説明

管路設計システム及びプログラム

【課題】 埋設物と離間する管路を容易に設計することができる管路設計システム及びプログラムを提供する。
【解決手段】 演算手段3は、縦断面における管路の位置情報と縦断面における埋設物の位置情報とに基づいて、管路が埋設物から設定距離以上離間するように、縦断面における管路の位置を演算する管路演算手段34を備え、管路演算手段34は、管路が埋設物から設定距離以上離間しているか否かを判定する離間距離演算部345を備えることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地中に埋設される管路を設計する管路設計システムに関し、また、コンピュータで読み取り可能なプログラムに関する。
【背景技術】
【0002】
従来、管路設計システムとして、所定の情報を記憶する記憶手段と、記憶される情報を演算して管路を設計する演算手段とを備えることにより、地中に埋設される管路を設計する管路設計システムが知られている(例えば、特許文献1)。斯かる管路設計システムによれば、平面図や縦断面図を作図することができる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−113014号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、特許文献1に係る管路設計システムは、単に管路を設計するためのシステムである。したがって、斯かる管路設計システムにおいては、地中に埋設されている他の管路や構造体といった埋設物が考慮されていないため、地中に埋設されている埋設物と離間する管路を容易に設計することができなかった。
【0005】
よって、本発明は、斯かる事情に鑑み、埋設物と離間する管路を容易に設計することができる管路設計システム及びプログラムを提供することを課題とする。
【課題を解決するための手段】
【0006】
本発明に係る管路設計システムは、地中に埋設される管路を設計すべく、所定の情報を記憶する記憶手段と、記憶される情報を演算して管路を設計する演算手段とを備える管路設計システムにおいて、記憶手段は、縦断面における管路の位置情報を記憶する管路記憶手段と、縦断面における埋設物の位置情報を記憶する埋設物記憶手段とを備え、演算手段は、縦断面における管路の位置情報と縦断面における埋設物の位置情報とに基づいて、管路が埋設物から設定距離以上離間するように、縦断面における管路の位置を演算する管路演算手段を備え、管路演算手段は、管路が埋設物から設定距離以上離間しているか否かを判定する離間距離演算部を備えることを特徴とする。
【0007】
本発明に係る管路設計システムによれば、管路記憶手段が縦断面における管路の位置情報を記憶していると共に、埋設物記憶手段が縦断面における埋設物の位置情報を記憶している。そして、管路演算手段の離間距離演算部は、管路が埋設物から設定距離以上離間しているか否かについて、判定する。
【0008】
このようにして、縦断面における管路の位置情報と縦断面における埋設物の位置情報とに基づいて、管路演算手段が縦断面における管路の位置を演算することにより、埋設物から設定距離以上離間する管路を設計することができる。したがって、埋設物と離間する管路を容易に設計することができる。
【0009】
また、本発明に係る管路設計システムにおいては、管路演算手段は、埋設物から設定距離だけ高い又は低い位置を管路の離間基準位置として演算する離間基準位置演算部と、管路の離間基準位置に応じて配置される縦断面における管直線部の位置を演算する管直線位置演算部と、管直線部同士を接続する縦断面における管曲線部の位置を演算する管曲線位置演算部とを備えてもよい。
【0010】
斯かる管路設計システムによれば、離間基準位置演算部が、埋設物から設定距離だけ高い又は低い位置を、管路の離間基準位置として演算する。そして、管直線位置演算部は、管路の離間基準位置に応じて配置される縦断面における管直線部の位置を演算すると共に、管曲線位置演算部は、管直線部同士を接続する縦断面における管曲線部の位置を演算する。これにより、埋設物から設定距離以上離間する管路を設計することができる。
【0011】
また、本発明に係る管路設計システムにおいては、管曲線位置演算部は、曲げ半径が異なる複数の管曲線部が配置可能な際に、該複数の管曲線部の内、曲げ半径が一番大きい管曲線部が配置されるように演算してもよい。
【0012】
斯かる管路設計システムによれば、管曲線位置演算部が演算することにより、曲げ半径が異なる複数の管曲線部が配置可能な際に、該複数の管曲線部の内、曲げ半径が一番大きい管曲線部が配置された管路を設計できる。これにより、縦断面における管路の位置の変化を緩やかに設計することができる。
【0013】
また、本発明に係る管路設計システムにおいては、管路記憶手段は、平面における管路の位置情報をさらに記憶し、埋設物記憶手段は、三次元における埋設物の位置情報をさらに記憶し、演算手段は、平面における管路の位置情報と三次元における埋設物の位置情報とに基づいて、管路の位置で切断した縦断面における埋設物の位置を演算する埋設物演算手段を備えてもよい。
【0014】
斯かる管路設計システムによれば、管路記憶手段が、平面における管路の位置情報を記憶していると共に、埋設物記憶手段が、三次元における埋設物の位置情報を記憶している。そして、平面における管路の位置情報と三次元における埋設物の位置情報とに基づいて、埋設物演算手段が、管路の位置で切断した縦断面における埋設物の位置を演算する。これにより、演算した縦断面における埋設物の位置に基づいて、埋設物から設定距離以上離間する管路を設計することができる。
【0015】
また、本発明に係るプログラムは、コンピュータで読み取り可能なプログラムにおいて、所定の情報を演算し、地中に埋設される管路を設計する演算手段を備え、演算手段は、縦断面における管路の位置情報と縦断面における埋設物の位置情報とに基づいて、管路が埋設物から設定距離以上離間するように、縦断面における管路の位置を演算する管路演算手段を備え、管路演算手段は、管路が埋設物から設定距離以上離間しているか否かを判定する離間距離演算部を備えることを特徴とする。
【発明の効果】
【0016】
