説明

神経回復指令及び臨床効果を制御するための刺激パルス形状の使用

電気組織刺激システム、及び患者に治療を施すプログラマーを示している。電極が患者の組織(例えば、脊髄組織)に近接して設置され、電気刺激エネルギーが定められた波形にしたがって電極から組織に供給されて、定められた波形のパルス形状が修正され、これにより、電極から組織に供給される電気刺激エネルギーの特性を変化させる。パルス形状は、複数の異なるパルス形状タイプの1つを選択するか、又はパルス形状の時定数を調整することにより修正することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、組織刺激システム、より特定的には、治療効果を最大にするために組織に付与される刺激を調整するためのシステム及び方法に関する。
【背景技術】
【0002】
埋め込み型神経刺激システムは、広い範囲の疾病及び障害において、治療効果が証明されてきた。ペースメーカー及び埋め込み型除細動器(ICD)は、多くの心臓病(例えば、不整脈)の治療に、高い効果を有することが示されてきた。脊髄刺激(SCS)システムは、慢性病症候群の治療のための治療方針として受け入れられてきており、組織刺激の用途は、狭心症及び失禁などの別の用途に拡大され始めている。脳深部電気刺激療法(DBS)も又、難治のパーキンソン病の治療に10年以上にわたって治療法として施されており、最近では、真性震顫及び癲癇など、別の領域において使用されてきた。更に、最近の研究においては、抹消神経刺激(PNS)システムは、慢性病症候群及び失禁の治療に効果があることが示されており、多くの別の用途が、近年研究されている。更に、NeuroControl(オハイオ州クリーブランド)によるフリーハンドシステムなどの機能性電気刺激(FES)システムが、脊髄損傷患者の四肢麻痺に対する機能回復のために施されてきた。
【0003】
これらの埋め込み型神経刺激システムの各々は、典型的には、望まれる刺激部位に埋め込まれる、1又はそれ以上の電極をもった刺激用導線と、刺激部位から離れた位置に埋め込まれ、引き出し用導線を介して刺激用導線と直接的又は間接的に結合された、神経刺激付与器とを含む。この場合、電気パルスが神経刺激付与器から刺激電極に供給され、刺激パラメータの設定値にしたがって、たくさんの組織を刺激又は活性化し、患者に望まれる有効な治療を施す。典型的な刺激パラメータ設定値は、与えられた時間で刺激電流のソース(陽極)又はリターン(陰極)となる電極、並びに振幅、持続時間、及び刺激パルスのパルス率を含むことができる。現在の神経刺激システムにより出される電気パルスの形状は、正方形であることが理想的であるが、非線形電気特性を有する受動回路部品と生体組織の両方により成形されたものとなることが多い。神経刺激システムは、神経刺激付与器に遠隔的に指令して、選択された刺激パラメータにしたがって電気刺激パルスを発生する手持ち式患者プログラマーを更に含むことができる。遠隔操作(RC)形態の手持ち式プログラマーは、これ自体、例えば臨床医のプログラマー(CP)を使用して、臨床医によりプログラムすることができ、この臨床医のプログラマー(CP)は、典型的には、プログラム用ソフトウエアパッケージがインストールされた、ラップトップなどの汎用コンピューターとすることができる。
【0004】
典型的には、問題となる神経刺激用途に対する治療効果は、刺激パラメータを調整することにより最適化することができる。これらの治療効果は、刺激される多くの組織を刺激する神経線維の直径に相関することが多い。例えば、SCSにおいては、直径の大きい感覚線維を活性化(すなわち、回復)すると、脊髄の後角における介在神経の相互作用を介して直径の小さい痛む線維の伝送が行われるのを減少させ/妨げると考えられる。大きい感覚線維が活性すると、患者が感じる痛みの信号に代わる代替的感覚として特徴付けることができる感覚を形成するようになり、この感覚は、感覚異常として知られている。したがって、直径の大きい神経線維が、SCSの主な目的であると考えられてきた。しかしながら、直径の大きい神経線維を過度に刺激することは、望まれない領域に、他の不快で、強い感覚を引き起こし、副作用を発生することもあるので、SCSの場合は治療範囲が限定される。したがって、大きさに基づく神経線維回復の制御は、SCSの治療効果を最大にするために非常に重要である。一時的同期(単一パルスで同時に神経線維を回復する)だけでなく、非同期(単一パルスで異なる時間に神経線維を回復する)で異なる大きさの神経線維を回復させる指令の制御は、SCSの治療効果を最大にすることができると考えられる。
【0005】
このように、制御可能な方法で異なる直径の繊維を選択して活性化する神経刺激システムは、SCSなどの神経刺激付与の望ましい治療効果を「調和させる」ために有効なものである。制御された方法で異なる大きさの神経線維を回復する能力に関係なく、刺激の治療効果を更に最大に活用するように調整することができる、更なる刺激パラメータを付与することが有効である。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第6,895,280号公報
【特許文献2】米国特許第6,516,227号公報
【特許文献3】米国特許第6,993,384号公報
【特許文献4】米国特許第7,317,948号公報
【特許文献5】米国特許出願公開番号2007/0038250
【特許文献6】米国特許公開番号2003/0139781
【特許文献7】米国特許公開番号2005−0267546
【特許文献8】米国特許第6,393,325号公報
【特許文献9】米国特許第6,909,917号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の第一態様によると、患者に治療を施す方法が提供される。該方法は、1又はそれ以上の電極を患者の組織(例えば脊髄組織)の近くに設置し、定められた波形にしたがって、電極から組織に電気刺激エネルギーを供給し、形成された波形のパルス形状を修正し、これにより電極から組織に供給される電気刺激エネルギーの特性を変化させることを含む。
【課題を解決するための手段】
【0008】
一方法においては、パルス形状は、複数の異なるパルス形状の形式(例えば、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、又はこれらの組み合わせ)の1つを選択することにより修正される。異なるパルスの形式は、例えば、減少勾配指数曲線型パルス又は減少勾配直線傾斜型パルスなどの減少勾配パルス、及び増加勾配指数曲線型パルス又は増加勾配直線傾斜型パルスなどの増加勾配パルスを含むことができる。別の方法においては、パルス形状は、パルス形状の時定数を調整することにより修正される。
【0009】
定められた波形のパルス形状及び他のパルスパラメータ(例えば、パルス振幅、パルス持続時間、及びパルス率)は、互いに独立に、又は互いに依存した形で修正することができる。後者の場合には、パルス形状の修正に対応して他のパルスパラメータの少なくとも1つを修正して、電気刺激エネルギーの実質的に均一な電荷を維持する、という効果を得ることができる。任意の方法では、組織の1又はそれ以上の電気特性(例えば、インピーダンス)を測定することが含まれ、この場合、パルス形状は、測定された電気特性に基づいて修正される。一実施例として、パルス形状は、測定された電気特性の変化に対応して修正することができる。
【0010】
本発明の第二の態様によると、神経刺激システムが提供される。神経刺激システムは、1又はそれ以上の刺激用導線と結合するように構成された1又はそれ以上の電気端子、定められた波形にしたがって電気端子に電気刺激エネルギーを出力することが可能な出力刺激回路、及び定められた波形のパルス形状を修正して、これにより電気端子に出力される電気刺激エネルギーの特性を変化させるように構成された制御回路を含む。一実施形態においては、この制御回路は、複数の異なるパルス形状の形式の1つ、例えば、上記した異なる形式のパルス形状のいずれかを選択することにより、パルス形状を修正するように構成される。別の実施形態においては、制御回路は、パルス形状の時定数を調整することにより、パルス形状を修正するように構成される。
【0011】
制御回路は、定められた波形のパルス形状及び他のパルスパラメータを、互いに独立に、又は互いに依存した形で修正するように構成することができる。後者の場合には、制御回路は、パルス形状の修正に対応して、他のパラメータの少なくとも1つを修正して、電気刺激エネルギーの実質的に均一な電荷を維持するように構成することができる。任意の実施形態においては、神経刺激システムは、組織の1又はそれ以上の電気特性(例えば、インピーダンス)を測定するように形成されるモニター回路を更に含み、該制御回路は、測定された電気特性に基づいてパルス形状を修正するように構成される。例えば、制御回路は、測定された1又はそれ以上の電気特性における変化に対応して、パルス形状を修正するように構成することができる。
【0012】
