説明

磁気共鳴イメージング装置

【課題】渦磁場を精度良く測定することを課題とする。
【解決手段】MRI装置100は、傾斜磁場に起因する渦磁場を測定対象とするシーケンスを、異なる条件を用いて複数回実行し、シーケンス毎に磁気共鳴信号を取得する。次に、MRI装置100は、シーケンス毎に取得した複数の磁気共鳴信号について、磁気共鳴信号間の差分を計算する。そして、MRI装置100は、計算した差分を用いて、渦磁場の補償に用いる測定値を計算する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気共鳴イメージング装置に関する。
【背景技術】
【0002】
磁気共鳴イメージング装置(以下、MRI(Magnetic Resonance Imaging)装置)は、傾斜磁場を印加することによって、被検体から放射された磁気共鳴信号に位置情報を与え、この位置情報に基づいて、画像を再構成する。
【0003】
ところで、MRI装置は、傾斜磁場をパルス状に印加する。このため、傾斜磁場コイルの周囲に存在する伝導体(例えば静磁場磁石の熱シールドなど)に、渦電流が発生し、発生した渦電流によって、渦磁場が生成されてしまう。この渦磁場は、傾斜磁場の波形を歪めるので、磁気共鳴信号から再構成された画像にも、劣化が生じる。このようなことから、近年、アクティブシールド型傾斜磁場(以下、ASGC(Actively Shielded Gradient Coil))によって渦磁場の強度を小さくする手法や、渦磁場に応じて傾斜磁場の波形を整形する渦磁場補償の手法などが用いられている。
【0004】
ここで、渦磁場補償を正確に行うためには、渦磁場を測定し、渦磁場の強度及び時定数を予め求める必要がある。例えば、特許文献1には、傾斜磁場に起因する渦磁場を測定対象とするシーケンスを実行し、傾斜磁場を印加した直後に取得した磁気共鳴信号の位相に現れた変調を解析することで、渦磁場の強度及び時定数を求める手法が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平4−189344号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上述した従来の技術では、渦磁場を精度良く測定することができないという課題があった。すなわち、特許文献1の手法では、測定対象の渦磁場以外に起因する位相の変調も磁気共鳴信号に現れてしまい、測定の精度が低下する。例えば、磁気共鳴信号は、測定対象でない渦磁場や振動などの影響も受けるので、取得された磁気共鳴信号の位相の変調には、これらの影響も含まれてしまう。なお、測定対象でない渦磁場とは、測定対象の渦磁場を生成した傾斜磁場とは異なる傾斜磁場(例えば1TR(Repetition Time)前の傾斜磁場)によって生成された渦磁場のことである。また、渦磁場は空間的に一様な周波数分布を持つ0次渦磁場と、空間的に線形に変化する周波数分布を持つ1次渦磁場とに切り分けられる。0次渦磁場はRF(Radio Frequency)パルスの周波数を変化させる、1次渦磁場は傾斜磁場波形を最適化することによりそれぞれ補償が可能である。0次渦磁場と1次渦磁場で補償方法が異なるため、0次渦と1次渦との成分を切り分けることが渦磁場測定において重要であると考えられるが、特許文献1の手法で取得可能な磁気共鳴信号は0次渦磁場と1次渦磁場の両方の影響を受けており、切り分けが出来ないため、精度の高い補償は不可能である。
【0007】
本発明は、上記に鑑みてなされたものであって、渦磁場を精度良く測定することが可能な磁気共鳴イメージング装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上述した課題を解決し、目的を達成するために、請求項1に記載の本発明は、傾斜磁場に起因する渦磁場を測定対象とするシーケンスを、異なる条件を用いて複数回実行し、シーケンス毎に磁気共鳴信号を取得する取得手段と、前記取得手段によってシーケンス毎に取得された複数の磁気共鳴信号について、磁気共鳴信号間の差分を計算する差分計算手段と、前記差分計算手段によって計算された差分を用いて、前記渦磁場の補償に用いる測定値を計算する測定値計算手段とを備える。
【発明の効果】
【0009】
請求項1に記載の本発明によれば、渦磁場を精度良く測定することが可能になるという効果を奏する。
【図面の簡単な説明】
【0010】
【図1】図1は、MRI装置の構成を示すブロック図である。
【図2】図2は、制御部の構成を示すブロック図である。
【図3】図3は、実施例1に係るシーケンス実行部によって実行されるシーケンスを説明するための図である。