以上の如く、本発明に係る管路設計システム及びプログラムによれば、埋設物と離間する管路を容易に設計することができるという優れた効果を奏する。
【図面の簡単な説明】
【0017】
【図1】本発明の一実施形態に係る管路設計システムの全体構成図を示す。
【図2】同実施形態に係る管路設計システムの構成図であって、(a)は入力手段の構成図、(b)は記憶手段の構成図を示す。
【図3】同実施形態に係る管路設計システムの構成図であって、(a)は演算手段の構成図、(b)は出力手段の構成図を示す。
【図4】同実施形態に係る管路設計システムの設計フローチャートを示す。
【図5】同実施形態に係る管路設計システムの管路設計説明図であって、(a)は管路断面、(b)は管路の平面図を示す。
【図6】同実施形態に係る管路設計システムの設計フローチャートを示す。
【図7】同実施形態に係る管路設計システムの管路設計説明図であって、(a)及び(b)は管路の全体縦断面図を示す。
【図8】同実施形態に係る管路設計システムの管路設計説明図であって、(a)は管路の全体縦断面図、(b)及び(c)はそれぞれ管路の要部縦断面図を示す。
【図9】同実施形態に係る管路設計システムの管路設計説明図であって、(a)及び(b)はそれぞれ管路の要部縦断面図、(c)は管路の全体縦断面図を示す。
【図10】同実施形態に係る管路設計システムの管路設計説明図であって、(a)及び(b)はそれぞれ管路の要部縦断面図、(c)は管路の全体縦断面図を示す。
【図11】同実施形態に係る管路設計システムの管路設計説明図であって、(a)及び(b)はそれぞれ管路の要部縦断面図、(c)は管路の全体縦断面図を示す。
【図12】同実施形態に係る管路設計システムの管路設計説明図であって、(a)及び(b)はそれぞれ管路の要部縦断面図、(c)は管路の全体縦断面図を示す。
【図13】同実施形態に係る管路設計システムの管路設計説明図であって、(a)及び(b)はそれぞれ管路の要部縦断面図を示す。
【図14】同実施形態に係る管路設計システムの管路設計説明図であって、(a)〜(d)はそれぞれ管路の要部縦断面図を示す。
【図15】同実施形態に係る管路設計システムの管路設計説明図であって、(a)〜(d)はそれぞれ管路の要部縦断面図を示す。
【図16】同実施形態に係る管路設計システムの管路設計説明図であって、(a)〜(d)はそれぞれ管路の要部縦断面図を示す。
【図17】同実施形態に係る管路設計システムの管路設計説明図であって、(a)及び(b)はそれぞれ管路の全体縦断面図を示す。
【図18】同実施形態に係る管路設計システムの管路設計説明図であって、(a)〜(c)はそれぞれ管路の要部縦断面図を示す。
【図19】同実施形態に係る管路設計システムの管路設計説明図であって、(a)は管路の要部縦断面図、(b)は管路の全体縦断面図を示す。
【図20】同実施形態に係る管路設計システムの設計フローチャートを示す。
【図21】同実施形態に係る管路設計システムの管路設計説明図であって、(a)は管路の全体縦断面図、(b)は管路の要部縦断面図を示す。
【図22】同実施形態に係る管路設計システムの管路設計説明図であって、(a)〜(c)はそれぞれ管路の要部縦断面図を示す。
【図23】同実施形態に係る管路設計システムの管路設計説明図であって、(a)〜(c)はそれぞれ管路の要部縦断面図を示す。
【図24】同実施形態に係る管路設計システムの管路設計説明図であって、管路の全体縦断面図を示す。
【図25】同実施形態に係る管路設計システムの管路設計説明図であって、引入張力計算式一覧表を示す。
【図26】同実施形態に係る管路設計システムの管路設計説明図であって、(a)は側圧計算式一覧表、(b)は計算定数一覧表を示す。
【図27】本発明の他の実施形態に係る管路設計システムの管路設計説明図であって、(a)は臨界温度変化計算式一覧表、(b)は計算定数一覧表を示す。
【発明を実施するための形態】
【0018】
以下、本発明に係る管路設計システムにおける一実施形態について、図1〜図26を参酌して説明する。
【0019】
本実施形態に係る管路設計システムは、図1に示すように、所定の情報を入力する入力手段1と、入力された情報等の各種情報を記憶する記憶手段2と、記憶される情報を演算して管路を設計する演算手段3と、各種情報を出力する出力手段4と、各手段1,2,3,4を制御する制御手段5とを備える。そして、管路設計システムは、地表に沿って埋設される管路や、埋設物と離間する管路を自動設計するように構成されている。
【0020】
入力手段1は、図2(a)に示すように、地表の情報を入力する地表入力手段11と、埋設物の情報を入力する埋設物入力手段12とを備える。また、入力手段1は、管路断面の情報を入力する管路断面入力手段13と、管路の情報を入力する管路入力手段14とを備える。
【0021】
管路入力手段14は、管路を構成する管直線部の位置情報を入力する管直線位置入力部141と、管直線部同士を接続する円弧状の管曲線部の位置情報を入力する管曲線位置入力部142とを備える。また、管路入力手段14は、管路の始点の位置情報を入力する始点位置入力部143と、管路の終点の位置情報を入力する終点位置入力部144とを備える。
【0022】
そして、管路入力手段14は、管路を埋設する深さ(設定距離)の情報を入力する埋設深さ入力部145と、複数の曲げ半径を有する管曲線部から、使用を許容する管曲線部を入力する曲げ半径入力部146とを備える。さらに、管路入力手段14は、管路が埋設物から離間する距離(設定距離)を入力する離間距離入力部147と、管路が埋設物から離間する方向を入力する離間方向入力部148とを備える。
【0023】
記憶手段2は、図2(b)に示すように、地表の情報を記憶する地表記憶手段21と、埋設物の情報を記憶する埋設物記憶手段22とを備える。また、記憶手段2は、管路断面の情報を記憶する管路断面記憶手段23と、管路の情報を記憶する管路記憶手段24とを備える。
【0024】
そして、記憶手段2は、電線を管路に引き入れる際に電線に生じる張力である引入張力の情報を記憶する引入張力記憶手段25と、電線が平面における管曲線部の箇所を通過する際に管曲線部の内側に押し付けられる力である側圧の情報を記憶する側圧記憶手段26とを備える。さらに、記憶手段2は、出力表に出力する各情報を記憶する出力表記憶手段27を備える。
【0025】
