説明

硫黄系正極活物質の製造方法、硫黄系正極活物質、および、リチウムイオン二次電池用正極

【課題】リチウムイオン二次電池の充放電容量およびサイクル特性を向上させ得る硫黄系正極活物質を容易に調達可能な材料で製造できる方法を提供すること。
【解決手段】硫黄系正極活物質の混合原料を、石炭ピッチ、石油ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、および、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチからなる群から選ばれる少なくとも一種の炭素材料と、硫黄と、で構成し、この混合原料を、炭素材料の少なくとも一部と硫黄の少なくとも一部とが液体となるように加熱する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炭素材料および硫黄を含む硫黄系正極活物質の製造方法、硫黄系正極活物質、および、硫黄系正極活物質を含むリチウムイオン二次電池用正極に関する。
【背景技術】
【0002】
非水電解質二次電池の一種であるリチウムイオン二次電池は、充放電容量の大きな電池であり、主として携帯電子機器用の電池として用いられている。また、リチウムイオン二次電池は、電気自動車用の電池としても期待されている。
【0003】
リチウムイオン二次電池の正極活物質としては、コバルトやニッケル等のレアメタルを含むものが一般的である。しかし、これらの金属は流通量が少なく高価であるため、近年では、これらのレアメタルにかわる物質を用いた正極活物質が求められている。
【0004】
リチウムイオン二次電池の正極活物質として、硫黄を用いる技術が知られている。硫黄を正極活物質として用いることで、リチウムイオン二次電池の充放電容量を大きくできる。例えば、硫黄を正極活物質として用いたリチウムイオン二次電池の充放電容量は、一般的な正極材料であるコバルト酸リチウム正極材料を用いたリチウムイオン二次電池の充放電容量の約6倍である。
【0005】
しかし、正極活物質として単体硫黄を用いたリチウムイオン二次電池においては、放電時に硫黄とリチウムとの化合物が生成する。この硫黄とリチウムとの化合物は、リチウムイオン二次電池の非水系電解液(例えば、エチレンカーボネートやジメチルカーボネート等)に可溶である。このため、正極活物質として硫黄を用いたリチウムイオン二次電池は、充放電を繰り返すと、硫黄の電解液への溶出により次第に劣化し、電池容量が低下する問題がある。
【0006】
硫黄の電解液への溶出を抑制するために、硫黄を含む正極活物質(以下、硫黄系正極活物質と呼ぶ)に、例えば炭素材料等の硫黄以外の材料を配合する技術が提案されている(例えば、特許文献1参照)。
【0007】
特許文献1には、硫黄系正極活物質として、炭素と硫黄を主な構成要素とするポリ硫化カーボンを用いる技術が紹介されている。このポリ硫化カーボンは、直鎖状不飽和ポリマーに硫黄が付加されている。特許文献1によると、この硫黄系正極活物質は、充放電の繰り返しに伴うリチウムイオン二次電池の充放電容量低下を抑制できるとされている。以下、充放電の繰り返しに伴って充放電容量が低下するリチウムイオン二次電池の特性を「サイクル特性」と呼ぶ。この充放電容量低下の小さいリチウムイオン二次電池はサイクル特性に優れるリチウムイオン二次電池であり、この充放電容量低下の大きなリチウムイオン二次電池はサイクル特性に劣るリチウムイオン二次電池である。
【0008】
しかし、特許文献1に紹介されている硫黄系正極活物質によっても、リチウムイオン二次電池のサイクル特性を充分に向上させることはできなかった。これは、放電時に硫黄とリチウムとが結合することにより、ポリ硫化カーボンに含まれる−CS−CS−結合や−S−S−結合が切断されて、ポリマーが切断されるためだと考えられる。
【0009】
本発明の発明者らは、ポリアクリロニトリルと硫黄との混合物を熱処理して得られる硫黄系正極活物質を発明した(特許文献2参照)。この正極活物質を正極に用いたリチウムイオン二次電池の充放電容量は大きく、かつ、この正極活物質を正極に用いたリチウムイオン二次電池はサイクル特性に優れる。
【0010】
その一方で、ポリアクリロニトリルは比較的高価な材料である。また、この正極活物質を正極に用いたリチウムイオン二次電池は、ポリアクリロニトリル原料粉末の品質(特に粒径)によって充放電容量、サイクル特性等の電池性能が大きく左右される。品質の一定なポリアクリロニトリルはさらに高価である。このため、特許文献2に開示されている硫黄系正極活物質によると、大きな充放電容量を持ち、かつ、サイクル特性に優れるリチウムイオン二次電池を安価に提供し難い問題があった。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2002−154815号公報
【特許文献2】国際公開第2010/044437号
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は上記事情に鑑みてなされたものであり、大きな充放電容量を持ち、かつ、サイクル特性に優れるリチウムイオン二次電池を、比較的容易に調達可能な材料を用いて提供するための硫黄系正極活物質、この硫黄系正極活物質の製造方法、およびこの硫黄系正極活物質を用いたリチウムイオン二次電池用正極を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明の発明者らは、鋭意研究の結果、硫黄系正極活物質の炭素材料として石炭ピッチ、石油ピッチ、メソフェーズピッチ、アスファルト、コールタール等の炭素材料を用いることで、大きな充放電容量および優れたサイクル特性を維持できる硫黄系正極活物質を比較的容易に調達可能な材料で製造できることを見いだした。
【0014】