【図4】図4は、実施例1に係るシーケンス実行部によって実行されるシーケンスを説明するための図である。
【図5】図5は、渦磁場測定の処理手順を示すフローチャートである。
【図6】図6は、実施例1に係るシーケンス実行の処理手順を示すフローチャートである。
【図7】図7は、実施例2に係るシーケンス実行部によって実行されるシーケンスを説明するための図である。
【図8】図8は、実施例2に係るシーケンス実行の処理手順を示すフローチャートである。
【図9】図9は、実施例3に係るシーケンス実行の処理手順を示すフローチャートである。
【図10】図10は、実施例4に係るシーケンス実行の処理手順を示すフローチャートである。
【発明を実施するための形態】
【0011】
以下、本発明に係るMRI装置の実施例を詳細に説明する。なお、以下の実施例により本発明が限定されるものではない。
【実施例1】
【0012】
[MRI装置100の構成]
図1を用いて、実施例1に係るMRI装置100の構成を説明する。図1は、MRI装置100の構成を示すブロック図である。図1に例示するように、実施例1に係るMRI装置100は、特に、静磁場磁石1と、傾斜磁場コイル2と、傾斜磁場電源3と、寝台4と、寝台制御部5と、送信コイル6と、送信部7と、受信コイル8と、受信部9と、シーケンス制御部10と、計算機システム20とを備える。
【0013】
静磁場磁石1は、中空の円筒形状に形成され、内部の空間に一様な静磁場を発生する。静磁場磁石1は、例えば、永久磁石、超伝導磁石などである。傾斜磁場コイル2は、中空の円筒形状に形成され、内部の空間に傾斜磁場を発生する。具体的には、傾斜磁場コイル2は、静磁場磁石1の内側に配置され、傾斜磁場電源3から電流の供給を受けて、傾斜磁場を発生する。傾斜磁場電源3は、シーケンス制御部10から送られるシーケンス実行データに従って、傾斜磁場コイル2に電流を供給する。
【0014】
寝台4は、被検体Pが載置される天板4aを備え、天板4aを、被検体Pが載置された状態で傾斜磁場コイル2の空洞(撮像口)内へ挿入する。通常、寝台4は、長手方向が静磁場磁石1の中心軸と平行になるように設置される。寝台制御部5は、寝台4を駆動して、天板4aを長手方向及び上下方向へ移動する。
【0015】
送信コイル6は、高周波磁場を発生する。具体的には、送信コイル6は、傾斜磁場コイル2の内側に配置され、送信部7から高周波パルスの供給を受けて、高周波磁場を発生する。送信部7は、シーケンス制御部10から送られるシーケンス実行データに従って、ラーモア周波数に対応する高周波パルスを送信コイル6に送信する。
【0016】
受信コイル8は、磁気共鳴信号を受信する。具体的には、受信コイル8は、傾斜磁場コイル2の内側に配置され、高周波磁場の影響によって被検体Pから放射される磁気共鳴信号を受信する。また、受信コイル8は、受信した磁気共鳴信号を受信部9に出力する。
【0017】
受信部9は、シーケンス制御部10から送られるシーケンス実行データに従って、受信コイル8から出力された磁気共鳴信号に基づき磁気共鳴信号データを生成する。具体的には、受信部9は、受信コイル8から出力された磁気共鳴信号をデジタル変換することによって磁気共鳴信号データを生成し、生成した磁気共鳴信号データをシーケンス制御部10を介して計算機システム20に送信する。
【0018】
シーケンス制御部10は、傾斜磁場電源3、送信部7、及び受信部9を制御する。具体的には、シーケンス制御部10は、計算機システム20から送信されたシーケンス実行データを、傾斜磁場電源3、送信部7、及び受信部9に送信する。
【0019】
計算機システム20は、特に、インタフェース部21と、画像再構成部22と、記憶部23と、入力部24と、表示部25と、制御部26とを備える。インタフェース部21は、シーケンス制御部10に接続され、シーケンス制御部10と計算機システム20との間で送受信されるデータの入出力を制御する。画像再構成部22は、シーケンス制御部10から送信された磁気共鳴信号データから画像データを再構成し、再構成した画像データを記憶部23に格納する。
【0020】
記憶部23は、画像再構成部22によって格納された画像データや、MRI装置100において用いられるその他のデータを記憶する。例えば、記憶部23は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ(flash memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどである。
【0021】