演算手段3は、図3(a)に示すように、地表の位置を演算する地表演算手段31と、埋設物の位置を演算する埋設物演算手段32とを備える。また、演算手段3は、管路断面を演算する管路断面演算手段33と、管路の位置を演算する管路演算手段34とを備える。そして、演算手段3は、引入張力を演算する引入張力演算手段35と、側圧を演算する側圧演算手段36と、出力表に出力する各情報を演算する出力表演算手段37とを備える。
【0026】
管路演算手段34は、地表から設定距離だけ低い位置で且つ地表と平行な位置を管路の基準位置として演算する基準位置演算部341と、管路の基準位置を複数の区間に区画する区画演算部342と、管路の基準位置に応じて配置される管直線部の位置を演算する管直線位置演算部343と、管直線部同士を接続する円弧状の管曲線部の位置を演算する管曲線位置演算部344とを備える。そして、管路演算手段34は、管路が地表から設定距離以上低く且つ地表に沿って配置されるように、縦断面における管路の位置を演算する。
【0027】
また、管路演算手段34は、管路が埋設物から設定距離以上離間しているか否かを判定する離間距離演算部345と、埋設物から設定距離だけ高い又は低い位置を管路の離間基準位置として演算する離間基準位置演算部346とを備える。そして、管路演算手段34は、管路が埋設物から設定距離以上離間するように、縦断面における管路の位置を演算する。
【0028】
出力手段4は、図3(b)に示すように、管路の情報を出力する管路出力手段41を備える。そして、出力手段4は、引入張力の情報を出力する引入張力出力手段42と、側圧の情報を出力する側圧出力手段43とを備える。さらに、出力手段4は、出力表を出力する出力表出力手段44を備える。
【0029】
また、本実施形態に係る管路設計システムにおいては、例えば、入力手段1は、キーボードやマウス等で構成され、記憶手段2は、コンピュータ本体内の主記憶装置(メモリ)や、外部の媒体(CD、DVD等のメディア)に情報を記憶する補助記憶装置等で構成され、演算手段3及び制御手段5は、コンピュータ本体内の中央処理装置(CPU)等で構成され、出力手段4は、ディスプレイやプリンタ等で構成される。なお、本実施形態に係る管路設計システムにおいては、三次元CADを用いたシステムとしている。
【0030】
本実施形態に係る管路設計システムの構成については以上の通りであり、次に、本実施形態に係る管路設計システムの設計方法について図4〜図26を参酌して説明する。
【0031】
管路設計システムの設計方法は、図4に示すように、ステップ1(地表設計)、ステップ2(埋設物設計)、ステップ3(管路断面設計)、ステップ4(平面管路設計)、ステップ5(縦断面管路設計)、ステップ6(埋設物離間管路設計)、ステップ7(引入張力計算)、ステップ8(側圧計算)、ステップ9(管路設計)、ステップ10(出力表計算)を備える。
【0032】
まず、ステップ1(地表設計)において、地表入力手段11を介して、例えば地表の位置の情報を三点入力すると、地表演算手段31は、三点の地表の位置に基づいて地表の位置(具体的には、三次元の地表面)を演算し、地表の位置を設計する。そして、地表記憶手段21は、演算された三次元における地表の位置情報を記憶する。
【0033】
ステップ2(埋設物設計)に進むと、埋設物入力手段12を介して、例えば埋設物の形状や位置等の情報を入力することで、埋設物演算手段32は、埋設物の位置を演算し、埋設物の位置を設計する。そして、埋設物記憶手段22は、三次元における埋設物の位置情報を記憶する。
【0034】
ステップ3(管路断面設計)に進むと、管路断面入力手段13を介して、管路を構成する各管の情報(具体的には、管を識別する管番号、種類、サイズ、中心位置等)と、管に布設される電線の情報(具体的には、種類、サイズ等)とを入力することで、管路断面演算手段33は、図5(a)に示すように、管路断面を演算する。
【0035】
図5(a)に示す管路は、上段に1つの管(管番号1番)で且つ下段に2つの管(管番号2番、3番)が配置される管路である。そして、管路断面演算手段33は、管路断面入力手段13を介して入力された管路の管軸位置Aから管路の上端までの距離Bを演算する。そして、管路断面記憶手段23は、管路断面の情報を記憶する。なお、管路断面演算手段33が管路の管軸位置Aを演算する構成でもよい。
【0036】
ステップ4(平面管路設計)に進むと、管直線位置入力部141を介して、例えば平面(X−Y平面)における管直線部の始点と終点との情報を入力することで、管直線位置演算部343は、図5(b)に示すように、平面における管直線部の位置(具体的には、管軸位置A1)を演算する。また、管曲線位置入力部142を介して、例えば管曲線部の曲げ半径の情報を入力すると、管曲線位置演算部344は、平面における管曲線部の位置(具体的には、管軸位置A2)を演算する。
【0037】
このようにして、管直線部と管曲線部とで構成される管路の平面における管軸Aが設計される。なお、図5(b)において、点Cは、管路の始点を示し、点Dは、管路の終点を示し、点Eは、変化点(管直線部と管曲線部との接続点)を示し、領域Fは、管直線部と管曲線部との区間を示している。そして、管路記憶手段24は、平面における管路の位置情報を記憶する。
【0038】
ステップ5(縦断面管路設計)は、図6に示すように、ステップ51(地表位置演算)、ステップ52(管路基準位置演算)、ステップ53(区間演算)、ステップ54(管直線基準位置演算)、ステップ55(管曲線位置演算)、ステップ56(管直線位置演算)、ステップ57(始終点位置演算)、ステップ58(管路断面演算)からなる。各ステップ51〜58について、以下に詳述する。
【0039】
ステップ51(地表位置演算)に進むと、地表演算手段31は、ステップ1で地表記憶手段21に記憶された三次元における地表の位置情報と、ステップ4で管路記憶手段4に記憶された平面における管路の位置情報とに基づいて、図7(a)に示すように、管路の位置で切断した縦断面における地表の位置Gを演算する。そして、地表記憶手段21は、縦断面における地表の位置Gの情報を記憶する。
【0040】