すなわち、上記課題を解決する本発明の硫黄系正極活物質の製造方法は、石炭ピッチ、石油ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、および、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチからなる群から選ばれる少なくとも一種の炭素材料と、硫黄と、を含む混合原料を加熱して被処理体を得る熱処理工程を含み、該熱処理工程において、該炭素材料の少なくとも一部と該硫黄の少なくとも一部とが液体となることを特徴とする。
【0015】
上記課題を解決する本発明の硫黄系正極活物質は、炭素(C)、硫黄(S)、および複数種の多環芳香族炭化水素の混合物からなることを特徴とする。
【0016】
また、上記課題を解決する本発明の硫黄系正極活物質は、本発明の製造方法で製造された硫黄系正極活物質であって、ラマンスペクトルにおいて、ラマンシフトの1557cm−1付近に主ピークが存在し、かつ、200cm−1〜1800cm−1の範囲内で1371cm−1、1049cm−1、994cm−1、842cm−1、612cm−1、412cm−1、354cm−1、314cm−1付近にそれぞれピークが存在することを特徴とする。
【0017】
上記課題を解決する本発明のリチウムイオン二次電池用正極は、本発明の硫黄系正極活物質を正極に含むことを特徴とする。
【発明の効果】
【0018】
本発明の硫黄系正極活物質の製造方法によると、リチウムイオン二次電池の充放電容量およびサイクル特性を向上させ得る硫黄系正極活物質を比較的容易に調達可能な材料で製造できる。
【0019】
また、本発明の硫黄系正極活物質およびリチウムイオン二次電池用正極によると、リチウムイオン二次電池の充放電容量およびサイクル特性を向上させ得る。
【図面の簡単な説明】
【0020】
【図1】実施例の硫黄系正極活物質の製造方法で用いた反応装置を模式的に表す説明図である。
【図2】実施例3の硫黄系正極活物質、単体硫黄および単体石炭ピッチを熱質量分析した結果を表すグラフである。
【図3】実施例1〜3の硫黄系正極活物質をラマンスペクトル分析した結果を表すグラフである。
【図4】実施例5〜7の硫黄系正極活物質、単体石炭ピッチ、単体硫黄をX線回折した結果を表すグラフである。
【図5】実施例1のリチウムイオン二次電池の充放電曲線を表すグラフである。
【図6】比較例1のリチウムイオン二次電池の充放電曲線を表すグラフである。
【図7】実施例1のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。
【図8】実施例2のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。
【図9】実施例3のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。
【図10】実施例4のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。
【発明を実施するための形態】
【0021】
(硫黄系正極活物質の製造方法)
本発明の硫黄系正極活物質の製造方法(以下、本発明の製造方法と略する)においては、硫黄系正極活物質の原料として、炭素材料と硫黄とを用いる。このうち炭素材料としては、石炭ピッチ、石油ピッチ、メソフェーズピッチ(異方性ピッチ)、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、またはヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、からなる群から選ばれる少なくとも一種を用いる。これらは縮合多環芳香族を含む炭素材料として知られている。以下、これらの炭素材料をピッチ系炭素材料と呼ぶ。
【0022】
ピッチ系炭素材料の一種であるコールタールは、石炭を高温乾留(石炭乾留)して得られる黒い粘稠な油状液体である。コールタールを精製・熱処理(重合)することで、石炭ピッチを得ることができる。
【0023】
アスファルトは、黒褐色ないし黒色の固体あるいは半固体の可塑性物質である。アスファルトは、石油(原油)を減圧蒸留したときに釜残として得られるものと、天然に存在するものとに大別される。アスファルトはトルエン、二硫化炭素等に可溶である。アスファルトを精製・熱処理(重合)することで、石油ピッチを得ることができる。
【0024】
ピッチは、通常、無定形であり光学的に等方性である(等方性ピッチ)。等方性ピッチを不活性雰囲気中で熱処理することで、光学的に異方性のピッチ(異方性ピッチ、メソフェーズピッチ)を得ることができる。ピッチは、ベンゼン、トルエン、二硫化炭素等の有機溶剤に部分的に可溶である。
【0025】
ピッチ系炭素材料は様々な化合物の混合物であり、上述したように縮合多環芳香族を含む。ピッチ系炭素材料に含まれる縮合多環芳香族は、単一種であっても良いし、複数種であっても良い。例えば、ピッチ系炭素材料の一種である石炭ピッチの主成分は、縮合多環芳香族である。この縮合多環芳香族は、環の中に、炭素と水素以外にも、窒素や硫黄を含み得る。このため、石炭ピッチの主成分は、炭素と水素のみから成る縮合多環芳香族炭化水素と縮合環に窒素や硫黄等を含む複素芳香族化合物との混合物と考えられる。
【0026】
本発明の製造方法は、ピッチ系炭素材料と硫黄とを含む混合原料を加熱する熱処理工程を含む。この熱処理工程において、ピッチ系炭素材料の少なくとも一部と硫黄の少なくとも一部とが液体となる。換言すると、熱処理工程において、ピッチ系炭素材料の少なくとも一部と硫黄の少なくとも一部とは、液状で接触する。このため、本発明の製造方法によると、熱処理工程におけるピッチ系炭素材料と硫黄との接触面積を充分に大きくでき、硫黄を充分に含みかつ硫黄の脱離が抑制された硫黄系正極活物質を得ることができる。なお、熱処理工程において硫黄を還流する場合には、炭素系ピッチと硫黄との接触頻度を高めることができ、硫黄をより含有しかつ硫黄の脱離がさらに抑制された硫黄系正極活物質を得ることができる。
【0027】
なお、本発明の硫黄系正極活物質の製造方法で得られた硫黄系正極活物質において、硫黄とピッチ系炭素材料とがどのように結合しているか、は定かではないが、ピッチ系炭素材料のグラフェン層間に硫黄が取り込まれているか、或いは、縮合多環芳香族の環に含まれる水素が硫黄に置換されて、C−S結合となっていると推測される。