定められた波形のパルス形状は、種々異なる手法のいずれか1つ又はそれ以上で修正することができる。例えば、出力刺激回路は、複数の異なるアナログ成形回路から構成することができ、この場合には、制御回路は、異なるアナログ成形回路の1つを選択することによりパルス形状を修正するように構成することができる。制御回路は又、出力刺激回路において少なくとも1つのアナログ電気部品の特性を調整することにより、パルス形状を修正するように構成することもできる。一実施形態においては、パルス状波形は、振幅レベルの階段状機能又はサブパルス持続時間により形成され、この場合には、制御回路は、振幅レベル又はサブパルス持続時間を調整することによりパルス形状を修正するように構成することができる。
【0013】
一実施形態においては、神経刺激システムは、電気端子に電気的に結合される少なくとも1つの電極をもった刺激用導線を更に含む。別の実施形態においては、神経刺激システムは、パルス形状を定めるパラメータを記憶することが可能なメモリーを更に含む。更に別の実施形態においては、神経刺激システムは、パルス形状を修正するために、外部プログラマーからの指令を無線で受信することが可能な遠隔測定回路を含む。更に別の実施形態においては、神経刺激システムは、電気端子、出力刺激回路、及び制御回路を収容して神経刺激付与器(例えば、埋め込み型神経刺激付与器)を形成するケースを含む。
【0014】
本発明の第三の態様によると、神経刺激付与器のプログラマーが提供される。プログラマーは、使用者からの入力を受信することが可能な使用者インターフェース、使用者の入力に対応して複数の異なるパルス形状を定める複数の刺激パラメータ設定値を発生するように構成されたプロセッサー、及び複数の刺激パラメータ設定値を神経刺激付与器に伝送するように構成された出力回路を含む。一実施形態においては、複数の異なるパルス形状は、複数の異なる形式のパルス形状、例えば、上記した異なる形式のパルス形状のいずれかを含む。別の実施形態においては、複数の異なるパルス形状は、異なる時定数を有するが、同じ形式(例えば、指数曲線型減衰パルス振幅)である複数のパルス形状を含む。
【0015】
プロセッサーは、各々の刺激パラメータ設定値において、互いに独立して、又は互いに依存した形で、パルス形状及び他のパルスパラメータを定めるように構成することができる。後者の場合には、プロセッサーは、パルス形状の設定に対応して他のパルスパラメータの少なくとも1つを定めるように構成され、それぞれの刺激パラメータ設定値間で、実質的に均一な電荷を維持することができる。一実施形態においては、複数の異なるパルス形状は、例えば測定された電気特性の変化に対応してパルス形状を定めることにより、組織の1又はそれ以上の測定された電気特性(例えば、インピーダンス)に基づいて定められる。別の実施形態においては、プログラマーは、作動装置を含む使用者インターフェースを含むことができ、この場合には、該プロセッサーは、作動装置の作動に対応して、複数の刺激パラメータ設定値(例えば、異なるパルス形状)を発生するように構成することができる。更に別の実施形態においては、出力回路は、複数の刺激パラメータ設定値を神経刺激付与器に無線で伝送することが可能な遠隔測定回路である。
【0016】
本発明の他の及び更なる態様及び特徴は、好ましい実施形態の以下の詳細な説明を読むことにより明らかになるが、これは本発明についての説明を意図したものであり、限定するものではない。
【0017】
図面は、本発明の好ましい実施形態の意図及び有用性を示すもので、類似した要素は、共通の参照番号により表される。本発明の上記及び他の利点及び目的がどのようにして得られたかを更に認識できるようにするために、簡単に上記した本発明について、添付図面に示す特定の実施形態を参照して一層具体的に説明する。これらの図面は、本発明の典型的実施形態のみを示したものであり、その範囲を限定するものとみなされるものではないという理解のもとで、添付図面を使用して、付加的特定事項及び詳細を示し、本発明を説明する。
【図面の簡単な説明】
【0018】
【図1】本発明により配列された脊髄刺激(SCS)システムの一実施形態の平面図である。
【図2】図1のSCSシステムで使用される埋め込み型パルス発生器(IPG)の側面図である。
【図3A】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3B】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3C】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3D】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3E】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3F】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3G】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3H】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3I】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3J】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3K】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図3L】図1のシステムにより発生することができる様々な刺激パルス形状の図である。
【図4A】正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径8.7μmの神経線維の数の棒グラフである。
【図4B】正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径8.7μmの神経線維の数の棒グラフである。
【図4C】正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径8.7μmの神経線維の数の棒グラフである。
【図5A】正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径11.5μmの神経線維の数の棒グラフである。
【図5B】正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径11.5μmの神経線維の数の棒グラフである。
【図5C】正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径11.5μmの神経線維の数の棒グラフである。
【図6】正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスの付与に対応する、直径8.7μmの神経線維の総数対直径11.5μmの神経線維の総数の時間による回復比の図である。
【図7】図1のシステムにより発生することができる刺激パルスの図であり、ここで刺激パルスは、特定的に負に分極された部分と正に分極された部分を有するように示されている。
【図8】図1のシステムにより発生することができる異なるパルス形状タイプのパルス列の図である。
【図9】図1のシステムにより、単一の電極群に対して発生することができる刺激パルスの図である。
【図10】図1のシステムにより、電極に対して独立して発生することができる異なる刺激パルスの図である。
【図11】システムにより、単一の電極群に対して発生することができる刺激パルス及び再電荷パルスの図である。
【図12】図2のIPGの内部部品のブロック図である。
【図13A】階段状振幅レベルを使用して発生する減少勾配指数曲線型パルス及び増加勾配指数曲線型パルスの図である。
【図13B】階段状振幅レベルを使用して発生する減少勾配指数曲線型パルス及び増加勾配指数曲線型パルスの図である。
【図13C】種々異なる持続時間のサブパルスを使用して発生する増加勾配指数曲線型パルスの図である。
【図14】異なるパルス形状を発生するために使用される、図12のIPGで使用される出力刺激回路の一部のブロック図である。
【図15】正方形パルスが増加勾配指数曲線型パルスに変化するのを示した図である。
【図16】組織電極インターフェースで形成することができる例示的等価回路である。
【図17】図2の神経刺激システムにおいて使用することができる手持ち式リモートコントロール(RC)の平面図である。
【図18】パルス形状タイプを選択するために、使用者に手段を提供するための図17のRCにより発生されるディスプレイスクリーンの平面図である。
【図19】図2のIPGにより発生される電流パルス形状を表す、図17のRFにより発生されるディスプレイスクリーンの平面図である。
【図20】図17のRCの内部部品のブロック図である。
【図21】患者に使用する場合の図1のSCSシステムの平面図である。
【発明を実施するための形態】
【0019】
以下に続く説明は、脊髄刺激(SCS)システムに関する。しかしながら、本発明自体は、SCSにおける用途に好適なものであるが、最も広い態様においては、本発明はそれに限定されるものではないことが理解されるべきである。むしろ本発明は、組織を刺激するために使用されるあらゆる型の埋め込み型電気回路に使用することができる。例えば、本発明は、ペースメーカー、除細動器、蝸牛刺激付与器、網膜刺激付与器、調和した四肢運動を行うために形成される刺激付与器、皮質刺激付与器、脳深部刺激付与器、末梢神経刺激付与器、マイクロ刺激付与器、又は尿失禁、睡眠時無呼吸、不全脱臼、頭痛などに対処するように構成される、あらゆる他の神経刺激付与器の部分として使用することができる。