ステップ52(管路基準位置演算)に進むと、埋設位置情報入力部145を介して、設定距離(管路を埋設する位置)の情報を入力することで、基準位置演算部341は、図7(b)に示すように、縦断面における地表の位置Gに基づいて、地表から設定距離だけ低い位置で且つ地表と平行な位置を管路基準位置Hとして演算する。そして、管路記憶手段24は、管路基準位置Hを記憶する。
【0041】
ステップ53(区間演算)に進むと、図8(a)に示すように、区画演算部342は、平面における管直線部の区間(F1,F3,F5,F7,F9)と管曲線部の区間(F2,F4,F6,F8)とに基づいて、管路基準位置Hを複数の区間F,…に区画する。その後、区画演算手段342は、平面における管直線部の区間において、各区間Fの距離が管路記憶手段24に記憶された所定範囲内である否かを判定する。
【0042】
そして、区画演算部342は、区間F(例えばF7)の距離が所定範囲内でないと判定した場合に、図8(b)に示すように、区画された後の区間Fの距離が所定範囲の最低距離よりも小さくなるのを防止すべく、区間F(F7)のうち、区画可能な領域(図8(b)における太線の領域)を演算する。
【0043】
その後、区画演算部342は、区間F(F7)の区画可能な領域において、区間F(F7)における管路基準位置Hの始点H1と終点H2とを結ぶ区画基準線Jに対して、最も高低差の大きい管路基準位置Hの位置を演算する。そして、区画演算部342は、図8(c)に示すように、区画基準線Jに対して最も高低差の大きい管路基準位置Hの位置で、区間F(F7)を複数の区間F,F(F71,72)に区画する。
【0044】
さらに、区画演算部342は、図9(a)及び図9(b)に示すように、区画された区間F,F(F71,72)に対しても、各区間F(F71,72)の距離が所定範囲内である否かを判定する。そして、区画演算部342は、区間F(例えばF71)の距離が所定範囲内でないと判定した場合に、区画基準線Jに基づいて、さらに区間F(F71)を複数の区間F,F(F71,72)に区画する。
【0045】
このようにして、区画演算手段342は、区画された全ての区間F,…の距離が所定範囲内であると判定するまで、各区間Fを区画する。これにより、図9(c)に示すように、区画演算手段342は、管路基準位置Hを、所定範囲内の距離である複数の区間F,…に区画する。そして、管路記憶手段24は、区画された各区間Fを記憶する。
【0046】
ステップ54(管直線基準位置演算)に進むと、管直線位置演算部343は、図10(a)及び図10(b)に示すように、管路基準位置Hに応じて管直線部が配置されるように、区間Fにおける管路基準位置Hの始点と終点とを結ぶ直線を第1次管直線基準位置A11として演算する。そして、管直線位置演算部343は、図10(c)に示すように、全ての区間F,…において、第1次管直線基準位置A11,…を演算する。
【0047】
その後、管直線位置演算部343は、各区間Fにおいて、第1次管直線基準位置A11が管路基準位置Hより低い位置であるか否か判定する。そして、管直線位置演算部343は、図11(a)に示すように、低い位置でないと判定した区間F(例えばF2、F32)において、第1次管直線基準位置A11と同じ傾きで且つ管路基準位置Hより低い位置を第2次管直線基準位置A12として演算すると共に、低い位置であると判定した区間F(例えばF31、F33)において、第1次管直線基準位置A11をそのまま第2次管直線基準位置A12として演算する。
【0048】
さらに、管直線位置演算部343は、管直線基準位置が管軸位置を示すべく、図11(b)に示すように、第2次管直線基準位置A12に対して、ステップ3で演算した管路断面における管軸から上端までの距離Bだけ低い位置を、第3次管直線基準位置A13として演算する。そして、管直線位置演算部343は、図11(c)に示すように、全ての区間F,…において、第3次管直線基準位置A13,…を演算する。
【0049】
また、管直線位置演算部343は、図12(a)に示すように、区間Fの境界線に位置する第3次管直線基準位置A13の始点と終点とのうち、低い位置の点を判定し、図12(b)に示すように、低い位置の点同士を結んだ直線を第4次管直線基準位置A14,…として演算する。そして、管直線位置演算部343は、図12(c)に示すように、全ての区間F,…において、第4次管直線基準位置A14,…を演算する。
【0050】
ステップ55(管曲線位置演算)に進むと、管曲線位置演算部344は、隣り合う第4次管直線基準位置A14,A14が互いの交点部で山部を形成している(交点の下方側交差角度が180度未満である)か、又は、谷部を形成している(交点の下方側交差角度が180度以上である)か、判定する。そして、管曲線位置演算部344は、曲げ半径入力部146を介して、使用を許可する管曲線部の曲げ半径を入力することで、区間Fの境界に管曲線部が配置されるべく、管曲線部の曲げ半径を半径とする円を第1次管曲線基準位置A21として演算する。
【0051】
具体的には、管曲線位置演算部344は、図13(a)に示すように、隣り合う第4次管直線基準位置A14,A14が互いの交点部で山部を形成していると判定した場合、各第4次管直線基準位置A14,A14に内接する円を第1次管曲線基準位置A21として演算すると共に、図13(b)に示すように、隣り合う第4次管直線基準位置A14,A14が互いの交点部で谷部を形成していると判定した場合、第4次管直線基準位置A14,A14の交点を通過する円を第1次管曲線基準位置A21として演算する。
【0052】
このとき、管曲線位置演算部344は、使用を許容された管曲線部の曲げ半径に基づいて、第1次管曲線基準位置A21と各第4次管直線基準位置A14との交点A211が該第4次管直線基準位置A14の中点A141を超えないという条件を満たすように、許容された管曲線部の曲げ半径と同じ半径である第1次管曲線基準位置A21を演算する。
【0053】
そして、管曲線位置演算部344は、当該条件を満たす第1次管曲線基準位置A21の内、一番半径の大きい第1次管曲線基準位置A21を演算する。これにより、管曲線位置演算部344は、複数の管曲線部が配置可能な際に、該複数の管曲線部の内、曲げ半径が一番大きい管曲線部を配置することになる。
【0054】