【0028】
熱処理工程における混合原料の温度は、ピッチ系炭素材料の少なくとも一部と硫黄の少なくとも一部が液体となる温度であれば良い。なお、ピッチ系炭素材料に関しては、全体が液体となる温度であるのが好ましい。また、硫黄に関しては、全体が液体となる温度であるのが好ましく、一部が気体となり残りが液体となる温度(すなわち、還流できる温度)であるのがより好ましい。熱処理工程における混合原料の温度は、200℃以上であるのが好ましく、300℃以上であるのがより好ましく、350℃以上であるのがさらに好ましい。参考までに、石炭ピッチの軟化点は200〜350℃程度である。このため、ピッチ系炭素材料として石炭ピッチを用いる場合には、熱処理工程を350℃以上で行うのが好ましい。また、350℃以上であれば、石炭ピッチ以外のピッチ系炭素材料を用いる場合にも、ピッチ系炭素材料の少なくとも一部が軟化(液体化)する。
【0029】
ところで、熱処理工程における混合原料の温度が過剰に高いと、ピッチ系炭素材料が変性(黒鉛化)する場合がある。この場合、ピッチ系炭素材料に硫黄を充分に取り込めなくなる。このため、熱処理工程における混合原料の温度は、ピッチ系炭素材料の変性温度よりも低い温度であることが好ましい。熱処理工程における混合原料の温度が600℃以下であれば、ピッチ系炭素材料の変性を抑制できる。熱処理工程における混合原料の温度は600℃以下であるのがより好ましく、500℃以下であるのがさらに好ましい。さらに、上述したピッチ系炭素材料の軟化を考慮すると、熱処理工程における混合原料の温度は200℃以上600℃以下であるのが好ましく、300℃以上500℃以下であるのがより好ましく、350℃以上500℃以下であるのがさらに好ましい。
【0030】
熱処理工程において硫黄を還流する場合、混合原料の一部が気体となり、一部が液体となるように混合原料を加熱すれば良い。換言すると、混合原料の温度は、硫黄が気化する温度以上の温度であれば良い。ここで言う気化とは、硫黄が液体または固体から気体に相変化することを指し、沸騰、蒸発、昇華の何れによっても良い。参考までに、α硫黄(斜方硫黄、常温付近で最も安定な構造である)の融点は112.8℃、β硫黄(単斜硫黄)の融点は119.6℃、γ硫黄(単斜硫黄)の融点は106.8℃である。硫黄の沸点は444.7℃である。ところで、硫黄の蒸気圧は高いため、混合原料の温度が150℃以上になると、硫黄の蒸気の発生が目視でも確認できる。したがって、混合原料の温度が150℃以上であれば硫黄の還流は可能である。なお、熱処理工程において硫黄を還流する場合には、既知構造の還流装置を用いて硫黄を還流すれば良い。
【0031】
ここで、熱処理工程を如何なる雰囲気で行うかについては特に問わないが、ピッチ系炭素材料と硫黄との結合を妨げない雰囲気(例えば、水素を含有しない雰囲気、非酸化性雰囲気)下で行うのが好ましい。例えば、雰囲気中に水素が存在すると、反応系中の硫黄が水素と反応して硫化水素となるため、反応系中の硫黄が失われる場合があるからである。また、ここでいう非酸化性雰囲気とは、酸化反応が進行しない程度の低酸素濃度とした減圧状態、窒素やアルゴン等の不活性ガス雰囲気、硫黄ガス雰囲気等を含む。
【0032】
ピッチ系炭素材料および硫黄の形状、粒径等は特に問わない。熱処理工程においてピッチ系炭素材料と硫黄とを液体状で接触させるため、例えばピッチ系炭素材料の粒径が不均一であったり大きかったりする場合にも、ピッチ系炭素材料と硫黄とが充分接触するためである。また、混合原料中のピッチ系炭素材料と硫黄とは、均一に分散しているのが好ましいが、不均一であっても良い。
【0033】
熱処理工程における混合原料の加熱時間は、加熱温度に応じて適宜設定すれば良く、特に限定しない。上述した好ましい温度で混合原料を加熱する場合には、10分〜10時間程度加熱するのが好ましく、30分〜6時間加熱するのがより好ましい。
【0034】
本発明の製造方法において、混合原料中のピッチ系炭素材料と硫黄との配合比にも好ましい範囲が存在する。ピッチ系炭素材料に対する硫黄の配合量が過小であると、ピッチ系炭素材料に充分量の硫黄を取り込めず、ピッチ系炭素材料に対する硫黄の配合量が過大であると、硫黄系正極活物質中に遊離の硫黄(単体硫黄)が多く残存して、リチウムイオン二次電池内の特に電解液を汚染するためである。混合原料中の炭素材料と硫黄との配合比は、質量比で1:0.5〜1:10であるのが好ましく、1:1〜1:7であるのがより好ましく、1:2〜1:5であるのが特に好ましい。
【0035】
なお、ピッチ系炭素材料に対する硫黄の配合量が過大である場合にも、熱処理工程においてピッチ系炭素材料に充分な量の硫黄を取り込むことができる。このため、ピッチ系炭素材料に対して硫黄を過大に配合する場合には、熱処理工程後の被処理体から単体硫黄を除去することで、上述した単体硫黄による悪影響を抑制できる。詳しくは、混合原料中の炭素材料と硫黄との配合比を、質量比で1:2〜1:10とする場合、熱処理工程後の被処理体を、減圧しつつ200℃〜250℃で加熱する(単体硫黄除去工程)ことで、ピッチ系炭素材料に充分な量の硫黄を取り込みつつ、残存する単体硫黄による悪影響を抑制できる。熱処理工程後の被処理体に単体硫黄除去工程を施さない場合には、この被処理体をそのまま硫黄系正極活物質として用いれば良い。また、熱処理工程後の被処理体に単体硫黄除去工程を施す場合には、単体硫黄除去工程後の被処理体を硫黄系正極活物質として用いれば良い。
【0036】
混合原料は、ピッチ系炭素材料および硫黄のみで構成しても良いし、正極活物質に配合可能な一般的な材料(例えば導電助剤等)を配合しても良い。
【0037】
本発明の製造方法によると、正極活物質の材料としてコバルト等のレアメタルを配合するかわりに硫黄を配合したことで、リチウムイオン二次電池の充放電容量を向上させる正極活物質を比較的容易に調達可能であるから、安価に製造できる。
【0038】
