説明

粒子位置の制御方法および構造

【課題】粒子などの粒子を流路内に連続的に整列しながら流す際,流路内での粒子の位置制御を可能とする方法を提供する。
【解決手段】端点M,端点Nを連結する流路Aと,前記流路Aにおける途中の点Xと前記端点Mの間に存在する分岐点において前記流路Aより分岐し,前記流路Aにおける前記点Xと前記端点Nの間に存在する合流点において前記流路Aに合流する,1つまたは複数の分岐流路を有する流路構造を用い,前記流路構造に前記端点Mから粒子を含む流体を連続的に導入すると,前記流路Aにおける前記分岐点において,前記分岐流路にはある一定の大きさより大きな粒子を含まない流体が流入し,かつ前記合流点において,前記流路Aに前記分岐流路からある一定の大きさより大きな粒子を含まない流体が流れ込むことにより,前記流路Aにおける前記合流点と端点Nの間において,ある一定の大きさより大きな粒子の流れる位置を制御することが可能になる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は,粒子を流路内において連続的に整列させるための方法および流路構造に関し,さらに詳細には,動植物細胞,オルガネラ,微生物,生体高分子,ポリマー粒子,金属粒子,セラミクス粒子などの粒子を,連続的に流路内の任意の位置に整列させつつ流すための方法および構造に関する。
【背景技術】
【0002】
現在,動植物細胞,オルガネラ,微生物,生体高分子,ポリマー粒子,金属粒子,セラミクス粒子などの粒子を,連続的に流路内の中心付近に整列させつつ流す技術は,粒子の表面状態や大きさなどを高速かつ定量的に測定するためのフローサイトメトリーという手法や,特定の細胞を選択することのできるセルソーター等の装置において,粒子の流速を一定にし,さらに光学的な観察を容易にするために,必須である。
【0003】
フローサイトメトリー装置において,粒子を流路内の中心付近に整列させつつ流すための方法としては,二重管などを用い,中心からの粒子の流れに対して,周囲から鞘のように粒子を含まない流体を流す,シースフローの導入という方法が一般的である。
【0004】
一方,近年,微細加工技術を利用して作製した流路構造を有するマイクロデバイス(マイクロ流体デバイス,マイクロチップとも呼ばれる)においても,微粒子の位置制御を利用したフローサイトメトリーが実現されており,それらのマイクロデバイスでは,複数の入り口から,粒子を含む流体と粒子を含まない押し付けのための流体を,流量を調節しながら導入することにより,粒子を流路の中心付近に整列しながら流し,計測を行うことができる。
【0005】
しかしながら,これらのフローサイトメトリーにおけるシースフローの導入の際には,粒子を含む流体と粒子を含まない押し付けのための流体の厳密な流量操作が必要であり,装置が複雑になる,という問題があり,さらに,大量の押しつけ液が必要となり,非経済的である,という欠点がある。
【0006】
また,フローサイトメトリーにおいて,粒子の計測個数を上げるために流量を上げると,粒子の流れが乱れて測定精度が下がる,といった問題点がある。
【0007】
加えて,フローサイトメトリーにおいて,整列対象となる粒子は希釈されてしまうため,粒子の密度が希薄な場合や,粒子の回収が必要な場合には不向きである,という問題点がある。
【0008】
さらにフローサイトメトリーにおけるシースフローの導入では,粒子を流路の中心付近に整列させつつ流すことはできるが,粒子を流路の任意の位置に整列しつつ流すことは困難である。
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は上記のような従来技術の問題点を鑑みてなされたものであり,その目的とするところは,動植物細胞,オルガネラ,微生物,生体高分子,ポリマー粒子,金属粒子,セラミクス粒子などの粒子を流路内に連続的に整列しながら流す際,シースフローの導入を必要することなく,流路内での粒子の位置制御を可能とする方法を提供しようとするものである。
【0010】
また,本発明の目的とするところは,複雑な流量調節を必要とせず,流量に依存しない,流路内での粒子の連続的な位置制御を可能とする方法を提供しようとするものである。
【0011】
また,本発明の目的とするところは,粒子を流路内の任意の位置に制御することが可能な方法を提供しようとするものである。
【課題を解決するための手段】
【0012】