入力部24は、渦磁場測定のための操作などを操作者から受け付ける。例えば、入力部24は、マウスやトラックボールなどのポインティングデバイス、モード切替スイッチ等の選択デバイス、あるいはキーボード等の入力デバイスである。表示部25は、画像データなどを表示する。例えば、表示部25は、液晶表示器などの表示デバイスである。
【0022】
制御部26は、上記各部を制御することによってMRI装置100を総括的に制御する。例えば、制御部26は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路、または、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などの電子回路である。
【0023】
図2は、制御部26の構成を示すブロック図である。図2に例示するように、制御部26は、特に、事前設定受付部26aと、シーケンス実行部26bと、差分計算部26cと、強度時定数計算部26dとを有する。
【0024】
事前設定受付部26aは、渦磁場を測定対象とするシーケンスを実行するにあたり、事前に設定される各種設定値を受け付ける。具体的には、事前設定受付部26aは、入力部24を介して操作者から各種設定値を受け付け、受け付けた各種設定値を、シーケンス実行部26bに通知する。
【0025】
ここで、後述するように、実施例1に係るシーケンス実行部26bは、PRESS(Point Resolved Spectroscopy)法を用いたシーケンスを実行する。PRESS法においては、局所から放射された磁気共鳴信号のみが取得される。このため、例えば、事前設定受付部26aは、事前に設定される設定値として、磁気共鳴信号が取得される対象となる局所の空間的な位置を示す値(以下、測定ボクセル位置)を受け付ける。
【0026】
また、例えば、事前設定受付部26aは、事前に設定される設定値として、測定対象の渦磁場を生成する傾斜磁場(以下、渦生成傾斜磁場)の強度や時間を受け付ける。ここで、渦生成傾斜磁場の強度や時間には、MRI装置100のハードウェアの性能や、測定対象の渦磁場の強度や時定数などを考慮した適切な値が選択される。
【0027】
例えば、測定対象の渦磁場は、より正確には、傾斜磁場の立ち下り時に生成される渦磁場である。一方、傾斜磁場の立ち上がり時にも、渦磁場は生成される。この立ち上がり時に生成された渦磁場が、仮に時定数の長い渦磁場であるとすると、立ち上がり時に生成された渦磁場が、磁気共鳴信号に影響を与えてしまうことになる。このため、例えば、操作者は、立ち上がり時に生成された渦磁場が磁気共鳴信号に影響を与えないように、予め渦生成傾斜磁場に対する調整を行う。例えば、傾斜磁場は、強度と時間とで表現される波形が、シーケンスとして計画された傾斜磁場波形と同一になることが望ましい。そこで、操作者は、立ち上がり時の歪み(立ち上がり時に生成された渦磁場によって立ち上がり時の傾斜磁場に生じた歪み)を補償するように、渦生成傾斜磁場の立ち上がり時の強度を少し強めにするといった設定値を選択する。
【0028】
また、例えば、事前設定受付部26aは、事前に設定される設定値として、磁場の均一度を高めるためのシム値を受け付ける。ここで、シム値には、MRI装置100のハードウェアの性能などを考慮した適切な値が選択される。
【0029】
シーケンス実行部26bは、渦磁場を測定対象とするシーケンスを、異なる条件を用いて複数回実行し、シーケンス毎に磁気共鳴信号を取得する。具体的には、シーケンス実行部26bは、入力部24を介して操作者からシーケンス実行指示を受け付けると、シーケンス実行データをインタフェース部21を介してシーケンス制御部10に送り、条件が異なるシーケンスを複数回実行する。また、シーケンス実行部26bは、シーケンス毎に、インタフェース部21を介して受信部9から磁気共鳴信号データを取得する。そして、シーケンス実行部26bは、取得したシーケンス毎の磁気共鳴信号データを、差分計算部26cに送る。
【0030】
図3及び図4は、実施例1に係るシーケンス実行部26bによって実行されるシーケンスを説明するための図である。実施例1に係るシーケンス実行部26bは、図3に例示するシーケンスと図4に例示するシーケンスとをそれぞれ実行し、シーケンス毎に磁気共鳴信号データを取得する。図3に例示するシーケンスは、渦生成傾斜磁場の印加ありのシーケンスである。一方、図4に例示するシーケンスは、渦生成傾斜磁場の印加なしのシーケンスである。すなわち、実施例1に係るシーケンス実行部26bは、異なる条件のシーケンスとして、渦生成傾斜磁場の印加ありのシーケンスと、渦生成傾斜磁場の印加なしのシーケンスとをそれぞれ実行する。