また、ピッチ系炭素材料は完全には精製されていない材料であり、非常に安価である。このため、本発明の製造方法によると、例えばポリアクリロニトリル等の炭素材料を用いる場合に比べても、硫黄系正極活物質を安価に製造できる。
【0039】
また、ピッチ系炭素材料は加熱することで液体状にできる。このため、ピッチ系炭素材料と硫黄とは熱処理工程において充分に接触し、ピッチ系炭素材料や硫黄の粒径等を特に考慮する必要はない。本発明の製造方法は、このことによっても、硫黄系正極活物質を安価に製造できる。
【0040】
本発明の製造方法は、これらの協働によって、リチウムイオン二次電池の充放電容量およびサイクル特性を向上させ得る硫黄系正極活物質を安価に製造できる。
【0041】
(硫黄系正極活物質)
本発明の硫黄系正極活物質は、本発明の製造方法で製造できる。本発明の硫黄系正極活物質は、正極、負極および電解質を持つリチウムイオン二次電池用の正極に用いられる。
【0042】
本発明の硫黄系正極活物質は、複数種の多環芳香族炭化水素を含む。本明細書でいう多環芳香族炭化水素(PAH)とは、上述した各種ピッチ系炭素材料自体、および、上述した各種ピッチ系炭素材料に含まれる各種多環芳香族炭化水素、からなる群から選ばれる少なくとも一種の炭素材料を指す。
【0043】
本発明の硫黄系正極活物質をラマンスペクトル分析すると、ラマンシフトの1557cm−1付近に主ピークが存在し、かつ、200cm−1〜1800cm−1の範囲内で1371cm−1、1049cm−1、994cm−1、842cm−1、612cm−1、412cm−1、354cm−1、314cm−1付近にそれぞれピークが存在する。本明細書において、「主ピーク」とは、ラマンスペクトルで現れた全てのピークのなかでピーク高さが最大となるピークを指す。なお、本発明の硫黄系正極活物質のラマンスペクトルは、上述した特許文献2の硫黄系正極活物質のラマンスペクトルとは異なる。
【0044】
本発明の硫黄系正極活物質を元素分析した結果、炭素、窒素、および硫黄が検出された。また、場合によっては、少量の酸素および水素が検出された。したがって、本発明の硫黄系正極活物質は、C、S以外に、窒素、酸素、硫黄化合物等の少なくとも一種を不純物として含有する。
【0045】
(リチウムイオン二次電池用正極)
本発明のリチウムイオン二次電池用正極は、上述した本発明の硫黄系正極活物質を含む。このリチウムイオン二次電池用正極は、正極活物質以外は、一般的なリチウムイオン二次電池用正極と同様の構造にできる。例えば、本発明のリチウムイオン二次電池用正極は、本発明の硫黄系正極活物質、導電助剤、バインダ、および溶媒を混合した正極材料を、集電体に塗布することによって製作できる。
導電助剤としては、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、アルミニウムやチタンなどの正極電位において安定な金属の微粉末等が例示される。
バインダとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。
溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアルデヒド、アルコール、水等が例示される。これら導電助剤、バインダおよび溶媒は、それぞれ複数種を混合して用いても良い。これらの材料の配合量は特に問わないが、例えば、硫黄系正極活物質100質量部に対して、導電助剤20〜100質量部程度、バインダ10〜20質量部程度を配合するのが好ましい。また、その他の方法として、本発明の硫黄系正極活物質と上述した導電助剤およびバインダとの混合物を乳鉢やプレス機などで混練しかつフィルム状にし、フィルム状の混合物をプレス機等で集電体に圧着することで、本発明のリチウムイオン二次電池用正極を製造することもできる。
【0046】
集電体としては、リチウムイオン二次電池用正極に一般に用いられるものを使用すれば良い。例えば集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボン不織布、カーボン織布等が例示される。このうち黒鉛化度の高いカーボンから成るカーボン不織布/織布集電体は、水素を含まず、硫黄との反応性が低いために、硫黄系正極活物質用の集電体として好適である。黒鉛化度の高い炭素繊維の原料としては、カーボン繊維の材料となる各種のピッチ(すなわち、石油、石炭、コールタールなどの副生成物)やポリアクリロニトリル繊維(PAN)等を用いることができる。
【0047】
本発明のリチウムイオン二次電池用正極は、正極活物質として、上述した本発明の硫黄系正極活物質を含む。したがって本発明のリチウムイオン二次電池用正極を用いたリチウムイオン二次電池は、充放電容量が大きくサイクル特性に優れ、かつ安価に製造できる。
【0048】
(リチウムイオン二次電池)
以下、本発明の硫黄系正極活物質を正極に用いたリチウムイオン二次電池の構成について説明する。以下、本発明の硫黄系正極活物質を正極に用いたリチウムイオン二次電池を単にリチウムイオン二次電池用と略する。なお、正極に関しては、上述したとおりである。
【0049】
(負極)
負極材料としては、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅−錫やコバルト−錫などの合金系材料を使用できる。負極材料として、リチウムを含まない材料、例えば、上記した負極材料の内で、炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライドの発生による正負極間の短絡を生じ難い点で有利である。ただし、これらのリチウムを含まない負極材料を本発明の正極と組み合わせて用いる場合には、正極および負極が何れもリチウムを含まない。このため、負極および正極の何れか一方、または両方にあらかじめリチウムを挿入するリチウムプリドープ処理が必要となる。リチウムのプリドープ法としては公知の方法に従えば良い。例えば負極にリチウムをドープする場合には、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けたあと電解液の中に放置し電極へのリチウムの拡散を利用してドープする貼り付けプリドープ法によりリチウムを挿入する方法が挙げられる。また、正極にリチウムをプリドープする場合にも、上記した電解ドープ法を利用することが出来る。