【0020】
最初に図1を参照すると、例示的SCSシステム10は、一般的には1又はそれ以上の(この場合は、2つ)埋め込み型刺激用導線12、埋め込み型パルス発生器(IPG)14、外部遠隔制御器RC16、臨床医プログラマー(CP)18、外部トライアル刺激付与器(ETS)20、及び外部充電器22を含む。
【0021】
IPG14は、1又はそれ以上の経皮引き出し用導線24を介して刺激用導線12に物理的に接続されており、この刺激用導線12は、列状に配列された複数の電極26を有する。図示した実施形態においては、刺激用導線12は経皮導線であり、その端部に、電極26が刺激用導線12に沿って直列に配列される。代替的実施形態においては、電極26は、単一パドル導線上に二次元パターンで配列することができる。更なる詳細を以下に示すように、IPG14は、刺激パラメータの設定値にしたがって、パルス状電気波形(すなわち、電気パルスの一時的系列)の形態で電気刺激エネルギーを電極列26に供給するパルス発生回路を含む。
【0022】
ETS20は、経皮引き出し用導線28及び外部ケーブル30を介して、刺激用導線12に物理的に接続することができる。IPG14と類似したパルス発生回路を有するETS20は、刺激パラメータの設定値にしたがって、パルス状電気波形の形態で電気刺激エネルギーを電極列26に供給する。ETS20とIPG14との主な違いは、ETS20は、トライアルを基準に使用される非埋め込み型装置であり、刺激用導線12が埋め込まれた後、IPG14の埋め込みの前に、付与される刺激の反応をテストする。例示的ETSの更なる詳細は、米国特許第6,895,280号に記載されている。
【0023】
RC16は、二方向RF通信リンク32を介して、ETS20を遠隔測定により制御するように使用することができる。IPG14及び刺激用導線12が埋め込まれると、RC16は、二方向RF通信リンク34を介して、IPG14を遠隔測定により制御するように使用することができる。このような制御は、IPGのスイッチをオン・オフし、更に異なる刺激パラメータ設定値でプログラムさせることができる。IPG14は、プログラムされた刺激パラメータを修正するように作動させて、該IPG14による電気刺激エネルギー出力の特性を能動的に制御することができる。CP18は、作業部屋及び後続のセッションにおいて、IPG14及びETS20をプログラムするために詳細な刺激パラメータを臨床医に提供する。CP18は、IR通信リンク36を介して、RC16を通じてIPG14又はETS20と間接的に通信することにより、この機能を実行することができる。代替的には、CP18は、RF通信リンク(図示されず)を介して、IPG14又はETS20と直接通信することができる。外部充電器22は、誘導リンク38を介して、IPG14を経皮により充電するために使用される運搬可能な装置である。簡潔にするために、外部充電器22の詳細は、ここには示されない。外部充電器の例示的実施形態の詳細は、米国特許第6,895,280号に記載されている。IPG14がプログラムされ、その電源が外部充電器22から充電されるか、或いは補充されると、IPG14は、存在するRC16又はCP18なしでプログラムされるように機能することができる。
【0024】
図2を参照すると、刺激用導線12及びIPG14の外部特性が簡潔に示されている。刺激用導線12の1つは8個の電極26(E1−E8とラベルを付されている)を有し、他方の刺激用導線12は8個の電極26(E9−E16とラベルを付されている)を有する。導線及び電極の実際の数及び形状は、もちろん意図される用途によって変えることができる。IPG14は、電子機器及び他の部品(以下に更なる詳細を示している)を収容する外側ケース40、及びコネクタ42を含み、該コネクタ42には、刺激用導線12の末端部が嵌合して、外側ケース40内で電極26を電子機器に電気的に結合する。外側ケース40は、チタニウムなどの導電性で、生物学的適合性を有する材料から成り、気密状態で密封された室を形成して、内部電子機器を身体組織及び流体から保護する。幾つかの場合においては、外側ケース40は、電極として機能することができる。
【0025】
以下に更に詳細に説明するように、IPG14は、刺激パラメータ設定値に応じて、パルス状電気波形の形態で、電気刺激エネルギーを電極列26に供給するパルス発生回路を含む。このような刺激パラメータは、作動時に陽極(正)、陰極(負)となり、オフ切換え(ゼロ)することができる電極を定める電極組み合わせを備えることができ、この電極組み合わせは、更に、電気パルスパラメータを定めるものとすることができ、この電気パルスパラメータは、パルス振幅(IPG14が、電極列26に一定の電流或いは一定の電圧のいずれを供給するかに応じて、ミリアンプ又はボルトで測定される)、パルス持続時間(マイクロ秒で測定される)、及びパルス率(毎秒当たりのパルスで測定される)、並びに、以下に更に詳細に説明するパルス形状を定めることができる。
【0026】
電気刺激は、2(又はそれ以上)の作動状態の電極の間で起こるものであり、それら電極の1つは、IPGケースとすることができる。刺激エネルギーは、単一極性又は多極性(例えば、ニ極性、三極性など)の形態で組織に伝送することができる。単一極性刺激は、導線電極26の選択された1つが、IPG14のケースと共に作動される時に起こり、刺激エネルギーは、選択された電極26とケースとの間を伝送される。二極性刺激は、2つの導線電極26が、陽極及び陰極として作動する時に起こり、刺激エネルギーは、選択された電極26の間を伝送される。例えば、第一導線12の電極E3が陽極として作動し、同時に第二導線12の電極E11が陰極として作動する。三極性刺激は、3つの導線電極26が作動し、そのうちの2つが陽極、残りの1つが陰極として、又は2つが陰極、残りの1つが陽極として作動する時に起きる。例えば、第一導線12の電極E4及びE5が陽極として作動し、同時に第二導線12の電極E12が陰極として作動する場合である。
【0027】
本発明にとって重要なことは、刺激パラメータ、特に電気パルスパラメータが、パルス形状(パルス振幅及びパルス幅又は持続時間を含むパルス大きさとは異なり)を更に含むことである。パルス形状は、パルス形状の形式により定めることができる。図3A−3Iは、IPG14により発生させることができる異なる例示的パルス形状の形式を示している。例えば、パルス状波形は、正方形パルス(図3A)、減少勾配指数曲線型パルス(図3B)、増加勾配指数曲線型パルス(図3C)、減少勾配対数曲線型パルス(図3D)、増加勾配対数曲線型パルス(図3E)、減少勾配傾斜型パルス(図3F)、増加勾配傾斜型パルス(図3G)、台形波形(図3H)、正弦曲線波形(図3I)、又は例えば、増加勾配指数曲線型/正方形パルス(図3J)のような前述したもののいずれかの組み合わせとすることができる。パルス形状は、同じ形式のパルス形状の中の勾配特性により定めることができる。図3K及び3Lは、同じ形式のパルス形状に対して異なる勾配変化、特に減少勾配指数曲線型パルスに対する異なる時定数t1−t3(図3K)、及び増加勾配指数曲線型パルスに対する異なる時定数t1−t3(図3L)を示している。このように、パルスの形状は、パルス形式を修正するか又はパルスの勾配特性を修正することにより変化させることができる。(これは単に、パルスの振幅又は持続時間を変化させることによるものではない。)
【0028】
パルス形状と組織に対する臨床効果との間の関係はよく知られていないが、異なるパルス形状が、異なる大きさの神経線維に対し異なる神経回復指令を生じ、神経線維の作動の潜在的開始(すなわち回復)に対して異なる一時的同期を生じさせ、これにより電気刺激エネルギーの治療効果を制御するようになることが発見された。例えば、従来の神経線維の典型的技術を使用することにより、付与された電気パルスの形状に応じて、直径が8.7μmの神経線維と直径が11.5μmの神経線維とでは、一次的回復反応が異なることが発見された。
【0029】
特に、図4A−4Cのそれぞれは、正方形パルス(図4A)、減少勾配指数曲線型パルス(図4B)、及び増加勾配指数曲線型パルス(図4C)に対応する、時間と共に回復する直径8.7μmの神経線維の棒状グラフであり、図5A−5Cのそれぞれは、同じ正方形パルス(図5A)、減少勾配指数曲線型パルス(図5B)、及び増加勾配指数曲線型パルス(図5C)に対応する、時間と共に回復する直径11.5μmの神経線維の棒状グラフを示している。
【0030】
図4A及び図5Aから推測すると、正方形パルスの場合には、比較的多くの数の大きい神経線維がパルスの初期に回復するが、その数は時間と共に次第に減少し、実質的に均一の数の小さい神経線維がパルスの持続時間にわたって回復する。図4B及び図5Bから推測すると、減少勾配指数曲線型パルスの場合には、比較的多くの数の大きい神経線維と小さい神経線維の両方がパルスの初期に回復するが、その数は時間と共に次第に減少する。図4C及び図5Cから推測すると、増加勾配指数曲線型パルスは、比較的小さい数の大きい神経線維と小さい神経線維の両方がパルスの初期に回復するが、その数は時間と共に次第に増加する。
【0031】