ステップ56(管直線位置演算)に進むと、管直線位置演算部343は、各区間Fが平面における管直線部の区間か、管曲線部の区間かを判定する。そして、管直線位置演算部343は、区間Fが平面における管直線部の区間と判定した場合、図14(b)、図15(b)、及び図16(b)に示すように(F4,F6,F8は平面における管曲線部の区間であるが一例として図示する)、第1次管曲線基準位置A21をそのまま第2次管曲線基準位置A22として演算すると共に、隣り合う第2次管曲線基準位置A22,22の共通の接線を第5次管直線基準位置A15として演算する。
【0055】
他方、管直線位置演算部343は、区間Fが平面における管曲線部の区間と判定した場合、図14(c)、図15(c)、及び図16(c)に示すように、共通の接線である第5次管直線基準位置A15との接点が区間Fの境界上に位置すべく、第1次管曲線基準位置A21が第4次管直線基準位置A14に沿って移動した位置を第2次管曲線基準位置A22して演算すると共に、図14(d)、図15(d)、及び図16(d)に示すように、隣り合う第2次管曲線基準位置A22,22の共通の接線を第5次管直線基準位置A15として演算する。
【0056】
なお、図14は、隣り合う境界において第4次管直線基準位置A14,A14同士の交点部で山部と山部とを形成している場合、図15は、谷部と谷部とを形成している場合、図16は、山部と谷部とを形成している場合を、それぞれ図示している。そして、管直線位置演算部343は、図17(a)に示すように、全ての区間F,…において、第5次管直線基準位置A15,…及び第2次管曲線基準位置A22,…を演算する。
【0057】
ステップ57(始終点位置演算)に進むと、図17(b)に示すように、始点位置入力部143を介して、管路の始点Cの位置(高さ)情報を入力すると共に、終点位置入力部144を介して、管路の終点Dの位置(高さ)情報を入力することで、管直線位置演算部343は、図18(a)に示すように、始点Cから水平方向に所定距離位置する直線を始点管直線基準位置A3として演算する。
【0058】
そして、管曲線位置演算部344は、図18(b)に示すように、始点管直線基準位置A3に上方側で接する円を始点管曲線基準位置A4として演算すると共に、始点管直線基準位置A3に隣接する第5次管直線基準位置A15に下方側で接する円を始点管曲線基準位置A4として演算する。その後、管直線位置演算部343は、図18(c)に示すように、一対の始点管曲線基準位置A4,A4の共通の接線を始点管直線基準位置A3として演算する。
【0059】
また、同様に、図19(a)に示すように、管直線位置演算部343は、終点管直線基準位置A5,A5を演算すると共に、管曲線位置演算部344は、終点管曲線基準位置A6,A6を演算する。すると、図19(b)に示すように、縦断面における管路の管軸Aが設計され、管路記憶手段24は、縦断面における管路の管軸Aの位置情報を記憶する。
【0060】
ステップ58(管路断面演算)に進むと、管路断面演算手段33は、ステップ3で管路断面記憶手段23に記憶された管路断面の情報を、ステップ57で管路記憶手段24に記憶された縦断面における管路の管軸Aの位置情報に合成演算する。このようにして、地表から設定距離以上低く且つ地表に沿って配置される三次元の管路が設計できる。
【0061】
ステップ6(埋設物離間管路設計)は、図20に示すように、ステップ61(埋設物位置演算)、ステップ62(離間距離演算)、ステップ63(離間管路基準位置演算)、ステップ64(管直線基準位置演算)、ステップ65(管曲線位置演算)、ステップ66(管直線位置演算)、ステップ67(管路断面演算)からなる。各ステップ61〜67について、以下に詳述する。
【0062】
ステップ61(埋設物位置演算)に進むと、まず、三次元で設計された管路を、管軸Aの位置情報に戻す。そして、埋設物演算手段32は、図21(a)に示すように、ステップ2で埋設物記憶手段22に記憶された三次元における埋設物の位置情報と、ステップ4で管路記憶手段4に記憶された平面における管路の位置情報とに基づいて、管路の位置で切断した縦断面における埋設物の位置Kを演算する。そして、埋設物記憶手段22は、縦断面における埋設物の位置Kの情報を記憶する。
【0063】
ステップ62(離間距離演算)に進むと、離間距離入力部147を介して、設定距離(管路を埋設物から離間させる位置)の情報を入力することで、離間距離演算部345は、管路が埋設物から設定距離以上離間しているか否かを判定する。そして、離間距離演算部345が、管路が埋設物から設定距離以上離間していないと判定すると、管路出力手段41は、変更すべき管路の位置(図21(a)において太線で示している)を出力する。
【0064】
ステップ63(離間管路基準位置演算)に進むと、離間方向入力部148を介して、変更すべき各管路が埋設物から離間する方向(上方向又は下方向)をそれぞれ入力することで、離間基準位置演算部346は、埋設物から設定距離だけ高い位置(又は低い位置)を管路の離間基準位置Lとして演算する。
【0065】
例えば、変更すべき各管路が埋設物から上方向で離間するように入力すると、離間基準位置演算部346は、図21(b)に示すように、埋設物の上端から設定距離だけ高い位置で且つ水平方向に埋設物の幅寸法と同じ距離の直線を、離間基準位置Lとして演算する。
【0066】
ステップ64(管直線基準位置演算)に進むと、管直線位置演算部343は、離間基準位置Lに応じて管直線部が配置されるべく、図22(a)に示すように、離間基準位置Lをそのまま離間管直線基準位置A7として演算する。そして、管直線位置演算部343は、全ての離間管直線基準位置L,…において、離間管直線基準位置A7,…を演算する。
【0067】
ステップ65(管曲線位置演算)に進むと、管曲線位置演算部344は、図22(b)に示すように、離間管直線基準位置A7に上方側で接する円を離間管曲線基準位置A8として演算すると共に、離間管直線基準位置A7に隣接する第5次管直線基準位置A15に下方側で接する円を離間管曲線基準位置A8として演算する。
【0068】
このとき、管曲線位置演算部344は、使用を許容された管曲線部の曲げ半径に基づいて、一対の離間管曲線基準位置A8,A8が交差しない条件を満たすように、管曲線部の曲げ半径と同じ半径である離間管曲線基準位置A8を演算する。これにより、管曲線位置演算部344は、複数の管曲線部が配置可能な際に、該複数の管曲線部の内、曲げ半径が一番大きい管曲線部を配置することになる。
