μm、平均円形度0.43の粉体状のステアリン酸亜鉛1を得た。
【0261】
<トナー1及び現像剤1の作製>
トナー母粒子1 : 100質量部
外添剤1 : 1.0質量部
外添剤2 : 2.0質量部
ステアリン酸亜鉛1 :0.2質量部
以上各成分をヘンシェルミキサーにて3,000rpmで3分間混合し、目開き45μmのφ200mmステンレス製試験用ふるい(東京スクリーン(株)製)を用いて粗大粒子を除去し、トナー1を得た。
【0262】
次いで、トナー1を6.0部に対し前記キャリア1を100部の比率でV−ブレンダーに投入し、40rpmで20分間混合撹拌した後、目開き212μmのφ200mmステンレス製試験用ふるい(東京スクリーン(株)製)を用いて篩うことにより、現像剤1を得た。
【0263】
<トナー2及び現像剤2の作製>
トナー1の作製において、ステアリン酸亜鉛1の量を0.4質量部にした以外はトナー1の作製と同様にして得られたトナーをトナー2とした。
次いで、トナー2を6.0部に対し前記キャリア1を100部の比率でV−ブレンダーに投入し、40rpmで20分間混合撹拌した後、目開き212μmのφ200mmステンレス製試験用ふるい(東京スクリーン(株)製)を用いて篩うことにより、現像剤2を得た。
【0264】
<トナー3及び現像剤3の作製>
トナー1の作製において、ステアリン酸亜鉛1の量を0.1質量部にした以外はトナー1の作製と同様にして得られたトナーをトナー3とした。
次いで、トナー3を6.0部に対し前記キャリア1を100部の比率でV−ブレンダーに投入し、40rpmで20分間混合撹拌した後、目開き212μmのφ200mmステンレス製試験用ふるい(東京スクリーン(株)製)を用いて篩うことにより、現像剤3を得た。
【0265】
<トナー4及び現像剤4の作製>
トナー1の作製において、ステアリン酸亜鉛1を用いなかった以外はトナー1の作製と同様にして得られたトナーをトナー4とした。
次いで、トナー4を6.0部に対し前記キャリア1を100部の比率でV−ブレンダーに投入し、40rpmで20分間混合撹拌した後、目開き212μmのφ200mmステンレス製試験用ふるい(東京スクリーン(株)製)を用いて篩うことにより、現像剤4を得た。
【0266】
表2にトナーを構成するトナー母粒子とステアリン酸亜鉛の含有量を示す。
【0267】
【表2】

【0268】
[画像形成テスト]
<実施例1乃至17及び比較例1乃至4>
感光体1乃至17を用い表3に示すように感光体と現像剤を組み合わせて画像形成テストを行った。実験機は富士ゼロックス社製 DocuCentre−II C7500のドラムカートリッジから潤滑剤供給装置を外して使用した。テストは白黒モード(75枚/分)を使用した。テストは高温高湿(28℃、80%RH)環境下において図7(A)に示すような画像密度100%画像部と、30%画像部と、0%非画像部が存在し、全体の画像密度が7%になるように調整した画像の出力を、感光体が50000回転(誤差1%以内)するまで画像出力(A4用紙にしておよそ2.5万枚)した。
画像出力後、電気特性評価、解像度評価、感光体1000回転当たりの表面保護層の画像部(100%画像部)、非画像部(0%画像部)それぞれの摩耗量(nm)及びZn被覆率の測定を実施した。
【0269】
<比較例5>
感光体として感光体1を、現像剤として現像剤4を用いて画像形成テストを実施した。実験機として富士ゼロックス社製 DocuCentre−II C7500のドラムカートリッジを潤滑剤を外さずそのまま使用した以外は、上記画像形成テストと同様に評価を実施し、電気特性評価、解像度評価、感光体1000回転当たりの表面保護層の画像部(100%画像部)、非画像部(0%画像部)それぞれの摩耗量(nm)及びZn被覆率の測定を実施した。
【0270】
1.電気特性評価
まず初期の感光体の電気特性評価として、現像手段を取り外し、電位計を設置して、感光体表面電位が−700Vになるように、スコロトロン(非接触型帯電手段)のグリッド電圧を調整した。次に露光部電位が−350Vになるように露光光量を設定した。この露光光量を用いて10万枚の画像形成を行った後に、再び露光部電位を測定し、初期との差分をΔVLで表した。
○:ΔVL<10
△:10≦ΔVL<15
×:15≦ΔVL
【0271】
2.解像度(像流れ)評価
初期の感光体電気特性評価と同様にして、グリッド電圧と露光光量を調整した。次に3pt文字を印字し、その文字を拡大・観察し、文字に乱れ・つぶれがないか評価を行った。
○:図6(A)のごとく良好である
△:図6(B)のごとく部分的な乱れやかすれがある(文字の判別は可)
×:図6(C)のごとく文字がつぶれ、判読不可。
【0272】
3.摩耗量
摩耗量の測定は上記画像形成テスト時において、表面保護層の初期膜厚をあらかじめ測定しておき、初期膜厚と感光体1000回転後の膜厚との差分を測定し、表面保護層の摩耗量(nm)を算出した。なお、膜厚は自作の干渉式膜厚測定器を用いて測定したが、摩耗量を算出されれば市販の膜厚測定器(たとえばフィッシャースコープ社製パーマスコープなど)を用いてもよい。
○:画像部/非画像部とも2.5nm未満
△:画像部/非画像部のうち大きいほうが2.5nm以上、5nm未満
×:画像部/非画像部のどちらかもしくは両方が5nm以上
【0273】
4.亜鉛の被覆率の測定
XPS分析による亜鉛の被覆率は、JPS 9010(日本電子(株)製)により測定した亜鉛の全元素に対する比の値に基づいて決定した。XPS分析は感光体の極表面の分析であるため、ステアリン酸亜鉛の塗布量の増加に対して亜鉛の全元素に対する比の値が飽和する。飽和した亜鉛の全元素に対する比の値を被覆率100%として感光体表面の亜鉛の被覆率を決定した。
【0274】
5.総合判定の評価基準
電気特性評価、解像度評価、摩耗量、亜鉛の被覆率の各評価の結果に基づき、以下の基準で総合判定をした。
○:良好(全ての項目が○)
△:若干劣るが問題なし(△が1つまで)
×:使用不可(×が1つ以上)
【0275】
結果を表3に示す。
【0276】
【表3】