図6は、正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスの付与に対応して、時間と共に、直径8.7μmの神経線維総数対直径11.5μmの神経線維総数の回復比を示している。図6におけるデータの直線的適合に基づけば、この回復比は、正方形パルスに対しては時間と共に比較的均一であり、減少勾配指数曲線型パルスに対しては時間と共に回復比は増加し、増加勾配指数曲線型パルスに対しては時間と共に回復比は減少する。このように、大きい神経線維及び小さい神経線維の時間による指令回復は、パルス形状によるものであり、これによってパルス振幅、パルス率、及びパルス持続時間の修正に加えて、IPG14による刺激エネルギー出力を最大に活用する別の手段を提供することが、これらのことから明らかである。
【0032】
上記したパルス形状の形式は、単一極性(この場合は、正)を有するものとして説明されているが、パルス形状の形式は、一極性より多い極性を有するものとすることができることに留意するべきである。例えば、図7は、負に分極された部分n、その後、正に分極された部分pを有するパルス、具体的には増加勾配対数曲線型パルスを示している。一極性から次の極性に遷移するパルスは、線維形式の識別を改善できると考えられる。更に、上記した一連のパルス(すなわち、パルス列)は、均一なパルス形式を有するものとして説明されているが、単一パルス列は種々異なるパルス形式を有するものとすることができる。例えば、図8は、正方形パルス、その後に増加勾配傾斜型パルス、その後に減少勾配傾斜型パルスを有するパルス列を示している。SCSにおいては、単一電極組み合わせを有する多パルス形式の列を使用すると、異なる神経集団を興奮させることにより、感覚異常の範囲が広がる可能性があると考えられる。
【0033】
単一のパルス形式は、電極の群によって発生することができることが認識されるべきである。例えば、図9に示されているように、電極E1及びE2を陽極とし、電極E3を陰極として有する電極組み合わせE1−E3の場合は、単一増加勾配陽極傾斜型パルスを電極E1及びE2上に群として発生させることができる。電極E1−E3を通って流れる電流の総計は、ゼロ(保存電流に基づいて)でなければならないので、大きい減少勾配陰極傾斜型パルス(電極E1とE2で発生する電流と等しい量)が電極E3に発生する。異なる形式のパルス形状は、単一群に構成された電極に対して、独立に発生させることができることも認識するべきである。例えば、図10に示されるように、増加勾配陽極傾斜型パルスが電極E1に発生し、同時に減少勾配陽極傾斜型パルスが電極E2に発生するようにすることができる。電極E1−E3の電極全体を通って流れる電流の総計はゼロでなければならないので、陰極正方形パルスが電極E3に発生する。
【0034】
パルス形状は、刺激パルス(すなわち、実際の刺激を実行するパルス)として使用されるときに修正することができるが、パルス形状は又、再荷電パルス(すなわち、組織を通して直流電荷が移動することを防止して電極の劣化及び細胞損傷を避けるために刺激パルスの後に行われる荷電)として使用される時にも修正することができる。すなわち、電荷は、刺激期間中に電極において電流により電極・組織間インターフェースを通して伝えられ、再荷電期間中に同じ電極において反対に分極された電流により電極・組織間インターフェースを引き戻される。例えば、図9に示されているように、刺激期間中に電極E1−E3に電流が供給されると、図11に示されているように、電極E1−E3に再荷電パルスが発生することになる。再荷電パルスの形状は、刺激パルスと同じ方法で修正することができる。SCSの内容においては、再荷電パルスの形状の修正は、刺激パルスの形状修正が生成するのと同じ形で、感覚異常の差を生成すると考えられる。
【0035】
ここで、図12を参照して、IPG14の1つの例示的実施形態を説明する。IPG14は、特定のパルス振幅、パルス率、パルス幅、及びデータバス54の制御ロジック52によって制御されるパルス形状を有する定められたパルス状波形にしたがって、電気刺激エネルギーを発生するように形成された刺激出力回路50を含む。電気波形のパルス率及びパルス幅の制御は、適当な解像度、例えば10μsを有するものとすることができるタイマーロジック回路56により促進される。刺激出力回路50により発生する刺激エネルギーは、蓄電器C1−C16を介して電極E1−E16に対応する電気端子58に与えられる出力である。
【0036】
図示した実施形態においては、刺激出力回路50は、特定の周知の電流量で、刺激エネルギーを電気端子58に供給することが可能な複数の独立したm対の電源60を含む。各々の対60の1つの電源62は正(+)すなわち陽極電源として機能し、各々の対60の他方の電源64は、負(−)すなわち陰極電源として機能する。各々の対60の陽極電源62及び陰極電源64の出力は、共通のノード66に結合される。この刺激出力回路50は、低インピーダンス切り替え用マトリックス68を含み、これを通して各々の電源対60の共通ノード66が、蓄電器C1−C16を介していずれかの電気端子58に結合される。
【0037】
したがって、例えば、+4mAのピーク振幅(特定の率、及び特定の持続期間で)を有するパルスを形成するように第一陽極電源62(+I1)をプログラムし、−4mAのピーク振幅(同じ率及びパルス幅)を有するパルスを同様に形成するように第二陰極電源64(−I2)を同期的にプログラムし、次に陽極電源62(+I1)のノード86を電極E3に対応する電気端子58に結合し、更に陰極電源64(−I2)のノード66を電極E1に対応する電気端子58に結合することが可能である。
【0038】
プログラム可能な電気端子58の各々は、正極(ソース電流)、負極(シンク電流)を有するか、又は極なし(電流がない)とするようにプログラムすることができることがわかる。更に、所定の電気端子58からのソース又はシンクとなる電流パルスの振幅は、区分された幾つかのレベルの1つにプログラムすることができる。一実施形態においては、各々の電気端子58を流れる電流は、IPG14の必要とされる出力電圧/電流の範囲内で、0から±10mAまで100μAごとの段階で個々に設定することができる。更に、一実施形態においては、一群の電気端子58による総電流出力は、±20mAまで(群に含まれる電極間に供給される)とすることができる。更に、電気端子58の各々は、多極性モードで作動することができ、例えば2つ又はそれ以上の電気端子が、同時に電流をソース/シンクするために群となることがわかる。代替的には、電気端子58の各々は、単一極性モードで作動することができ、この場合には、例えば電気端子58は陰極(負)として形成され、IPG14のケースは陽極(正)として形成される。
【0039】
電気端子58は、振幅を割り当てることができ、チャンネルの数に対応する整数であるk個までのいずれかの数の群に分けることができ、ここでkは、一実施形態においては4であり、各々のチャンネルkは、定められたパルス振幅、パルス幅、パルス率、及びパルス形状を有するものとすることができる。他のチャンネルも、同様の方法で実施することができる。このようにして、各々のチャンネルは、どの電気端子58(及びその電極)が電流ソース又は電流シンクとなるように同期的に選択されるかを特定し、これらの電気端子の各々におけるパルス振幅、パルス幅、パルス率、及びパルス形状を特定する。
【0040】
代替的実施形態においては、制御された独立の電源を使用するのではなく、独立に制御される電圧源を設けて電気端子58において特定の及び周知の電圧の刺激パルスを与えるようにすることができる。前述した振幅及び幅の刺激パルスを発生するのと同じ機能を実行するための適当な出力回路の代替的実施形態を含む、この出力刺激回路の作動は、米国特許第6,516,227号及び第6,993,384号により詳細に示されている。
【0041】
以上により、出力刺激回路50による刺激パルス出力の各々の形状は、振幅レベルの階段状機能で形成することができることが、認識できる。例えば、図13Aに示されているように、減少勾配指数曲線型パルスは、一連の次第に減少する振幅レベルで形成することができ、図13Bに示されているように、増加勾配指数曲線型パルスは、一連の次第に増加する振幅レベルで形成することができる。10μsの解像度でパルス幅が100μsの場合には、図13A及び図13Bに示すパルス状波形の各々は、10個の別個の振幅段階で形成することができる。更に、図13Cで示されているように、パルス全体は、種々異なる振幅のサブパルス及びサブパルス持続時間で形成することができる。これは、使用するサブパルスが僅かであっても、幾つかの波形に良好な近似を与えることができる。
【0042】
代替的には、出力刺激回路50は、振幅レベルの階段状機能を使用してパルス状波形を形成するのではなく、1又はそれ以上のアナログ回路により、各々の電源62からの刺激パルス出力を成形するように形成することができる。例えば、図14に示されているように、出力刺激回路50は、スイッチ71を介して各々の電源62の出力に結合された複数の異なるアナログ成形回路69(1)−69(3)を含み、正方形出力をそれぞれの電源62から選択された異なる形式のパルス形状の1つに成形するように構成することができる。例えば、成形回路69(1)は、修正なしに正方形パルスを通過させ、成形回路69(2)が、正方形パルスを減少勾配指数曲線型パルスに変換し、更に成形回路69(3)が、正方形パルスを増加勾配指数曲線型パルスに変換するようにすることができる。成形回路69(2)及び69(3)の各々は、電気特性(例えば、電気容量又はインダクタンス)を有する少なくとも1つのアナログ電気部品73を含むものとすることができ、例えばパルス形状の時定数を修正することにより、パルス形状タイプを修正するように調整することができる。