【0069】
なお、管曲線位置演算部344は、使用を許容された複数の管曲線部の内、曲げ半径が一番小さい管曲線部と同じ半径である一対の離間管曲線基準位置A8,A8同士が交差してしまう場合、図22(c)に示すように、離間管直線基準位置A7に下方側で接する円を離間管曲線基準位置A8として演算すると共に、離間管直線基準位置A7から二番目に近い第5次管直線基準位置A15に上方側で接する円を離間管曲線基準位置A8として演算する。
【0070】
ステップ66(管直線位置演算)に進むと、管直線位置演算部343は、図23(a)及び図23(b)に示すように、一対の離間管曲線基準位置A8,A8の共通の接線を離間管直線基準位置A7として演算する。すると、図23(c)及び図24に示すように、縦断面における管路の管軸Aが設計され、管路記憶手段24は、縦断面における管路の管軸Aの位置情報を記憶する。
【0071】
ステップ67(管路断面演算)に進むと、管路断面演算手段33は、ステップ3で管路断面記憶手段23に記憶された管路断面の情報を、ステップ66で管路記憶手段24に記憶された縦断面における管路の管軸Aの位置情報に合成演算する。このようにして、埋設物から設定距離以上離間する三次元の管路が設計できる。
【0072】
ステップ7(引入張力計算)に進むと、引入張力記憶手段25が記憶している図25の引入張力計算式に基づいて、引入張力演算手段35は、設計した管路に対して変化点E毎に引入張力を計算し、引入張力が引入張力記憶手段25で記憶されている設定値以上であるか否か(正常か異常か)判定する。そして、引入張力演算手段35が、引入張力が設定値以上である(異常である)と判定すると、引入張力出力手段42は、異常であること(管路を設計変更すべきであること)を出力する。
【0073】
ステップ8(側圧計算)に進むと、側圧記憶手段26が記憶している図26(a)の側圧計算式に基づいて、側圧演算手段36は、設計した管路に対して平面の管曲線部毎に側圧を計算し、側圧が側圧記憶手段26で記憶されている設定値以上であるか否か(正常か異常か)判定する。そして、側圧演算手段36が、側圧が設定値以上である(異常である)と判定すると、側圧出力手段43は、異常であること(管路を設計変更すべきであること)を出力する。
【0074】
ステップ9(管路設計)に進むと、設計された管路を最適化すべく、管直線位置入力部141及び管曲線位置入力部142を介して、変更する管路(管直線部、管曲線部)の位置情報を入力することで、管直線位置演算部343及び管曲線位置演算部344は、それぞれ管直線部の位置及び管曲線部の位置を演算する。なお、管路演算手段34は、複数(本実施形態においては三つ)の管からなる管路に対して、各管に対して変更に修正するように演算できる。そして、管路記憶手段24は、変更された管路の位置情報を記憶する。
【0075】
ステップ10(出力表計算)に進むと、出力表記憶手段27に記憶された計算式等に基づいて、出力表演算手段37は、設計した管路に対して所定距離毎に測点を設定し、測点における管路の情報(例えば、標高、埋設深さ等)や、測点間における管路の情報(例えば、区間距離、管長さ等)を演算する。そして、出力表出力手段44は、出力表演算手段37で演算した情報を、例えば管路及び各情報を併記した設計図として出力する。
【0076】
以上より、本実施形態に係る管路設計システムによれば、管路記憶手段24が縦断面における管路の位置情報Aを記憶していると共に、埋設物記憶手段22が縦断面における埋設物の位置情報Kを記憶している。そして、管路演算手段34の離間距離演算部345は、管路が埋設物から設定距離以上離間しているか否かについて、判定する。
【0077】
このようにして、縦断面における管路の位置情報Aと縦断面における埋設物の位置情報Kとに基づいて、管路演算手段34が縦断面における管路の位置Aを演算することにより、埋設物から設定距離以上離間する管路を設計することができる。したがって、埋設物と離間する管路を容易に設計することができる。
【0078】
また、本実施形態に係る管路設計システムによれば、離間基準位置演算部346は、埋設物から設定距離だけ高い又は低い位置を、管路の離間基準位置Lとして演算する。そして、管直線位置演算部343は、管路の離間基準位置Lに応じて配置される管直線部の位置を演算すると共に、管曲線位置演算部344は、管直線部同士を接続する円弧状の管曲線部の位置を演算する。これにより、埋設物から設定距離以上離間する管路を設計することができる。
【0079】
また、本実施形態に係る管路設計システムによれば、管曲線位置演算部344が演算することにより、曲げ半径が異なる複数の管曲線部が配置可能な際に、該複数の管曲線部の内、曲げ半径が一番大きい管曲線部が配置された管路を設計できる。これにより、縦断面における管路の位置の変化を緩やかに設計することができるため、引入張力や側圧を小さく設計することができる。
【0080】
また、本実施形態に係る管路設計システムによれば、管路記憶手段24が平面における管路の位置情報Aを記憶していると共に、埋設物記憶手段22が三次元における埋設物の位置情報を記憶している。そして、平面における管路の位置情報Aと三次元における埋設物の位置情報とに基づいて、埋設物演算手段32が管路の位置で切断した縦断面における埋設物の位置Kを演算する。これにより、演算した縦断面における埋設物の位置Kに基づいて、埋設物から設定距離以上離間する管路を設計することができる。
【0081】
また、本実施形態に係る管路設計システムによれば、地表記憶手段21が縦断面における地表の位置情報を記憶しており、管路演算手段34の基準位置演算部341は、地表から設定距離だけ低い位置で且つ地表と平行な位置を、管路の基準位置Hとして演算する。そして、管路演算手段34において、管直線位置演算部343が管路の基準位置Hに応じて配置される管直線部の位置を演算すると共に、管曲線位置演算部344が管直線部同士を接続する円弧状の管曲線部の位置を演算する。
【0082】
このようにして、縦断面における地表の位置情報Gに基づいて、管路演算手段34が縦断面における管路の位置Aを演算することにより、地表から設定距離以上低く且つ地表に沿って配置された管路を設計することができる。したがって、地表に沿って埋設される管路を容易に設計することができる。