【0031】
また、図3及び図4に例示するように、実施例1に係るシーケンス実行部26bは、PRESS法を用いたシーケンスを実行する。図3及び図4において、『RF』は、RFパルスの印加を示す。また、『GX』、『GY』、『GZ』は、それぞれ、X軸方向、Y軸方向、及びZ軸方向に印加される傾斜磁場を示す。また、『Echo』は、磁気共鳴信号を示す。
【0032】
図3及び図4に例示するように、PRESS法において、シーケンスは、スライス選択用の3つの傾斜磁場のパルス(符号e、f、及びg)と、周波数選択用の3つのRFパルス(90°−180°−180°)とで構成される。すなわち、符号eの傾斜磁場、符号fの傾斜磁場、及び符号gの傾斜磁場が印加された状態で、90°−180°−180°のRFパルスが照射されると、スライス面が3回励起され、局所(例えば直方体、立方体など)から放射された磁気共鳴信号(符号d)のみが取得される。
【0033】
さて、図3に例示するシーケンスは、渦生成傾斜磁場の印加ありのシーケンスである。符号aの傾斜磁場及び符号bの傾斜磁場が、渦生成傾斜磁場である。図3に例示するように、実施例1に係るシーケンス実行部26bは、90°−180°−180°のRFパルスのうち、3回目のRFパルスの前後に渦生成傾斜磁場を印加する。RFパルスの前に印加する渦生成傾斜磁場が符号aによって示され、RFパルスの後に印加する渦生成傾斜磁場が符号bによって示されている。
【0034】
ここで、シーケンス実行部26bは、符号aの傾斜磁場の面積と符号bの傾斜磁場の面積とが等しくなるように、傾斜磁場を印加する。位相の一致した強度の強い磁気共鳴信号を収集するためには、励起された信号が受ける傾斜磁場波形の面積和が収集タイミングで『0』となる必要がある。180°のRFパルスの前後で、傾斜磁場の極性は反転する。このため、図3に例示するように、符号aの傾斜磁場波形の面積と符号bの傾斜磁場波形の面積とが等しければ、傾斜磁場波形の面積は『0』になり、磁気共鳴信号の強度は強くなる。なお、符号cによって示される部分が、符号bの傾斜磁場の立ち下がり時に生成された渦磁場による傾斜磁場の波形の歪みである。
【0035】
次に、図4に例示するシーケンスは、渦生成傾斜磁場の印加なしのシーケンスである。図4に例示するように、シーケンス実行部26bは、図3に例示したシーケンスと比較して、符号aの傾斜磁場及び符号bの傾斜磁場が印加されないシーケンスを実行する。
【0036】
差分計算部26cは、シーケンス実行部26bによってシーケンス毎に取得された複数の磁気共鳴信号データについて、磁気共鳴信号データ間の差分を計算する。具体的には、差分計算部26cは、シーケンス毎の磁気共鳴信号データをシーケンス実行部26bから受け取ると、まず、受け取った磁気共鳴信号データそれぞれの位相を計算する。位相の計算は、公知技術を用いればよい。次に、差分計算部26cは、磁気共鳴信号データ間で位相の差分を計算し、計算結果を強度時定数計算部26dに送る。
【0037】
ここで、実施例1においては、上述したように、渦生成傾斜磁場の印加ありのシーケンスと、渦生成傾斜磁場の印加なしのシーケンスとが実行されている。このため、差分計算部26cがシーケンス実行部26bから受け取った磁気共鳴信号データも、渦生成傾斜磁場の印加ありのシーケンスの実行結果としての磁気共鳴信号データ、及び、渦生成傾斜磁場の印加なしのシーケンスの実行結果としての磁気共鳴信号データである。
【0038】
そこで、これらの磁気共鳴信号データ間で位相の差分を計算する意味について検討すると、両シーケンスの相違は、渦生成傾斜磁場の印加の有無にある。図3及び図4を用いて説明すると、符号aの傾斜磁場及び符号bの傾斜磁場の印加の有無である。そうであるとすると、両シーケンスにおいて、その他の影響、例えば、測定対象でない渦磁場や振動などの影響は、同様に及んでいるはずであり、磁気共鳴信号の位相に現れる変調にも、同様の影響が及んでいるはずである。したがって、両シーケンスの実行結果としての磁気共鳴信号データ間で位相の差分を計算すれば、同様に及んだ影響、すなわち測定対象でない渦磁場や振動などの影響は、取り除かれるはずである。結局、磁気共鳴信号データ間で位相の差分を計算することにより、測定対象の渦磁場以外を要因とする変調分が差し引かれ、測定対象の渦磁場を要因とする変調分のみが残ることになる。
【0039】