【0043】
IPG14全体、例えば供給電圧、温度、バッテリー電圧、及び同様のものの全体にわたって様々なノード又は他の点72の状態をモニターするために、IPG14は、モニター回路70を更に含む。モニター回路70は、電気パラメータデータ(例えば、電極インピーダンス及び/又は電極の場電位)を測定するように形成される。埋め込み型電気刺激システムは、周知のエネルギーの電気刺激パルスを、目標とする興奮させる組織に伝達することを可能とする装置の安定性に依存するので、電極インピーダンスの測定は重要である。目標とする組織は、周知の電気負荷を表し、そこに刺激パルスと組み合わされた電気エネルギーが供給される。インピーダンスがあまりに大き過ぎる場合には、電極26に結合されるコネクタ42及び/又は導線12(図2に示されている)が、開路となっているか又は破壊されることになる。インピーダンスがあまりに小さ過ぎる場合には、コネクタ42及び/又は導線12の中のどこかが短絡している可能性がある。いずれの場合においても(インピーダンスが大き過ぎるか又は小さ過ぎる)、IPG14は、その意図する機能を実行することができない。
【0044】
電気パラメータデータの測定は、以下に詳細に述べるように、出力回路50によるパルス形状出力の制御を理想的に助長する。電気パラメータデータは、種々異なる手段のいずれかを使用して測定することができる。例えば、電気パラメータデータの測定は、米国特許第7,317,948号に示されているように、電気刺激パルスが組織に付与されている間の一時点で、又は刺激のすぐ後に、サンプル基準で行うことができる。代替的には、電気パラメータデータの測定は、米国特許第6,516,227号及び第6,993,384号に示されているように、電気刺激パルスとは独立して行うことができる。
【0045】
IPG14は、マイクロコントローラー(μC)74の形態の処理回路を更に含み、データバス76の制御ロジック52を制御し、データバス78を介してモニター回路70から状態データを得る。IPG14は、更にタイマーロジック56を制御する。IPG14は、マイクロコントローラー74に結合されたメモリー80及び発振器及びクロック回路82を更に含む。すなわち、メモリー80及び発振器及びクロック回路82と組み合わせたマイクロコントローラー74は、メモリー80に記憶された適当なプログラムにしたがって、プログラム機能を実行するマイクロプロセッサーシステムを含む。代替的には、幾つかの用途に対して、マイクロプロセッサーシステムにより与えられた機能は、適当な状態の機械により実行することができる。
【0046】
マイクロコントローラー74は、必要な制御信号及び状態信号を発生し、メモリー80に記憶された作動プログラム及び刺激パラメータにしたがって、マイクロコントローラー74にIPG14の作動を制御させる。IPG14の作動を制御する時に、マイクロコントローラー74は、制御ロジック52及びタイマーロジック56と組み合わせて、刺激出力回路50を使用して電極26において刺激パルスを個々に発生することができ、これにより、各々の電極26が、単一極性ケース電極を含む他の電極26と対になるか又は群になることができ、極性、パルス振幅、パルス率、パルス幅、パルス形状、及び電流刺激パルスが付与されるチャンネルを制御し、修正することができる。
【0047】
刺激パルスの形状が、振幅レベルの階段状機能を使用して定められる場合には、マイクロコントローラー74は、刺激パルスを成形するために、制御ロジック52及びタイマーロジック56と組み合わせて刺激出力回路50を使用し、電極26で振幅段階(例えば、固定した10μs段階か又は種々異なるサブパルス持続時間を有する段階のいずれか)を発生する。刺激パルスの形状が、アナログ成形回路69を使用して定められる場合には、マイクロコントローラー74は、制御ロジック52を使用して、スイッチ71を介して望ましいパルス形状タイプに対応する成形回路69を選択し、成形回路69がアナログ電気回路73を含む場合には、その電気特性を適合させる。
【0048】
図示した実施形態においては、マイクロコントローラー74は、パルス形状及び他のパルスパラメータ(すなわち、パルス振幅、パルス幅、及びパルス率)を、互いに独立に修正する。特に有益な実施形態においては、マイクロコントローラー74は、パルス形状及び他のパルスパラメータを、互いに依存する形で修正する、すなわち、マイクロコントローラー74は、パルス形状の修正に対応して他のパルスパラメータを修正するか、又は他のパルスパラメータの修正に対応して、パルス形状を修正することができる。例えば、マイクロコントローラー74は、電気刺激エネルギーの実質的に均一な電荷を維持するために、パルス形状の修正に対応して他のパルスパラメータを修正することができる。この修正は、パルス状態の領域(例えば、パルスを定めるために式を積分することにより)が、パルス形状が変化した場合でも一定に保てる(例えば、パルス振幅又はパルス幅を変化させて)ことを確実にすることにより達成することができる。
【0049】
例えば、図15に示すように、パルス形状が正方形パルス形状から増加勾配指数曲線型パルス形状に変化すると、パルス状態の領域、及び刺激エネルギーの印加は、パルスパラメータのいずれかを修正することなく減少させることができる。しかしながら、パルスの振幅及び/又は持続時間が増加すると、パルス状態の領域、及び刺激エネルギーの印加は維持することができる。図示された実施形態においては、以下に詳細に示されているように、パルス形状の変化に対応して、パルスの振幅及び/又は持続時間を計算するのはRC16であるが、このような計算は、代替的にはマイクロコントローラー74により実施することができる。
【0050】
理想的な実施形態においては、マイクロコントローラー74は、モニター回路70により測定される組織の電気特性に基づいてパルス形状を修正するように形成される。すなわち、電気刺激エネルギーを電極26間に伝達する組織の電気特性は、意図するパルス形状から出力刺激回路50により発生される刺激パルス、特にパルスの形状の特性を変えることができる(特に電圧源を利用する出力刺激回路で)ので、実際のパルス形状を意図する形状と適合させるか、又は望まれる臨床効果を達成するために、組織の電気特性を考慮して、パルス形状を変化させることが望ましい。
【0051】
例えば、マイクロコントローラー74は、図16に示されているように、モニター回路70により計測された組織インピーダンスに基づいて、電極Ea、Ebと組織との間のインターフェース(すなわち、電極・組織間インターフェース)で、等価抵抗及び電気容量回路を形成することができる。この等価回路における抵抗値Rと電気容量値C1、C2を知ることにより、マイクロコントローラー74は、望ましいパルス形状を出力するか、或いは望ましい臨床効果を達成するために、等価回路に入力すべきパルス形状を計算することができる。一実施形態においては、マイクロコントローラー74は、組織の電気特性、特にモニター回路70により測定される組織インピーダンスの変化(例えば、繊維症の増加、患者の動き、導線の移動などによる)に対応して、このパルス形状調整を自動的に実行する。別の実施形態においては、マイクロコントローラー74は、ある時間、例えば、刺激パラメータでIPG14のプログラムをしている間に、このパルス形状調整を実行するだけである。この場合、RC16は、測定された組織インピーダンスに基づいた等価抵抗及び電気容量回路を代替的に形成し、この等価回路に基づいてパルス形状を計算することができる。
【0052】
IPG14は、適切に変調されたキャリア信号に含まれるRC16からのプログラム用データ(例えば、作動プログラム及び/又は刺激パラメータ)を受信するための交流(AC)受信コイル84、及びプログラム用データを回復するためにAC受信コイル84を通して受信されるキャリア信号を復調するための充電及び前部遠隔測定回路86を含み、該プログラム用データは、メモリー80又はIPG14を通して伝達される他のメモリー要素(図示されず)内に記憶される。
【0053】
IPG14は、モニター回路70を通して読み取られた情報データを、RC16に送るための後部遠隔測定回路88及び交流AC伝送コイル90を更に含む。IPG14の後部遠隔測定の特徴は、自身の状態を点検させることができることである。例えば、刺激パラメータに及ぼされる如何なる変化も後部遠隔測定を通して確認され、これにより、これらの変化がIPG14内に正確に受信され、実現されることを確実にする。更に、RC16によって問い合わせを行うことにより、IPG14内に記憶されたすべてのプログラム可能な設定値を、RC16にアップロードすることができる。
【0054】