【0083】
また、本実施形態に係る管路設計システムによれば、区画演算部342が管路の基準位置Hを複数の区間F,…に区画する。そして、管直線位置演算部343が管直線部の位置を演算すると共に、管曲線位置演算部344が管曲線部の位置を演算することにより、区画された区間F毎に管路の基準位置Hに応じて管直線部が配置され且つ区間F,Fの境界に管曲線部が配置された管路を設計することができる。
【0084】
また、本実施形態に係る管路設計システムによれば、管路記憶手段24が平面における管路の位置情報Aを記憶していると共に、地表記憶手段21が三次元における地表の位置情報を記憶している。そして、平面における管路の位置情報Aと三次元における地表の位置情報とに基づいて、地表演算手段31が管路の位置で切断した縦断面における地表の位置Gを演算する。これにより、演算した縦断面における地表の位置Gに基づいて、地表から設定距離以上低く且つ地表に沿って配置された管路を設計することができる。
【0085】
また、本実施形態に係る管路設計システムによれば、管路演算手段34は、平面における管曲線部の区間に、縦断面における管直線部のみを配置する、即ち、縦断面における管曲線部を配置しないように、管路を演算している。これにより、剛性を有する管に対応した管路の設計となるため、施工図により近い設計図を作成できる。
【0086】
なお、本発明に係る管路設計システム及びプログラムは、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。また、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。
【0087】
例えば、本発明に係るプログラムおいては、コンピュータで読み取り可能な記録媒体(CD、DVD等のメディア)に格納されており、補助記憶装置を介してコンピュータに読み取られる構成でもよく、また、インターネットで送受信可能であって、受信したコンピュータで直接読み取り可能な構成でもよい。
【0088】
また、本発明に係る管路設計システム及びプログラムにおいては、管路演算手段34は、二つの管路を連結する管路を演算可能な構成でもよい。しかも、管路演算手段34は、管番号毎に管の種類・サイズが同じである場合には、管路断面の配列が異なる二つの管路を管番号毎に対応付けて連結する管路を演算可能な構成でもよい。
【0089】
また、本発明に係る管路設計システム及びプログラムにおいては、設計した管路を布設する際に、掘削する土の量を演算する掘削量演算手段を備える構成でもよい。斯かる掘削量演算手段は、管路の埋設深さと管路の幅寸法と管路の長さとの積に基づいて、掘削する土の量を演算すると共に、その掘削する土の量から土工費(掘削する作業に必要な費用)を演算する。なお、斯かる計算式や演算結果を記憶する掘削量記憶手段と、斯かる演算結果を出力する掘削量出力手段とをさらに備えてもよい。
【0090】
また、本発明に係る管路設計システム及びプログラムにおいては、設計した電線が熱収縮によって徐々に下方に移動する、所謂、滑落現象を生じさせるか否かを演算する滑落現象演算手段を備える構成でもよい。斯かる滑落現象演算手段は、図27(a)に示す臨界温度変化計算式に基づいて、設計した電線に対して臨界温度変化を演算し、演算した臨界温度変化が設定値以上であるか否か(正常か異常か)判定する。
【0091】
なお、斯かる計算式や演算結果を記憶する滑落現象記憶手段と、斯かる演算結果を出力する滑落現象出力手段とをさらに備えてもよい。そして、滑落現象演算手段が、臨界温度変化が設定値以上である(異常である、即ち、滑落現象が生じる)と判定すると、滑落現象出力手段は、異常であること(管路を設計変更すべきであること)を出力する。
【0092】
また、本発明に係る管路設計システム及びプログラムにおいては、管路の位置が管軸Aを基準として各種演算される構成を説明したが、斯かる構成に限られない。例えば、管路の位置が管路の上端や下端を基準として各種演算される構成でもよい。
【0093】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、区画演算部342が、平面における管曲線部の区間(F1,F3,F5,F7,F9)と管直線部の区間(F2,F4,F6,F8)とに基づいて、管路基準位置Hを複数の区間F,…に区画する構成を説明したが、斯かる構成に限られない。例えば、区画演算部342は、平面における管直線部の区間と管曲線部の区間とを考慮せず、管路基準位置Hを複数の区間F,…に区画する構成でもよい。
【0094】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、区画演算部342は、区間Fの区画可能な領域において、区間Fにおける管路基準位置Hの始点H1と終点H2とを結ぶ区画基準線Jに対して、最も高低差の大きい管路基準位置Hの位置で区画するように演算する構成を説明したが、斯かる構成に限られない。例えば、区画演算部342は、各区間Fの距離が所定範囲内で且つそれぞれ等しい距離で区画するように演算する構成でもよい。
【0095】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、離間基準位置演算部346は、埋設物の上端から設定距離だけ高い位置で且つ水平方向に埋設物の幅寸法と同じ距離の直線を、離間基準位置Lとして演算する構成を説明したが、斯かる構成に限られない。例えば、離間基準位置演算部346は、埋設物の上縁に沿った直線又は曲線の位置を、離間基準位置Lとして演算する構成でもよい。
【0096】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、管直線位置演算部343は、離間基準位置Lをそのまま離間管直線基準位置A7として演算する構成を説明したが、斯かる構成に限られない。例えば、管直線位置演算部343は、離間基準位置Lよりも埋設物からさらに離間するように離間管直線基準位置A7を演算する構成でもよい。