【0277】
表1に示すように、実施例では、比較例に比べ、Zn被覆率が高く、良好な摩耗率を維持しながら優れた解像度を保ち、長期に亘って繰り返し良好な画像が得られていることが判る。
【符号の説明】
【0278】
1 下引層、2 電荷発生層、3 電荷輸送層、4 導電性基体、5 表面保護層、6 単層型感光層、7,7A,7B,7C 電子写真感光体、8 帯電装置、9 露光装置、11 現像装置、13 クリーニング装置、、40 転写装置、50 中間転写体、100,120 画像形成装置、131 クリーニングブレード、132 クリーニングブラシ、300 プロセスカートリッジ

【特許請求の範囲】
【請求項1】
導電性基体、前記導電性基体上に配置されている感光層、及び、前記感光層上に配置されており、フッ素系樹脂粒子及びフッ化アルキル基含有共重合体を含有する表面保護層を有する電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナー粒子及びステアリン酸亜鉛を含む現像剤を収容し、前記電子写真感光体の表面に形成された静電潜像を前記現像剤により現像してトナー像を形成する現像手段と、
前記電子写真感光体の表面に形成されたトナー像を記録媒体に転写する転写手段と、
前記電子写真感光体の表面に残留する現像剤を除去するクリーニング手段と、
を備え、
画像部と非画像部を有する画像密度7%の画像形成を繰り返して前記電子写真感光体を50000回転させた後の前記電子写真感光体の表面をX線光電子分光法(XPS)で分析したときの亜鉛被覆率が下記式(1)を満たす画像形成装置。
50%≦亜鉛被覆率≦100% (1)
【請求項2】
前記電子写真感光体の表面保護層が、グアナミン化合物及びメラミン化合物から選択される少なくとも1種と、アルコキシ基を有する電荷輸送物質に由来する構造と、水酸基を有する電荷輸送物質に由来する構造とを含み、
前記フッ素系樹脂粒子及び前記フッ化アルキル基含有共重合体を除いた表面保護層の全固形分に対する、前記グアナミン化合物及び前記メラミン化合物の総含有量が0.1質量%以上20質量%以下であり、
前記フッ素系樹脂粒子及び前記フッ化アルキル基含有共重合体を除いた表面保護層の全固形分に対する、前記アルコキシ基を有する電荷輸送物質に由来する構造の含有量が10質量%以上40質量%以下である請求項1に記載の画像形成装置。
【請求項3】
前記電子写真感光体の表面のうち、前記画像部に相当する領域における亜鉛被覆率と前記非画像部に相当する領域における亜鉛被覆率との差が10%以下である請求項1又は請求項2に記載の画像形成装置。
【請求項4】
前記フッ素系樹脂粒子が、4フッ化エチレンの重合体及び4フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体から選ばれる少なくとも1種を含む請求項1乃至請求項3のいずれか1項に記載の画像形成装置。
【請求項5】
前記フッ化アルキル基含有共重合体が、下記構造式A及び下記構造式Bで表される繰り返し単位を含むフッ化アルキル基含有共重合体である請求項1乃至請求項4のいずれか1項に記載の画像形成装置。
【化1】


(構造式A及び構造式Bにおいて、l、m及びnは1以上の整数を、p、q、r及びsは0または1以上の整数を、tは1以上7以下の整数を、R、R、R及びRは水素原子又はアルキル基を、Xはアルキレン鎖、ハロゲン置換アルキレン鎖、−S−、−O−、−NH−又は単結合を、Yはアルキレン鎖、ハロゲン置換アルキレン鎖、−(C2z−1(OH))−又は単結合を表す。zは1以上の整数を表す。Qは−O−又は−NH−を表す。)

【図4】
image rotate

【図5】
image rotate

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−105046(P2013−105046A)
【公開日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2011−249078(P2011−249078)
【出願日】平成23年11月14日(2011.11.14)
【出願人】(000005496)富士ゼロックス株式会社 (21,908)
【Fターム(参考)】