IPG14は、作動電力をIPG14に供給するための再充電可能な電力源92及び電源回路94を更に含む。再充電可能な電力源92は、例えば、リチウム・イオン電池又はリチウム・イオンポリマー電池を含むことができる。再充電可能な電池92は、未調整電圧を電源回路94に供給する。次に電源回路94は様々な電圧96を発生し、IPG14内に配置される様々な回路が必要とするように、その幾つかは調整され、幾つかは調整されない。再充電可能な電力源92は、AC受信コイル84により受信される整流されたAC電力(すなわち、例えば「インバータ回路」として知られている効率的なACからDCへの変換回路などの他の手段を通して、AC電力から変換されたDC電力)を使用して再充電される。電力源92を再充電するために、AC磁場を発生する外部充電器(図示されず)が、埋め込まれたIPG14の上に位置する患者の皮膚に接触して、又は皮膚の近傍に設置される。外部充電器により供給されるAC磁場は、AC受信コイル84のAC電流を減少する。充電及び前部遠隔測定回路86は、DC電流を形成するためにAC電流を整流し、電力源92を充電するために使用される。AC受信コイル84は、無線で通信(例えば、プログラム用データ及び制御データ)を受信し、外部装置からエネルギーを充電するために使用されるものとして示されているが、AC受信コイル84は充電専用コイルとして配列することができ、コイル90などの別のコイルを、二方向遠隔測定のために使用することができることを認識すべきである。
【0055】
図12に示すように、IPG14内に含まれる多くの回路は、単一の用途特定の集積回路(ASIC)98として実施することができる。これは、IPG14全体の大きさをかなり小さくすることができ、適当に密閉されてシールされたケース内に収容することができる。代替的には、IPG14内に含まれる回路のほとんどは、米国特許出願公開番号2007−0038250に示されているように、多数のデジタル及びアナログダイに設置することができる。例えば、用途特定の集積回路(ASIC)のようなプロセッサーチップは、内蔵されたソフトウエアで処理機能を実行するように形成することができる。アナログIC(AIC)は、電力調整、刺激出力、インピーダンス測定の付与及びモニターを含む、IPG14の機能に対して必要な幾つかの作動を実行するように形成することができる。デジタルIC(DiglC)は、プロセッサーICにより促されて、アナログICの刺激回路による電流出力の刺激レベル及び順序を制御し、変化させて、プロセッサーICとアナログICとの間の一次インターフェースとして機能するように形成することができる。
【0056】
図12の略図は、機能てきなものであって、限定することを意図するものではないことに留意するべきである。ここでの説明を受けた当業者は、図示し、説明した機能を実行するために、多くの種類のIPG回路又は等価回路を容易に構成することができる。上記したもの及び他のIPGに関する追加の詳細は、米国特許第6,516,227号、米国特許公開番号2003/0139781、及び2005−0267546に示されている。IPGだけでなくSCSシステム10は、代替的に、刺激用導線12と結合した埋め込み型レシーバー・刺激付与器(図示されず)を利用することができる。この場合には、レシーバー・刺激付与器に命令するように埋め込まれたレシーバー並びに制御回路を作動させるために、電池などの電源が、電磁的リンクを介してレシーバー・刺激付与器に誘導結合した外部コントローラーに収容される。データ/電力信号は、埋め込まれたレシーバー・刺激付与器の上に設置されるケーブルで結合された伝送コイルから経皮状態で取り付けられる。埋め込まれたレシーバー・刺激付与器は信号を受信して、制御信号にしたがって刺激を発生する。
【0057】
簡潔に述べてきたように、刺激パラメータは、RC16及び/又はCP18により、IPG14に、或いはIPG14内に修正されてプログラムし、これによって、IPG14により電極26に発生し、出力された電気刺激エネルギーの特性を設定又は変化させることができ。図示した実施形態においては、これは、IPG14及び/又はCP18からIPG14への刺激パラメータを含む遠隔測定による伝送指令により達成される。代替的には、刺激パラメータなしの指令は、IPG14に記憶された刺激パラメータを変化させるために、RC16及び/又はCP18からIPG14に伝送することができる。
【0058】
図17を参照すると、RC16の1つの例示的実施形態が示されている。前述したように、RC16は、IPG14、CP18又はETS20と通信することが可能である。RC16は、内部部品(印刷回路板(PCB)を含む)を収容するケース100、及び該ケース100の外側に支持される照明付きディスプレイスクリーン102及びボタンパッド104を含む。図示した実施形態においては、ディスプレイスクリーン102は、照明付きの平坦なパネルのディスプレイスクリーンであり、ボタンパッド104は、可撓性回路の上に配置される金属でドーム状に覆われた薄膜スイッチ、及びPCBに直接結合されるキーパッドコネクタを含む。任意の実施形態においては、ディスプレイスクリーン102は、タッチスクリーンの性能を有する。ボタンパッド104は、多数のボタン106、108、110及び112を含み、IPG14をON及びOFFにすることができ、IPG14内の刺激パラメータの調整又は設定値を付与し、更にスクリーン間の選択を付与することができる。
【0059】
図示した実施形態においては、ボタン106は、ON/OFFボタンとして機能し、IPG14をON及びOFFに作動することができる。ボタン108は、RC16にスクリーンディスプレイ及び/又はパラメータの間で切換え可能な選択ボタンとして機能する。ボタン110及び112は、パルス振幅、パルス幅、パルス率、及びパルス形状を含む、IPG14により発生するパルスのあらゆる刺激パラメータを増加させ又は減少させるように作動することができる、アップ/ダウンボタンとして機能する。例えば、選択ボタン108は、RC16を「パルス振幅調整モード」に設置するように作動することができ、その間に、パルス振幅は、アップ/ダウンボタン110、112を介して調整することができ、「パルス幅調整モード」の間は、パルス幅は、アップ/ダウンボタン110、112を介して調整することができ、「パルス率調整モード」の間は、パルス率は、アップ/ダウンボタン110、112を介して調整することができ、更に「パルス形状調整モード」の間は、パルス形状は、アップ/ダウンボタン110、112を介して調整することができる。代替的には、アップ/ダウン専用ボタンは、各々の刺激パラメータに付与するものとすることができる。アップ/ダウンボタンの使用だけでなく、ダイアル、スライダーバー、又はキーパッドなどのあらゆる他の型の作動装置を、刺激パラメータを増加又は減少させるために使用することができる。
【0060】
本発明にとって重要な事項として、パルス形状調整モードでRC16を設置することにより、パルス形状のタイプ、及び勾配特性、更に特に選択したパルスタイプの時定数を使用者に選択させることができることがある。例えば図18は、アイコンの形態の識別子を有する例示的ディスプレイスクリーンを示しているが、これは代替的な手段として、又は任意の手段として使用することができる。特に、ディスプレイスクリーンは、正方形パルスアイコン113(1)、減少勾配指数曲線型パルスアイコン113(2)、増加勾配指数曲線型パルスアイコン113(3)、減少勾配対数曲線型パルスアイコン113(4)、増加勾配対数曲線型パルスアイコン113(5)、減少勾配傾斜型パルスアイコン113(6)、増加勾配傾斜型パルスアイコン113(7)、台形波形アイコン113(8)、及び正弦曲線型波形アイコン113(9)を含み、使用者は、アップ/ダウンボタン110、112を作動させながらスクロールし、強調表示する(減少勾配指数曲線型パルスアイコン113(2)に示している)ことができる。ボタン108は、強調表示したパルス形状の形式を選択するために作動させることができる。代替的には、アップ/ダウンボタン110、112を使用して上/下にスクロールすることによって、パルスアイコン113を強調するより、例えば、ディスプレイスクリーン102がタッチスクリーン性能を有する場合には、各々の形式のパルス形状に連結されたチェックケース(図示されず)を、スタイレット又は指で触ることにより確かめることができる。代替的には、単一ボタン型トグルスイッチを、異なる形式のパルス形状の間で切換えるのに使用することができる。各々の選択された形式のパルス形状の中で、勾配変化特性は、アップ/ダウンボタン110、112を作動させることにより変化させることができる(例えば、時定数を増加又は減少させることにより)。例えば、図19は、アップ/ダウンボタン110、112がパルスの時間勾配を変化させるように作動する時(前のパルス形状は想像線で示されている)、電流パルス形状(この場合は、減少勾配指数曲線型パルス)を表す例示的ディスプレイスクリーンを示している。任意の実施形態において、形状・サイクルモードが、一サイクル中の異なるパルス形状を自動的に示すことができ(例えば、3−5秒おきに変化する)、これにより使用者が、多くの異なるパルス形状を迅速に認識することができる。使用者が最適条件の刺激を認識した時に、使用者は、その時表されているパルス形状を選択するボタンを作動させることができる。パルス形状は、提示される時に使用者に表示するか、又は代替的には、使用者に常に分かる状態にすることができる。
【0061】