【0050】
リチウムを含まない負極材料としては、特に、高容量の負極材料であるシリコン系材料が好ましく、その中でも電極厚さが薄くて体積当りの容量で有利となる薄膜シリコンがより好ましい。
【0051】
(電解質)
リチウムイオン二次電池に用いる電解質としては、有機溶媒に電解質であるアルカリ金属塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、ガンマ−ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電解質としては、LiPF、LiBF、LiAsF、LiCFSO、LiI、LiClO等を用いることができる。電解質の濃度は、0.5mol/l〜1.7mol/l程度であれば良い。なお、電解質は液状に限定されない。例えば、リチウムイオン二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば高分子ゲル状)をなす。
【0052】
(その他)
リチウムイオン二次電池は、上述した負極、正極、電解質以外にも、セパレータ等の部材を備えても良い。セパレータは、正極と負極との間に介在し、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。リチウムイオン二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。リチウムイオン二次電池の形状は特に限定されず、円筒型、積層型、コイン型等、種々の形状にできる。
【実施例】
【0053】
以下、本発明の硫黄系正極活物質の製造方法、硫黄系正極活物質、および、リチウムイオン二次電池用正極を具体的に説明する。
【0054】
(実施例1)
〈硫黄系正極活物質の製造〉
〔1〕材料
石炭ピッチ粉末(等方性ピッチ、CAS番号65996−93−2)1gと硫黄粉末5gとを乳鉢で混合・粉砕して、混合原料を得た。
【0055】
〔2〕装置
図1に示すように、反応装置1は、反応容器2、蓋3、熱電対4、アルミナ保護管40、2つのアルミナ管(ガス導入管5、ガス排出管6)、アルゴンガス配管50、アルゴンガスを収容したガスタンク51、トラップ配管60、水酸化ナトリウム水溶液61を収容したトラップ槽62、電気炉7、電気炉に接続されている温度コントローラ70を持つ。
【0056】
反応容器2としては、有底筒状をなすガラス管(石英ガラス製)を用いた。後述する熱処理工程において、反応容器2には混合原料9を収容した。反応容器2の開口部は、3つの貫通孔を持つガラス製の蓋3で閉じた。貫通孔の1つには、熱電対4を収容したアルミナ保護管40(アルミナSSA−S、株式会社ニッカトー製)を取り付けた。貫通孔の他の1つには、ガス導入管5(アルミナSSA−S、株式会社ニッカトー製)を取り付けた。貫通孔の残りの1つには、ガス排出管6(アルミナSSA−S、株式会社ニッカトー製)を取り付けた。なお、反応容器2は、外径60mm、内径50mm、長さ300mmであった。アルミナ保護管40は、外径4mm、内径2mm、長さ250mmであった。ガス導入管5およびガス排出管6は、外径6mm、内径4mm、長さ150mmであった。ガス導入管5およびガス排出管6の先端は、蓋3の外部(反応容器2内)に露出した。この露出した部分の長さは3mmであった。ガス導入管5およびガス排出管6の先端は、後述する熱処理工程においてほぼ100℃以下となる。このため、熱処理工程において生じる硫黄蒸気は、ガス導入管5およびガス排出管6から流出せず、反応容器2に戻される(還流する)。
【0057】
アルミナ保護管40に入れた熱電対4の先端は、間接的に反応容器2中の混合原料9の温度を測定した。熱電対4で測定した温度は、電気炉7の温度コントローラ70にフィードバックした。
【0058】
ガス導入管5にはアルゴンガス配管50を接続した。アルゴンガス配管50はアルゴンガスを収容したガスタンク51に接続した。ガス排出管6にはトラップ配管60の一端を接続した。トラップ配管60の他端は、トラップ槽62中の水酸化ナトリウム水溶液61に挿入した。なお、トラップ配管60およびトラップ槽62は、後述する熱処理工程で生じる硫化水素ガスのトラップである。
【0059】
〔3〕熱処理工程
混合原料9を収容した反応容器2を、電気炉7(ルツボ炉、開口幅φ80mm、加熱高さ100mm)に収容した。このとき、ガス導入管5を介して反応容器2の内部にアルゴンを導入した。このときのアルゴンガスの流速は100ml/分であった。アルゴンガスの導入開始10分後に、アルゴンガスの導入を継続しつつ反応容器2中の混合原料9の加熱を開始した。このときの昇温速度は5℃/分であった。混合原料9が100℃になった時点で、混合原料9の加熱を継続しつつアルゴンガスの導入を停止した。混合原料9が約200℃になるとガスが発生した。混合原料9が330℃になった時点で加熱を停止した。加熱停止後、混合原料9の温度は350℃にまで上昇し、その後低下した。したがって、この熱処理工程において、混合原料9は350℃にまで加熱された。その後、混合原料9を自然冷却し、混合原料9が室温(約25℃)にまで冷却された時点で反応容器2から生成物(すなわち、熱処理工程後の被処理体)を取り出した。なお、このときの加熱時間は350℃で約5分であり、硫黄は還流された。
【0060】
〔4〕単体硫黄除去工程
熱処理工程後の被処理体に残存する単体硫黄(遊離の硫黄)を除去するために、以下の工程をおこなった。
【0061】
熱処理工程後の被処理体を乳鉢で粉砕した。粉砕物2gをガラスチューブオーブンに入れ、真空吸引しつつ200℃で3時間加熱した。このときの昇温温度は10℃/分であった。この工程により、熱処理工程後の被処理体に残存する単体硫黄が蒸発・除去され、単体硫黄を含まない(または、ほぼ含まない)実施例1の硫黄系正極活物質を得た。
【0062】