強度時定数計算部26dは、差分計算部26cによって計算された差分を用いて、渦磁場の補償に用いる測定値を計算する。具体的には、強度時定数計算部26dは、計算結果(測定対象の渦磁場以外を要因とする変調分が差し引かれた位相)を差分計算部26cから受け取ると、受け取った計算結果を用いて、測定対象の渦磁場の強度及び時定数を計算する。なお、渦磁場の強度及び時定数の計算は、公知技術を用いればよい。例えば、強度時定数計算部26dは、計算結果である位相を時間微分することにより測定対象の渦磁場の波形を求め、測定対象の渦磁場の強度を計算する。また、例えば、強度時定数計算部26dは、計算結果である位相を時間微分することにより測定対象の渦磁場の波形を求め、最小二乗法により時定数を計算する。
【0040】
[渦磁場測定の処理手順]
続いて、図5及び図6を用いて、渦磁場測定の処理手順を説明する。図5は、渦磁場測定の処理手順を示すフローチャートである。渦磁場測定全体の処理手順を示すものであり、操作者による処理手順を含む。
【0041】
具体的には、図5に例示するように、まず、操作者が、所定の位置にファントムをセットする(ステップS1)。ここで、ファントムには、SNR(Signal to Noise Ratio)の観点から、T2緩和時間が長い物質(例えば水など)を使用することが望ましい。
【0042】
この点について詳細に説明すると、まず、渦磁場の時定数には大きな幅があり、例えば1msec〜3secといった幅がある。このため、測定対象の渦磁場の時定数が長く、例えば3secといった場合には、磁気共鳴信号は、5〜6秒ほど保持される信号であることが望ましい。また、渦磁場の時定数や強度を測定する場合、解析対象となる磁気共鳴信号の位相は、横磁化の位相である。このようなことから、T2緩和時間が長い物質のファントムを使用することが望ましい。
【0043】
続いて、操作者は、例えば、MRI装置100の表示部25に表示された設定画面を参照しながら、測定ボクセル位置の設定(ステップS2)や、渦生成傾斜磁場の強度や時間の設定(ステップS3)を行う。なお、図5においては図示を省略しているが、操作者は、シム値の設定などを行ってもよい。こうして、渦磁場を測定するための事前設定が完了する。
【0044】
そして、操作者からシーケンス実行の指示が入力されることで、MRI装置100は、シーケンスを実行し、磁気共鳴信号データを取得する(ステップS4)。ここで、MRI装置100は、条件が異なるシーケンスを複数回実行する。このため、MRI装置100は、シーケンスの実行が完了したか否かを判定し(ステップS5)、完了していないと判定した場合には(ステップS5否定)、再び、ステップS1に戻る。一方、完了したと判定した場合には(ステップS5肯定)、MRI装置100は、取得したシーケンス毎の磁気共鳴信号データを用いて、渦磁場の強度及び時定数を計算し(ステップS6)、処理を終了する。
【0045】
なお、図5に例示する処理手順は、一例にすぎず、本発明はこれに限られるものではない。例えば、ファントムのセットや設定値の設定などの順番は、任意に変更することができる。また、例えば、異なる条件のシーケンスを実行するにあたり、ファントムのセットし直しや、測定ボクセル位置の設定し直しが不要な場合などには、適宜、処理手順を省略することができる。
【0046】
次に、図6を用いて、実施例1に係るシーケンス実行の処理手順を説明する。図6は、実施例1に係るシーケンス実行の処理手順を示すフローチャートである。なお、図5を用いて説明したように、条件が異なるシーケンスを複数回実行する際には、ファントムのセットし直しや、測定ボクセル位置の設定し直しなどが行われる場合もある。このため、MRI装置100は、必ずしも図6に例示する処理手順を一連の処理手順として連続して実行するわけではない。
【0047】
図6に例示するように、まず、MRI装置100は、所望の渦観測位置で、渦パルスありのシーケンスを実行し、データ(B1_EddyOn)を取得する(ステップS101)。ここで、「渦観測位置」とは、渦磁場の測定において渦磁場を観測したい位置であり、実施例1においては、測定ボクセル位置に相当する。また、「渦パルスありのシーケンス」とは、渦生成傾斜磁場の印加ありのシーケンスのことであり、図3に例示したシーケンスに相当する。また、「データ」とは、磁気共鳴信号データから計算された位相のことであり、また、時間に関する情報を含むデータである。
【0048】
次に、MRI装置100は、ステップS101における渦観測位置と同じ渦観測位置で、渦パルスなしのシーケンスを実行し、データ(B1_EddyOff)を取得する(ステップS102)。ここで、「渦パルスなしのシーケンス」とは、渦生成傾斜磁場の印加なしのシーケンスのことであり、図4に例示したシーケンスに相当する。
【0049】