図20を参照すると、例示的RC16の内部部品が示されている。RC16は、一般的には、プロセッサー114(例えばマイクロコントローラー)、プロセッサー114により実行される作動プログラム並びに刺激パラメータを記憶するメモリー116、入/出力回路、及び特定的にはIPG14に刺激パラメータを出力してIPG14から状態情報を受信するための遠隔測定回路118、及び、ボタンパッド104から刺激制御信号を受信して、ディスプレイスクリーン102(図18に示されている)に状態情報を伝送するための入力/出力回路120を含む。簡潔にするためにここには示されていないが、プロセッサー114は、RC16の他の機能を制御するだけでなく、パルス振幅、パルス幅、パルス率、及び使用者のボタンパッド104の操作に対応するパルス形状を定める複数の刺激パラメータ設定値を発生する。これらの新しい刺激パラメータ設定値は、遠隔測定回路118を介してIPG14に伝送され、これによりIPG14に記憶された刺激パラメータを調整し、及び/又はIPG14をプログラムする。遠隔測定回路118は、CP18から刺激パラメータを受信するために使用することができる。RC16の機能性及び内部部品の更なる詳細は、米国特許第6,895,280号に記載されている。
【0062】
IPG14に関して上記したように、図示した実施形態におけるパルス形状及び他のパルスパラメータは、互いに独立に修正される。この場合は、プロセッサー114は、互いが独立した各々の刺激パラメータ設定値で、パルス形状及び他のパルスパラメータを定めるように形成される。しかしながら、パルス形状及び他のパルスパラメータが、互いに依存する形で修正される方が有利な場合には、プロセッサー114は、例えば、一つのパルス形状の設定に応じて他のパルスパラメータを設定して、刺激パラメータの組の間で電気的荷電が均一になるようにすることにより、各々の刺激パラメータ設定値において互いに依存する形になるように、パルス形状及び他のパルスパラメータを定める構成とすることができる。
【0063】
簡潔に上記したように、埋め込んだ後、プログラム可能なIPG14のメモリーにおいて、刺激パラメータを修正し、プログラムすることは、CP18を使用して、医者又は臨床医により実行することができ、IPG14と直接通信するか又はRC16を介してIPG14と間接的に通信することができる。すなわち、CP18は、脊髄の近くで電極列26の作動パラメータを修正するために、医者又は臨床医により使用することができる。図1に示すように、CP18の外観の全体は、ラップトップ式の個人用コンピューター(PC)と同じであり、事実、指向性プログラム用デバイスを含むように適切に構成され、ここに述べた機能を実行するようにプログラムされたPCを使用して、実施することができる。このように、プログラムの方法論は、CP18内に含まれるソフトウエア指令を実行することにより遂行することができる。代替的には、このようなプログラムの方法論は、ファームウエア又はハードウエアを使用して実行することができる。どのような場合においても、CP18は、IPG14(又はETS20)により発生された電気刺激の特性を能動的に制御し、最適条件の刺激パラメータを患者のフィードバックに基づいて決定し、その後最適条件の刺激パラメータでIPG14(又はETS20)をプログラムすることを可能とする。このように、CP18の機能性は、RC18のそれと類似しているが、最適条件の刺激パラメータのプログラムを大幅に単純化しているところが異なる。CP及び他のプログラム用デバイスの更なる詳細は、米国特許第6,393,325号及び第6,909,917号に示されている。
【0064】
SCSシステム10の構造及び機能を説明してきたが、システム10を埋め込み、作動させる方法をこれより示す。図21を参照すると、刺激用導線12は、患者140の脊柱142内に埋め込まれる。刺激用導線12の好ましい位置は、刺激される脊髄領域に隣接する位置、すなわち脊髄領域の上の硬膜外空間である。ETS20は、経皮引き出し線28及び外部ケーブル30(図21には示されず)を介して刺激用導線12に結合され、定められた波形にしたがって電極26に電気刺激エネルギーを供給するように作動することができる。波形のパルスパラメータ(パルス振幅、パルス持続時間、パルス率、及びパルス形状を含む)は、CP18の制御のもとで修正することができ、これにより電極26から組織に供給される電気刺激エネルギーの特性を変化させ、患者140に施される刺激の効能をテストすることができる。CP18は、最適条件の刺激パラメータをETS20にプログラムするために使用することができる。
【0065】
トライアル期間が終了した後(典型的には1−2週間)、IPG14が、患者140内に埋め込まれ、刺激用導線12に結合される。刺激用導線12が脊柱140を出る位置の近くには空間がないので、IPG14は、一般的には腹部内か、又は臀部の上部のいずれかの外科的に形成されたポケットに埋め込まれる。もちろんIPG14は、患者の身体の他の位置に埋め込むこともできる。引き出し用導線24は、刺激用導線12が出る地点から離れてIPG14を設置することの助けとなる。ETS20に関して簡潔に上記したのと同じ方法で、IPG14は、CP18の制御のもとで、最適条件の刺激パラメータで作動し、プログラムさせることができる。患者の制御の下、RC16はその後、刺激プログラムを選択するために使用するか、或いは治療を変化させるために、IPG14に以前にプログラムされていた刺激パラメータを修正するために使用することができる。
【0066】
本発明の特定の実施形態が示されて、説明されたが、好ましい実施形態に本発明を限定するものではないことを理解すべきであり、当業者には、様々な変更及び修正が本発明の意図及び範囲から外れることなく成すことができることは明らかである。したがって、本発明は、代替的手法、修正、及び均等手段を含むことを意図しており、これらは、特許請求の範囲により定められる本発明の意図及び範囲内に含むことができるものである。
【符号の説明】
【0067】
10 SCSシステム
12 刺激用導線
14 埋め込み型パルス発生器
16 外部遠隔操作器
18 臨床医プログラマー
20 外部トライアル刺激付与器
22 外部充電器
24 経皮引き出し用導線
26 電極
28 経皮引き出し用導線
30 外部ケーブル
40 外側ケース

【特許請求の範囲】
【請求項1】
1又はそれ以上の刺激用導線に結合されるように構成された1又はそれ以上の電気端子と、
定められた波形にしたがって、前記1又はそれ以上の電気端子に電気刺激エネルギーを出力することが可能な出力刺激回路と、
使用者の入力に対応する前記定められた波形のパルス形状を修正し、これにより前記1又はそれ以上の電極に出力された前記電気刺激エネルギーの特性を変更するように構成された制御回路と、
から成ることを特徴とする埋め込み型電気組織刺激システム。
【請求項2】
前記制御回路は、複数の異なる形式のパルス形状の1つを選択することにより、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム。
【請求項3】
前記異なる形式のパルス形状は、正方形パルスと、指数曲線型パルスとを含むことを特徴とする請求項2に記載の電気刺激システム。
【請求項4】
前記異なる形式のパルス形状は、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、及びこれらに組み合わせの中の少なくとも2つを含むことを特徴とする請求項2に記載の電気刺激システム。
【請求項5】
前記異なる形式のパルス形状は、減少勾配パルスと増加勾配パルスとを含むことを特徴とする請求項2に記載の電気刺激システム。
【請求項6】
前記減少勾配パルスは、減少勾配指数曲線型パルスであり、前記増加勾配パルスは、増加勾配指数曲線型パルスであることを特徴とする請求項5に記載の電気刺激システム。
【請求項7】
前記減少勾配パルスは、減少勾配直線傾斜型パルスであり、前記増加勾配パルスは、増加勾配直線傾斜型パルスであることを特徴とする請求項5に記載の電気刺激システム。
【請求項8】
前記制御回路は、前記パルス形状の時定数を調整することにより、前記パルス形状を修正するように形成されることを特徴とする請求項1に記載の電気刺激システム。
【請求項9】
前記制御回路は、互いに独立に、前記定められた波形の前記パルス形状と、他のパルスパラメータを修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム。
【請求項10】
前記制御回路は、互いに依存する形で、前記パルス形状と少なくとも1つの他のパルスパラメータとを修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム。
【請求項11】
前記制御回路は、前記パルス形状の前記修正に対応して、前記少なくとも1つの他のパルスパラメータを修正するように構成され、前記電気刺激エネルギーの実質的に均一な印加を維持することを特徴とする請求項10に記載の電気刺激システム。
【請求項12】
前記組織の1又はそれ以上の電気特性を測定するように形成されるモニター回路を更に含み、前記制御回路は、前記測定された1又はそれ以上の電気特性に基づいて、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム。
【請求項13】
前記制御回路は、前記測定された1又はそれ以上の電気特性の変化に対応して、前記パルス形状を修正するように構成されたことを特徴とする請求項12に記載の電気刺激システム。