〈リチウムイオン二次電池の製作〉
〔1〕正極
実施例1の硫黄系正極活物質3mgとアセチレンブラック2.7mgとポリテトラフルオロエチレン(PTFE)0.3mgとの混合物を、キシレンを適量加えつつ、メノウ製乳鉢でフィルム状になるまで混練し、フィルム状の正極材料を得た。この正極材料全量を、直径14mmの円形に打ち抜いたアルミニウムメッシュにプレス機で圧着し、100℃で3時間乾燥した。この工程で、実施例1のリチウムイオン二次電池用正極を得た。
【0063】
〔2〕負極
負極としては、厚さ500μmの金属リチウム箔を直径14mmに打ち抜いたものを用いた。
【0064】
〔3〕電解液
電解液としては、エチレンカーボネートとジエチルカーボネートとの混合溶媒に、LiPFを溶解した非水電解質を用いた。エチレンカーボネートとジエチルカーボネートとは質量比1:1で混合した。電解液中のLiPFの濃度は、1.0mol/lであった。
【0065】
〔4〕電池
〔1〕、〔2〕で得られた正極および負極を用いて、コイン電池を製作した。詳しくは、ドライルーム内で、厚さ25μmのポリプロピレン微孔質膜からなるセパレータ(Celgard2400)と、厚さ500μmのガラス不織布フィルタと、を正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには〔3〕で得られた電解液を注入した。電池ケースをカシメ機で密閉して、実施例1のリチウムイオン二次電池を得た。
【0066】
(実施例2)
実施例2の硫黄系正極活物質の製造方法は、熱処理工程において混合原料が250℃になった時点で加熱を停止して、混合原料を300℃にまで加熱したこと以外は、実施例1の製造方法と同じである。実施例2の硫黄系正極活物質は、実施例2の硫黄系正極活物質の製造方法で製造した硫黄系正極活物質である。実施例2のリチウムイオン二次電池用正極は、実施例2の硫黄系正極活物質を正極に含むこと以外は、実施例1のリチウムイオン二次電池用正極と同じものである。
【0067】
(実施例3)
実施例3の硫黄系正極活物質の製造方法は、熱処理工程において混合原料が300℃になった時点で加熱を停止して、混合原料を350℃にまで加熱したこと以外は、実施例1の製造方法と同じである。実施例3の硫黄系正極活物質は、実施例3の硫黄系正極活物質の製造方法で製造した硫黄系正極活物質である。実施例3のリチウムイオン二次電池用正極は、実施例3の硫黄系正極活物質を正極に含むこと以外は、実施例1のリチウムイオン二次電池用正極と同じものである。
【0068】
(実施例4)
実施例4の硫黄系正極活物質の製造方法は、単体硫黄除去工程を行わなかったこと以外は、実施例1の製造方法と同じである。したがって、実施例4の硫黄系正極活物質の製造方法における熱処理工程では、混合原料を400℃にまで加熱した。実施例4の硫黄系正極活物質は、実施例4の硫黄系正極活物質の製造方法で製造した硫黄系正極活物質である。実施例4のリチウムイオン二次電池用正極は、実施例4の硫黄系正極活物質を正極に含むこと以外は、実施例1のリチウムイオン二次電池用正極と同じものである。
【0069】
(実施例5)
実施例5の硫黄系正極活物質の製造方法は、混合原料における石炭ピッチと硫黄との配合比を1:1(質量比)としたこと、および、単体硫黄除去工程を行わなかったこと以外は実施例3の製造方法と同じである。したがって、実施例5の硫黄系正極活物質の製造方法における熱処理工程では、混合原料を350℃にまで加熱した。実施例5の硫黄系正極活物質は、実施例5の硫黄系正極活物質の製造方法で製造した硫黄系正極活物質である。
【0070】
(実施例6)
実施例6の硫黄系正極活物質の製造方法は、単体硫黄除去工程を行わなかったこと以外は実施例3の製造方法と同じである。したがって、実施例6の硫黄系正極活物質の製造方法では、混合原料における石炭ピッチと硫黄との配合比を1:5(質量比)とし、熱処理工程において混合原料を350℃にまで加熱した。実施例6の硫黄系正極活物質は、実施例6の硫黄系正極活物質の製造方法で製造した硫黄系正極活物質である。
【0071】
(実施例7)
実施例7の硫黄系正極活物質の製造方法は、単体硫黄除去工程を行わなかったこと以外は実施例3の製造方法と同じである。したがって、実施例6の硫黄系正極活物質の製造方法では、混合原料における石炭ピッチと硫黄との配合比を1:10(質量比)とし、熱処理工程において混合原料を350℃にまで加熱した。実施例6の硫黄系正極活物質は、実施例6の硫黄系正極活物質の製造方法で製造した硫黄系正極活物質である。
【0072】
(比較例1)
比較例1のリチウムイオン二次電池は、正極活物質として単体硫黄を用いたものである。
【0073】
比較例1のリチウムイオン二次電池における正極材料は、硫黄とアセチレンブラックとポリテトラフルオロエチレンとを、硫黄:アセチレンブラック:ポリテトラフルオロエチレン=6:3:1の質量比で配合したものである。比較例1のリチウムイオン二次電池におけるリチウムイオン二次電池用正極は、正極材料以外は、実施例1のリチウムイオン二次電池用正極と同じ材料および方法で製作した。比較例1のリチウムイオン二次電池における電解液は、硫黄が溶出し難いエーテル系溶媒の一種であるテトラエチレングリコールジメチルエーテル(TEGDME)にリチウム塩としてのリチウムビストリフルオロメタンスルホニルイミド(LiTFSI)を1mol/lとなるように溶解したものを用いた。比較例1のリチウムイオン二次電池は、比較例1のリチウム二次電池用正極を用いたこと、上記の電解液を用いたこと以外は、実施例1のリチウムイオン二次電池用正極と同じものである。
【0074】
〔熱質量分析による硫黄系正極活物質の分析〕