そして、MRI装置100は、両シーケンスで取得されたデータの差分を計算する(ステップS103)。具体的には、MRI装置100は、データ(B1_EddyOn)−データ(B1_EddyOff)を計算し、計算結果(B1_Posi)を求める。
【0050】
こうして求められた計算結果は、MRI装置100において、差分計算部26cから強度時定数計算部26dに送られ、強度時定数計算部26dが、公知技術を用いて、測定対象の渦磁場の強度や時定数を計算する。なお、図6に例示する処理手順は、一例にすぎず、本発明はこれに限られるものではない。例えば、S101とS102との処理手順は、反対であってもよい。
【0051】
[実施例1の効果]
上述してきたように、実施例1に係るMRI装置100は、傾斜磁場に起因する渦磁場を測定対象とするシーケンスを、異なる条件を用いて複数回実行し、シーケンス毎に磁気共鳴信号を取得するシーケンス実行部26bを備える。また、MRI装置100は、シーケンス実行部26bによってシーケンス毎に取得された複数の磁気共鳴信号について、磁気共鳴信号間の差分を計算する差分計算部26cを備える。また、MRI装置100は、差分計算部26cによって計算された差分を用いて、渦磁場の補償に用いる測定値を計算する強度時定数計算部26dを備える。
【0052】
このようなことから、実施例1によれば、測定対象の渦磁場以外を要因とする変調分が差し引かれ、測定対象の渦磁場を要因とする変調分のみが残る位相を用いて、渦磁場の強度や時定数が計算されることになるので、渦磁場を精度良く測定することが可能になる。
【実施例2】
【0053】
次に、図7及び図8を用いて、実施例2に係るMRI装置100を説明する。実施例1に係るMRI装置100は、条件が異なるシーケンスとして、渦生成傾斜磁場を印加するシーケンスと、渦生成傾斜磁場を印加しないシーケンスとを実行した。この点、実施例2に係るMRI装置100は、渦生成傾斜磁場を印加しないシーケンスに替えて、渦生成傾斜磁場の極性を反転させたシーケンスを実行する。なお、その他については、実施例1に係るMRI装置100と同様であるので、以下では、実施例1と同様の点については説明を割愛する。
【0054】
図7は、実施例2に係るシーケンス実行部26bによって実行されるシーケンスを説明するための図である。実施例2に係るシーケンス実行部26bは、図3に例示したシーケンスと、図7に例示するシーケンスとをそれぞれ実行し、シーケンス毎に磁気共鳴信号データを取得する。
【0055】
図7に例示するシーケンスは、図3に例示したシーケンスと同様、渦生成傾斜磁場の印加ありのシーケンスであり、符号a´の傾斜磁場及び符号b´の傾斜磁場が、渦生成傾斜磁場である。もっとも、図3に例示したシーケンスと比較するとわかるように、符号a´の傾斜磁場及び符号b´の傾斜磁場の極性が反転している。
【0056】
図8は、実施例2に係るシーケンス実行の処理手順を示すフローチャートである。図8に例示するように、まず、MRI装置100は、所望の渦観測位置で、渦パルスありのシーケンスを実行し、データ(B1_Posi)を取得する(ステップS201)。ここで、「渦パルスありのシーケンス」とは、図3に例示したシーケンスに相当する。
【0057】
次に、MRI装置100は、ステップS201における渦観測位置と同じ渦観測位置で、渦生成傾斜磁場の極性を反転させたシーケンスを実行し、データ(B1_Nega)を取得する(ステップS202)。ここで、「渦生成傾斜磁場の極性を反転させたシーケンス」とは、図7に例示したシーケンスに相当する。
【0058】
そして、MRI装置100は、両シーケンスで取得されたデータの差分を計算する(ステップS203)。具体的には、MRI装置100は、データ(B1_Posi)−データ(B1_Nega)を計算し、計算結果(B1_B0in)を求める。
【0059】
こうして求められた計算結果は、MRI装置100において、差分計算部26cから強度時定数計算部26dに送られ、強度時定数計算部26dが、公知技術を用いて、測定対象の渦磁場の強度や時定数を計算する。なお、渦磁場の強度や時定数を計算する際には、位相の変調分を示す値が2倍になっている点に留意する。また、図8に例示する処理手順は、一例にすぎず、本発明はこれに限られるものではない。例えば、S201とS202との処理手順は、反対であってもよい。
【0060】
[実施例2の効果]
上述してきたように、実施例2に係るMRI装置100は、渦生成傾斜磁場の極性について正負の条件を変更しながら、シーケンスを実行する。このようなことから、実施例2によれば、測定対象の渦磁場以外を要因とする変調分が差し引かれるのみならず、渦生成傾斜磁場に起因する変調分が強調されることになるため、実施例1と比較して、渦磁場をより精度良く測定することが可能になる。