【請求項14】
前記出力刺激回路は、複数の異なるアナログ成形回路を含み、前記制御回路は、前記異なるアナログ成形回路の1つを選択することにより、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム。
【請求項15】
前記制御回路は、前記出力刺激回路において、少なくとも1つのアナログ電気部品の特性を調整することにより、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム。
【請求項16】
前記パルス状波形は、振幅レベル又はサブパルス持続時間の階段状機能で形成され、前記制御回路は、前記振幅レベル又はサブパルス持続時間を調整することにより、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム。
【請求項17】
前記1又はそれ以上の電気端子に電気結合された少なくとも1つの電極を保有する刺激用導線を更に含むことを特徴とする請求項1に記載の電気刺激システム。
【請求項18】
前記パルス形状を定めるパラメータを記憶することが可能なメモリーを更に含むことを特徴とする請求項1に記載の電気刺激システム。
【請求項19】
前記パルス形状を修正するために、外部プログラマーから指令を無線で受信することが可能な遠隔測定回路を更に含むことを特徴とする請求項1に記載の電気刺激システム。
【請求項20】
1又はそれ以上の電気端子、出力刺激回路を収容するケースを更に含み、制御回路が、神経刺激付与器を形成するために収容されることを特徴とする請求項1に記載の電気刺激システム。
【請求項21】
前記神経刺激付与器は、埋め込み型であることを特徴とする請求項20に記載の電気刺激システム。
【請求項22】
使用者からの入力を受信することが可能な使用者インターフェースと、
前記使用者の入力に対応して、複数の異なるパルス形状を定める複数の刺激パラメータ設定値を発生するように形成されるプロセッサーと、
前記複数の刺激パラメータ設定値を前記神経刺激付与器に伝送するように形成される出力回路と、
から成ることを特徴とする電気組織刺激付与器のためのプログラマー。
【請求項23】
前記複数の異なるパルス形状は、複数の異なる形式のパルス形状を含むことを特徴とする請求項22に記載のプログラマー。
【請求項24】
前記異なる形式のパルス形状は、正方形パルスと指数曲線型パルスとを含むことを特徴とする請求項23に記載のプログラマー。
【請求項25】
前記異なる形式のパルス形状は、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、及びこれらの組み合わせの少なくとも2つを含むことを特徴とする請求項23に記載のプログラマー。
【請求項26】
前記異なる形式のパルス形状は、減少勾配パルスと増加勾配パルスとを含むことを特徴とする請求項23に記載のプログラマー。
【請求項27】
前記減少勾配パルスは、減少勾配指数曲線型パルスであり、前記増加勾配パルスは、増加勾配指数曲線型パルスであることを特徴とする請求項26に記載のプログラマー。
【請求項28】
前記減少勾配パルスは、減少勾配直線傾斜型パルスであり、前記増加勾配パルスは、増加勾配直線傾斜型パルスであることを特徴とする請求項26に記載のプログラマー。
【請求項29】
前記複数の異なる形式のパルス形状は、同じタイプではあるが異なる時定数を有する複数のパルス形状を含むことを特徴とする請求項23に記載のプログラマー。
【請求項30】
前記プロセッサーは、互いに独立して、各々の刺激パラメータ設定値で、前記パルス形状と他のパルスパラメータを定めるように形成されることを特徴とする請求項23に記載のプログラマー。
【請求項31】
前記プロセッサーは、互いに応じて各々の刺激パラメータ設定値で、前記パルス形状と他のパルスパラメータを定めるように構成されたことを特徴とする請求項23に記載のプログラマー。
【請求項32】
前記プロセッサーは、前記パルス形状の前記定義に対応して、前記他のパルスパラメータの少なくとも1つを定めるように構成され、前記それぞれの刺激パラメータ設定値間に実質的に均一な荷電を維持することを特徴とする請求項31に記載のプログラマー。
【請求項33】
前記複数の異なる形式のパルス形状は、組織の1又はそれ以上の測定された電気特性に基づいて定められることを特徴とする請求項21に記載のプログラマー。
【請求項34】
前記複数の異なる形式のパルス形状は、前記測定された1又はそれ以上の電気特性における変化に対応して定められることを特徴とする請求項33に記載のプログラマー。
【請求項35】
前記使用者インターフェースは、作動装置を含み、前記プロセッサーは、前記作動装置の作動に対応して、前記複数の刺激パラメータ設定値を発生するように形成されることを特徴とする請求項23に記載のプログラマー。
【請求項36】
前記プロセッサーは、前記作動装置の作動に対応して、前記複数の異なるパルス形状を定めるように形成されることを特徴とする請求項35に記載のプログラマー。
【請求項37】
前記出力回路は、前記複数の刺激パラメータ設定値を前記神経刺激付与器に無線で伝送することが可能な遠隔測定回路であることを特徴とする請求項23に記載のプログラマー。
【請求項38】
患者の組織に近位に1又はそれ以上の電極を設置し、
定められた波形にしたがって、前記1又はそれ以上の電極から前記組織に電気刺激エネルギーを供給し、
使用者入力に対応して前記定められた波形のパルス形状を修正し、これにより前記1又はそれ以上の電極から前記組織に供給される前記電気刺激エネルギーの前記特性を変化させる、
ことを特徴とする、患者に治療を施す方法。
【請求項39】
前記パルス形状の修正は、複数の異なるパルス形状タイプの1つを選択することを含むことを特徴とする請求項38に記載の方法。
【請求項40】
前記異なる形式のパルス形状は、正方形パルスと指数曲線型パルスとを含むことを特徴とする請求項39に記載の方法。
【請求項41】
前記異なる形式のパルス形状は、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、及びこれらの組み合わせの少なくとも2つを含むことを特徴とする請求項39に記載の方法。
【請求項42】
前記異なる形式のパルス形状は、減少勾配パルスと増加勾配パルスとを含むことを特徴とする請求項39に記載の方法。
【請求項43】
前記減少勾配パルスは、減少勾配指数曲線型パルスであり、前記増加勾配パルスは、増加勾配指数曲線型パルスであることを特徴とする請求項42に記載の方法。
【請求項44】
前記減少勾配パルスは、減少勾配直線傾斜型パルスであり、前記増加勾配パルスは、増加勾配直線傾斜型パルスであることを特徴とする請求項42に記載の方法。
【請求項45】
パルス形状の修正は、前記パルス形状の時定数を調整することを含むことを特徴とする請求項38に記載の方法。
【請求項46】
前記定められた波形の前記パルス形状と他のパルスパラメータは、互いに独立に修正されることを特徴とする請求項38に記載の方法。
【請求項47】
前記定められた波形の前記パルス形状と少なくとも1つの他のパルスパラメータは、互いに依存する形修正されることを特徴とする請求項38に記載の方法。
【請求項48】
前記少なくとも1つの他のパルスパラメータは、前記パルス形状の前記修正に対応して修正され、前記電気刺激エネルギーの実質的には均一な電荷を維持することを特徴とする請求項47に記載の方法。
【請求項49】
前記組織の1又はそれ以上の電気特性の測定を更に含み、前記パルス形状は、前記測定された1又はそれ以上の電気特性に基づいて修正されることを特徴とする請求項38に記載の方法。
【請求項50】
前記パルス形状は、前記測定された1又はそれ以上の電気特性における変化に対応して修正されることを特徴とする請求項48に記載の方法。
【請求項51】
前記組織は、脊髄組織であることを特徴とする請求項38に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図3D】
image rotate

【図3E】
image rotate

【図3F】
image rotate

【図3G】
image rotate

【図3H】
image rotate

【図3I】
image rotate

【図3J】
image rotate

【図3K】
image rotate

【図3L】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図13C】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公表番号】特表2010−534114(P2010−534114A)
【公表日】平成22年11月4日(2010.11.4)
【国際特許分類】
【出願番号】特願2010−518306(P2010−518306)
【出願日】平成20年7月18日(2008.7.18)
【国際出願番号】PCT/US2008/070429
【国際公開番号】WO2009/015005
【国際公開日】平成21年1月29日(2009.1.29)
【出願人】(507213592)ボストン サイエンティフィック ニューロモデュレイション コーポレイション (34)
【Fターム(参考)】