実施例3の硫黄系正極活物質、単体硫黄および単体石炭ピッチの熱質量変化(TG)を測定した。測定装置としてはリガク製熱分析装置(Thermo Plus TG8120)を用いた。詳しくは、高純度窒素ガスを100ml/分の流量で供給しつつ、各試料を室温から550℃まで10℃/分の昇温速度で加熱し、温度と質量変化との関係を測定することによって、熱質量−示差熱分析を行った。分析結果を図2に示す。図2に示すように、単体硫黄の質量は、170℃付近から徐々に減少し、200℃を超すと急激に減少する。石炭ピッチおよび実施例3の硫黄系正極活物質は、どちらも質量減少し難い。250℃〜450℃付近では石炭ピッチの方がより質量減少し難く、450℃以上では実施例3の硫黄系正極活物質の方がより質量減少し難い。参考までに、室温から550℃まで加熱したときに、石炭ピッチの質量は約30%減少し、実施例3の硫黄系正極活物質の質量は約25%減少した。このように、実施例3の硫黄系正極活物質は熱安定性に優れた化合物である。なお、硫黄系正極活物質に残存する単体硫黄のみを除去するためには、単体硫黄の質量減少が生じ、硫黄系正極活物質およびピッチの質量減少が生じない温度で単体硫黄除去工程を行うのが好ましい。上記の結果から、単体硫黄除去工程は170℃以上で行うのが好ましく、185℃以上で行うのがより好ましく、200℃以上で行うのが特に好ましいことがわかる。また、単体硫黄除去工程は300℃以下で行うのが好ましく、270℃以下で行うのがより好ましく、250℃以下で行うのが特に好ましいことがわかる。なお、単体硫黄除去工程の特に好適な温度は200℃〜250℃であると考えられる。
【0075】
〔ラマンスペクトル分析による硫黄系正極活物質の分析〕
実施例1〜3の硫黄系正極活物質をラマンスペクトル分析した。装置として日本分光株式会社製のRMP−320(励起波長λ=532nm、グレーチング:1800gr/mm、分解能:3cm−1)を用いた。得られたラマンスペクトルを図3に示す。図3における横軸はラマンシフト(cm−1)であり、縦軸は相対強度である。実施例1〜3の硫黄系正極活物質の主ピークは1557cm−1付近に存在し、主ピークの次に大きいピークは1371cm−1付近に存在した。さらに、200cm−1〜1800cm−1の範囲内における主なピークは、1371cm−1、1049cm−1、994cm−1、842cm−1、612cm−1、412cm−1、354cm−1、314cm−1付近に存在した。単体硫黄(S8硫黄)のピークは500〜550cm−1付近に存在し、非常に強いピークであることが知られている。図3には、このS8硫黄のピークは認められなかった。この結果から、硫黄系正極活物質に硫黄はS8硫黄としては存在していないと考えられる。このため、硫黄系正極活物質の硫黄は、C−S結合等の結合をした状態で存在するか、または、ラマンスペクトルで検出できない非晶質の状態で存在すると考えられる。
【0076】
354cm−1付近、および、314cm−1付近に存在するピークは、多環芳香族の共役構造に由来すると考えられる。これは、石炭ピッチが多環芳香族を含むことからも裏付けられる。なお、612cm−1付近のピークは、C=S結合に由来すると考えられる。
【0077】
〔X線回折による硫黄系正極活物質の分析〕
実施例5〜7の硫黄系正極活物質、単体石炭ピッチ、単体硫黄について、X線回折分析を行った。装置として粉末X線回折装置(MAC Science社製、M06XCE)を用いた。測定条件は、CuKα線、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、回折角(2θ):10°〜60°であった。X線回折で得られた回折パターンを図4に示す。単体硫黄の主ピークは22°付近に存在した。単体石炭ピッチの主ピークは26°付近に存在した。実施例5の硫黄系正極活物質(石炭ピッチ:硫黄=1:1)のピークは単一ピークであり、26°付近に存在した。実施例7の硫黄系正極活物質(石炭ピッチ:硫黄=1:10)の主ピークは22°付近に存在し、実施例6の硫黄系正極活物質(石炭ピッチ:硫黄=1:5)の主ピークもまた22°付近に存在した。この結果から、実施例5の硫黄系正極活物質(石炭ピッチ:硫黄=1:1)においては、硫黄が全てピッチ系炭素材料に取り込まれることがわかる。そして、実施例6の硫黄系正極活物質(石炭ピッチ:硫黄=1:5)および実施例7の硫黄系正極活物質(石炭ピッチ:硫黄=1:10)には単体硫黄が残存するために、上述した単体硫黄除去工程が必要になることがわかる。また、実施例5の硫黄系正極活物質(石炭ピッチ:硫黄=1:1)の硫黄含有量は比較的少ないため、充放電容量が比較的小さいと推測される。したがって、混合原料におけるピッチ系炭素材料と硫黄との配合比(質量比)は、1:1以上、1:5以下であるのが好ましいと考えられる。なお、上述したように、単体硫黄除去工程の好適な温度は200℃〜250℃であると考えられる。このため、混合原料中に硫黄を過剰量配合し、熱処理工程後に単体硫黄除去工程を200℃〜250℃で行うことで、リチウムイオン二次電池の充放電容量を大きくできる硫黄系正極活物質を再現性高く製造できると考えられる。ここでいう過剰量は、ピッチ系炭素材料:硫黄=1:2〜1:10となる範囲が好ましく、1:2〜1:7となる範囲がより好ましく、1:2〜1:5となる範囲がさらに好ましい。
【0078】
〔充放電容量測定試験〕
実施例1のリチウムイオン二次電池および比較例1のリチウムイオン二次電池の充放電容量を測定した。詳しくは、実施例1のリチウムイオン二次電池および比較例1のリチウムイオン二次電池に、正極活物質の1gあたり50mAに相当する電流値で充放電を行った。このときの放電終止電圧は1.0V、充電終止電圧は3.0Vであった。実施例1のリチウムイオン二次電池については、充放電を11回繰り返した。比較例1のリチウムイオン二次電池については、充放電を10回繰り返した。実施例1のリチウムイオン二次電池の充放電曲線を図5に示し、比較例1のリチウムイオン二次電池の充放電曲線を図6に示す。比較例1のリチウムイオン二次電池は、初期容量(1回目充放電)は大きいが、2回目の充放電以降に急速に容量低下した。実施例1のリチウムイオン二次電池は初期容量も大きく、かつ、2回目の充放電以降にも容量低下が少なかった。この結果から、ピッチ系炭素材料と硫黄とを含む混合原料に熱処理工程を施して得た本発明の硫黄系正極活物質によると、リチウムイオン二次電池の充放電容量およびサイクル特性を向上させ得ることがわかる。