【0097】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、埋設位置入力部145を介して、管路を埋設する位置(設定距離)の情報を入力する構成を説明したが、斯かる構成に限られない。例えば、管路を埋設する位置(設定距離)の情報が所定値として管路記憶手段24に記憶されており、管路演算手段34が斯かる所定値に基づいて管路を演算する構成でもよい。
【0098】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、曲げ半径入力部146を介して、複数の曲げ半径を有する管曲線部から、使用を許容する管曲線部を入力する構成を説明したが、斯かる構成に限られない。例えば、使用可能な管曲線部の情報が所定値として管路記憶手段24に記憶されており、管路演算手段34が斯かる所定値に基づいて管路を演算する構成でもよい。
【0099】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、離間距離入力部147を介して、管路が埋設物から離間する距離(設定距離)を入力する構成を説明したが、斯かる構成に限られない。例えば、管路が埋設物から離間する距離(設定距離)の情報が所定値として管路記憶手段24に記憶されており、管路演算手段34が斯かる所定値に基づいて管路を演算する構成でもよい。
【0100】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、離間方向入力部148を介して、管路が埋設物から離間する方向を入力する構成を説明したが、斯かる構成に限られない。例えば、管路演算手段34は、管路の位置と埋設物の位置とに基づき、管路が埋設物から離間する最適な方向を演算する構成でもよい。
【0101】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、区画Fの距離の所定範囲が管路記憶手段24に記憶されている所定値である構成を説明したが、斯かる構成に限られない。例えば、区画距離入力手段が設けられており、区画距離入力手段を介して、区画Fの距離の範囲を入力する構成でもよい。
【0102】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、引入張力の設定値が引入張力記憶手段25に記憶している設定値である構成を説明したが、斯かる構成に限られない。例えば、引入張力入力手段が設けられており、引入張力入力手段を介して、引入張力の設定値を入力する構成でもよい。
【0103】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、側圧の設定値が側圧記憶手段26に記憶している設定値である構成を説明したが、斯かる構成に限られない。例えば、側圧入力手段が設けられており、側圧入力手段を介して、側圧の設定値を入力する構成でもよい。
【0104】
また、上記実施形態に係る管路設計システム及びプログラムにおいては、管が電線管である構成を説明したが、斯かる構成に限られない。例えば、管が水道管(上水管)、排水管(下水管)、ガス管である構成でもよい。
【符号の説明】
【0105】
1…入力手段、2…記憶手段、3…演算手段、4…出力手段、5…制御手段、21…地表記憶手段、22…埋設物記憶手段、24…管路記憶手段、31…地表演算手段、32…埋設物演算手段、34…管路演算手段、341…基準位置演算部、342…区画演算部、343…直管位置演算部、344…曲管位置演算部、345…離間距離演算部、346…離間距離位置演算部

【特許請求の範囲】
【請求項1】
地中に埋設される管路を設計すべく、所定の情報を記憶する記憶手段と、記憶される情報を演算して管路を設計する演算手段とを備える管路設計システムにおいて、
記憶手段は、縦断面における管路の位置情報を記憶する管路記憶手段と、縦断面における埋設物の位置情報を記憶する埋設物記憶手段とを備え、
演算手段は、縦断面における管路の位置情報と縦断面における埋設物の位置情報とに基づいて、管路が埋設物から設定距離以上離間するように、縦断面における管路の位置を演算する管路演算手段を備え、
管路演算手段は、管路が埋設物から設定距離以上離間しているか否かを判定する離間距離演算部を備えることを特徴とする管路設計システム。
【請求項2】
管路演算手段は、埋設物から設定距離だけ高い又は低い位置を管路の離間基準位置として演算する離間基準位置演算部と、管路の離間基準位置に応じて配置される縦断面における管直線部の位置を演算する管直線位置演算部と、管直線部同士を接続する縦断面における管曲線部の位置を演算する管曲線位置演算部とを備える請求項1に記載の管路設計システム。
【請求項3】
管曲線位置演算部は、曲げ半径が異なる複数の管曲線部が配置可能な際に、該複数の管曲線部の内、曲げ半径が一番大きい管曲線部が配置されるように演算する請求項2に記載の管路設計システム。
【請求項4】
管路記憶手段は、平面における管路の位置情報をさらに記憶し、
埋設物記憶手段は、三次元における埋設物の位置情報をさらに記憶し、
演算手段は、平面における管路の位置情報と三次元における埋設物の位置情報とに基づいて、管路の位置で切断した縦断面における埋設物の位置を演算する埋設物演算手段を備える請求項1〜3の何れか1項に記載の管路設計システム。
【請求項5】
コンピュータで読み取り可能なプログラムにおいて、
所定の情報を演算し、地中に埋設される管路を設計する演算手段を備え、
演算手段は、縦断面における管路の位置情報と縦断面における埋設物の位置情報とに基づいて、管路が埋設物から設定距離以上離間するように、縦断面における管路の位置を演算する管路演算手段を備え、
管路演算手段は、管路が埋設物から設定距離以上離間しているか否かを判定する離間距離演算部を備えることを特徴とするプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公開番号】特開2013−54450(P2013−54450A)
【公開日】平成25年3月21日(2013.3.21)
【国際特許分類】
【出願番号】特願2011−190912(P2011−190912)
【出願日】平成23年9月1日(2011.9.1)
【出願人】(591260672)中電技術コンサルタント株式会社 (58)
【Fターム(参考)】