【実施例3】
【0061】
次に、図9を用いて、実施例3に係るMRI装置100を説明する。実施例3に係るMRI装置100は、条件が異なるシーケンスとして、磁気共鳴信号を取得する測定ボクセル位置の条件を、所定の位置と磁場中心とに変更しながら実行する。なお、その他については、実施例1に係るMRI装置100と同様であるので、以下では、実施例1と同様の点については説明を割愛する。
【0062】
図9は、実施例3に係るシーケンス実行の処理手順を示すフローチャートである。図9に例示するように、まず、MRI装置100は、所望の渦観測位置で、渦パルスありのシーケンスを実行し、データ(B1_B0in)を取得する(ステップS301)。ここで、「渦パルスありのシーケンス」とは、図3に例示したシーケンスに相当する。
【0063】
次に、MRI装置100は、磁場中心で、渦パルスありのシーケンスを実行し、データ(B0)を取得する(ステップS302)。ここで、「渦パルスありのシーケンス」とは、ステップS301と同じく、図3に例示したシーケンスに相当する。
【0064】
そして、MRI装置100は、両シーケンスで取得されたデータの差分を計算する(ステップS303)。具体的には、MRI装置100は、データ(B1_B0in)−データ(B0)を計算し、計算結果(B1_B0out)を求める。
【0065】
こうして求められた計算結果は、MRI装置100において、差分計算部26cから強度時定数計算部26dに送られ、強度時定数計算部26dが、公知技術を用いて、測定対象の渦磁場の強度や時定数を計算する。また、図9に例示する処理手順は、一例にすぎず、本発明はこれに限られるものではない。例えば、S301とS302との処理手順は、反対であってもよい。
【0066】
[実施例3の効果]
上述してきたように、実施例3に係るMRI装置100は、磁気共鳴信号を取得する測定ボクセル位置の条件を所定の位置と磁場中心とに変更しながら、シーケンスを実行する。このようなことから、実施例3によれば、測定対象の渦磁場以外を要因とする変調分が差し引かれるのみならず、0次渦による変調分が差し引かれ、0次渦と1次渦との切り分けが可能となるため、実施例1と比較して、渦磁場をより精度良く測定することが可能になる。
【0067】
0次渦は、一定値を示す成分であり、空間的な位置によって値が変化しない成分である。一方、1次渦は、傾斜磁場と同様、空間的な位置によって値が変化する成分である。渦磁場補償において、0次渦を補正する手法と1次渦を補正する手法とが異なるため、0次渦と1次渦との成分を切り分けることが重要である。
【0068】
この点、磁場中心で取得された磁気共鳴信号には、0次渦による変調分しか含まれないと考えられるので、実施例3においては、磁気共鳴信号を取得する測定ボクセル位置の条件を、所定の位置と磁場中心とに変更しながらシーケンスを実行することで、0次渦と1次渦との切り分けを可能とする。
【実施例4】
【0069】
次に、図10を用いて、実施例4に係るMRI装置100を説明する。実施例4に係るMRI装置100は、いわば実施例1〜3における処理手順を組合せたものである。すなわち、実施例1〜3に例示した処理手順は、一部又は全部を適宜併用することができ、渦磁場の測定精度を向上させることができる。すなわち、実施例4においては、実施例1〜3における処理手順を全部併用する例を説明するが、本発明はこれに限られるものでもなく、適宜選択的に併用してもよい。
【0070】
図10は、実施例4に係るシーケンス実行の処理手順を示すフローチャートである。図10に例示するように、まず、MRI装置100は、所望の渦観測位置で、渦パルスありのシーケンスを実行し、データ(B1_EddyOn)を取得する(ステップS401)。ここで、「渦パルスありのシーケンス」とは、図3に例示したシーケンスに相当する。
【0071】
次に、MRI装置100は、ステップS401における渦観測位置と同じ渦観測位置で、渦パルスなしのシーケンスを実行し、データ(B1_EddyOff)を取得する(ステップS402)。ここで、「渦パルスなしのシーケンス」とは、渦生成傾斜磁場の印加なしのシーケンスのことであり、図4に例示したシーケンスに相当する。
【0072】
そして、MRI装置100は、両シーケンスで取得されたデータの差分を計算する(ステップS403)。具体的には、MRI装置100は、データ(B1_EddyOn)−データ(B1_EddyOff)を計算し、計算結果(B1_Posi)を求める。