【0079】
〔サイクル試験〕
実施例1〜4のリチウムイオン二次電池について、27℃で繰り返し充放電をおこなった。実施例1のリチウムイオン二次電池については60サイクル充放電し、実施例2のリチウムイオン二次電池については14サイクル充放電し、実施例3のリチウムイオン二次電池については6サイクル充放電し、実施例4のリチウムイオン二次電池については50サイクル充放電した。詳しくは、まず0.1Cで1.0VまでCC放電(低電流放電)を行い、それ以降のサイクルは0.1Cで3.0VまでCC充電を行った後に0.1Cで1.0VまでCC放電を行う充放電を、繰り返した。サイクル試験の結果を図7〜図10に示す。なお、図7は実施例1のリチウムイオン二次電池のサイクル試験の結果であり、図8は実施例2のリチウムイオン二次電池のサイクル試験の結果であり、図9は実施例3のリチウムイオン二次電池のサイクル試験の結果であり、図10は実施例4のリチウムイオン二次電池のサイクル試験の結果である。
【0080】
図7〜図10に示すように、実施例1〜4のリチウムイオン二次電池は、サイクル経過後にも充放電容量が大きかった。つまり、実施例1〜4のリチウムイオン二次電池は、何れも、サイクル特性に優れていた。
【0081】
また、実施例1のリチウムイオン二次電池用正極の1回目の放電容量(初期容量)は616.906(mAh/g)であり、2回目の放電容量は415.838(mAh/g)であった。実施例2のリチウムイオン二次電池用正極の1回目の放電容量(初期容量)は682.697(mAh/g)であり、2回目の放電容量は254.477(mAh/g)であった。実施例3のリチウムイオン二次電池用正極の1回目の放電容量(初期容量)は758.434(mAh/g)であり、2回目の放電容量は490.029(mAh/g)であった。実施例4のリチウムイオン二次電池用正極の1回目の放電容量(初期容量)は576.551(mAh/g)であり、2回目の放電容量は385.014(mAh/g)であった。実施例1〜4のリチウムイオン二次電池の充放電効率は、ほぼ1であった。
【0082】
各リチウムイオン二次電池の充放電容量は、実施例3>実施例1>実施例4>実施例2の順であった。この結果から、熱処理工程における混合原料の温度は300℃以上400℃以下であるのが好ましく、350℃以上400℃以下であるのがより好ましく、350℃であるのが最も好ましいことがわかる。また、単体硫黄除去工程を行うことで、充放電容量の低下を抑制できることがわかる。
【符号の説明】
【0083】
1:反応装置 2:反応容器 3:蓋 4:熱電対
5:ガス導入管 6:ガス排出管 7:電気炉

【特許請求の範囲】
【請求項1】
炭素(C)、硫黄(S)、および複数種の多環芳香族炭化水素の混合物からなることを特徴とする硫黄系正極活物質。
【請求項2】
少なくとも一部の前記Cと少なくとも一部の前記Sとは互いに結合している請求項1に記載の硫黄系正極活物質。
【請求項3】
ラマンスペクトルにおいて、ラマンシフトの1557cm−1付近に主ピークが存在し、かつ、200cm−1〜1800cm−1の範囲内で1371cm−1、1049cm−1、994cm−1、842cm−1、612cm−1、412cm−1、354cm−1、314cm−1付近にそれぞれピークが存在する請求項1または請求項2に記載の硫黄系正極活物質。
【請求項4】
石炭ピッチ、石油ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、および、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチからなる群から選ばれる少なくとも一種の炭素材料と、硫黄と、を含む混合原料を加熱して被処理体を得る熱処理工程を含み、
該熱処理工程において、該炭素材料の少なくとも一部と該硫黄の少なくとも一部とが液体となることを特徴とする硫黄系正極活物質の製造方法。
【請求項5】
前記熱処理工程において、前記硫黄を還流する請求項4に記載の硫黄系正極活物質の製造方法。
【請求項6】
前記熱処理工程において、前記混合原料の温度は500℃以下である請求項4または請求項5に記載の硫黄系正極活物質の製造方法。
【請求項7】
前記熱処理工程において、前記混合原料の温度は250℃以上である請求項4〜請求項6の何れか一つに記載の硫黄系正極活物質の製造方法。
【請求項8】
前記混合原料中の前記炭素材料と前記硫黄との配合比は、質量比で1:1〜1:5である請求項4〜請求項7の何れか一つに記載の硫黄系正極活物質の製造方法。
【請求項9】
前記混合原料中の前記炭素材料と前記硫黄との配合比は、質量比で1:2〜1:10であり、
前記熱処理工程後の前記被処理体を、減圧しつつ200℃〜250℃で加熱する単体硫黄除去工程を含む請求項4〜請求項7の何れか一つに記載の硫黄系正極活物質の製造方法。
【請求項10】
請求項4〜9の何れか一つに記載の硫黄系正極活物質の製造方法で製造され、
ラマンスペクトルにおいて、ラマンシフトの1557cm−1付近に主ピークが存在し、かつ、200cm−1〜1800cm−1の範囲内で1371cm−1、1049cm−1、994cm−1、842cm−1、612cm−1、412cm−1、354cm−1、314cm−1付近にそれぞれピークが存在することを特徴とする硫黄系正極活物質。
【請求項11】
請求項1〜3、10の何れか一つに記載の硫黄系正極活物質を正極に含むことを特徴とするリチウムイオン二次電池用正極。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−99342(P2012−99342A)
【公開日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2010−246059(P2010−246059)
【出願日】平成22年11月2日(2010.11.2)
【出願人】(000003218)株式会社豊田自動織機 (4,162)
【出願人】(301021533)独立行政法人産業技術総合研究所 (6,529)
【Fターム(参考)】