【0073】
次に、MRI装置100は、ステップS401における渦観測位置と同じ渦観測位置で、渦生成傾斜磁場の極性を反転させたシーケンスを実行し、データ(B1_Nega)を取得する(ステップS404)。ここで、「渦生成傾斜磁場の極性を反転させたシーケンス」とは、図7に例示したシーケンスに相当する。
【0074】
そして、MRI装置100は、取得されたデータの差分を計算する(ステップS405)。具体的には、MRI装置100は、データ(B1_Posi)−データ(B1_Nega)を計算し、計算結果(B1_B0in)を求める。
【0075】
次に、MRI装置100は、磁場中心で、渦パルスありのシーケンスを実行し、データ(B0)を取得する(ステップS406)。ここで、「渦パルスありのシーケンス」とは、ステップS401と同じく、図3に例示したシーケンスに相当する。
【0076】
そして、MRI装置100は、取得されたデータの差分を計算する(ステップS407)。具体的には、MRI装置100は、データ(B1_B0in)−データ(B0)を計算し、計算結果(B1_B0out)を求める。
【0077】
こうして求められた計算結果は、MRI装置100において、差分計算部26cから強度時定数計算部26dに送られ、強度時定数計算部26dが、公知技術を用いて、測定対象の渦磁場の強度や時定数を計算する。また、図10に例示する処理手順は、一例にすぎず、本発明はこれに限られるものではない。例えば、まず、全てのシーケンスが実行され(ステップS401、S402、S404、S406)、その後、それぞれのシーケンスで取得されたデータに基づく計算が行われてもよい。また、シーケンスの実行手順は、任意である。
【実施例5】
【0078】
その他、本発明は、上記実施例以外にも、種々の異なる形態にて実施されてよいものである。
【0079】
例えば、上記実施例1〜4においては、PRESS法を用いたシーケンスを実行する例を説明したが、本発明はこれに限られるものではない。SE(Spin Echo)法やGRE(Gradient Recalled Echo)法など、他の手法を用いたシーケンスを実行する場合にも、本発明を同様に適用することができる。
【符号の説明】
【0080】
100 MRI装置
20 計算機システム
21 インタフェース部
22 画像再構成部
23 記憶部
24 入力部
25 表示部
26 制御部
26a 事前設定受付部
26b シーケンス実行部
26c 差分計算部
26d 強度時定数計算部

【特許請求の範囲】
【請求項1】
傾斜磁場に起因する渦磁場を測定対象とするシーケンスを、異なる条件を用いて複数回実行し、シーケンス毎に磁気共鳴信号を取得する取得手段と、
前記取得手段によってシーケンス毎に取得された複数の磁気共鳴信号について、磁気共鳴信号間の差分を計算する差分計算手段と、
前記差分計算手段によって計算された差分を用いて、前記渦磁場の補償に用いる測定値を計算する測定値計算手段と
を備えたことを特徴とする磁気共鳴イメージング装置。
【請求項2】
前記取得手段は、前記シーケンスとして、測定対象の渦磁場を生成する傾斜磁場を印加するシーケンスと、測定対象の渦磁場を生成する傾斜磁場を印加しないシーケンスとを実行することを特徴とする請求項1に記載の磁気共鳴イメージング装置。
【請求項3】
前記取得手段は、測定対象の渦磁場を生成する傾斜磁場の極性について正負の条件を変更しながらシーケンスを実行することを特徴とする請求項1に記載の磁気共鳴イメージング装置。
【請求項4】
前記取得手段は、磁気共鳴信号を取得する位置の条件を所定の位置と磁場中心とに変更しながらシーケンスを実行することを特徴とする請求項1に記載の磁気共鳴イメージング装置。
【請求項5】
前記取得手段は、測定対象の渦磁場を生成する傾斜磁場の立ち上がりに起因する渦磁場を打ち消すように、該傾斜磁場に対する調整を行うことを特徴とする請求項1〜4のいずれか一つに記載の磁気共鳴イメージング装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−182916(P2011−182916A)
【公開日】平成23年9月22日(2011.9.22)
【国際特許分類】
【出願番号】特願2010−50463(P2010−50463)
【出願日】平成22年3月8日(2010.3.8)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(594164542)東芝メディカルシステムズ株式会社 (4,066)
【Fターム(参考)】