上記目的を達成するために,本発明は,途中において分岐し,さらに合流する,少なくとも1つの分岐流路を有する流路(本流路とする)に粒子を含む流体を連続的に導入した時,その分岐点において分岐流路中と本流路下流への流量の比は,分岐流路と本流路の長さ,幅,深さ,径などによって規定される,ということに着目してなされたものである。
【0013】
また本発明は,分岐点の上流における本流路の径と,分岐流路へ分配される流体の割合の関係から,たとえ分岐流路の径が粒子の大きさより大きい場合でも,ある一定以上の大きさをもつ粒子は分岐流路へと導入されることがない,ということに着目してなされたものである。
【特許文献1】 特願2005−232590「粒子を連続的に濃縮・分離するための流路構造および方法」
【非特許文献2】 「ラボ・オン・ア・チップ(Lab on a Chip)」(英国王立化学会)(2006年),5巻11号,1233頁−1239頁。
【0014】
そして本発明は,分岐流路中に導入された,ある一定以上の大きさの粒子を含まない流体を,再び本流路に合流させることで,その下流において,ある一定以上の大きさの粒子の位置を制御することが可能である,ということに着目してなされたものである。
【特許文献2】 特願2005−381266「微粒子の濃縮・分級のための流路構造および方法」
【非特許文献2】 「アナリティカル・ケミストリー(Analytical Chemistry)」(米国化学会)(2006年),78巻4号,1357頁−1362頁。
【0015】
本発明のうち請求項1に記載の発明は,端点M,端点Nを連結する流路Aと,前記流路Aにおける途中の点Xと前記端点Mの間に存在する分岐点において前記流路Aより分岐し,前記流路Aにおける前記点Xと前記端点Nの間に存在する合流点において前記流路Aに合流する,1つまたは複数の分岐流路を有する流路構造を用い,前記流路構造に前記端点Mから粒子を含む流体を連続的に導入すると,前記流路Aにおける前記分岐点において,前記分岐流路にはある一定の大きさより大きな粒子を含まない流体が流入し,かつ前記合流点において,前記流路Aに前記分岐流路からある一定の大きさより大きな粒子を含まない流体が流れ込むことにより,前記流路Aにおける前記合流点と端点Nの間において,ある一定の大きさより大きな粒子の流れる位置を制御する,というものである。
【0016】
したがって,本発明のうち請求項1に記載の発明によれば,粒子を含む流体を前記流路構造に連続的に導入するだけで,前記端点Mと前記点Xの間における分岐点においてある一定の大きさより大きな粒子を含まない流体を前記分岐流路に流入させ,前記端点Xと前記点Nの間における合流点から粒子を含まない流体を前記流路Aに再び戻すことにより,前記流路Aにおける粒子の流れる位置を制御することが可能となる。
【0017】
さらに前記流路Aにおいて,1つ以上の分岐流路を設けることによって,効率的に粒子の位置を制御することができる。
【0018】
また,本発明のうち請求項2に記載の発明は,請求項1における前記流路構造を,直列に2つ以上接続した複合流路構造を用い,前記複合流路構造の一方の端点から粒子を含む流体を連続的に導入すると,前記流路Aにおける前記分岐点において前記分岐流路にはある一定の大きさより大きな粒子を含まない流体が流入し,かつ前記合流点において前記分岐流路から前記流路Aにある一定の大きさより大きな粒子を含まない流体が流れ込み,さらにこれらの状態が繰り返されることにより,前記複合流路構造のもう一方の端点付近において,ある一定の大きさより大きな粒子の流れる位置を制御する,というものである。
【0019】
したがって,本発明のうち請求項2に記載の発明によれば,2つ以上の前記流路を接続することにより,より効率的な粒子位置の制御が可能となる。
【0020】
また,本発明のうち請求項3に記載の発明は,請求項1または請求項2のいずれか1項に記載の粒子位置の制御方法および構造において,その流路構造は計算的手法によって設計されている,というものである。
【0021】
したがって,本発明のうち請求項3に記載の発明によれば,位置を制御することのできる粒子の大きさや,制御後の粒子の流れる範囲を任意に設定することが可能となる。
【0022】
また,本発明のうち請求項4に記載の発明は,請求項1,請求項2または請求項3のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路の幅,深さ,直径等のいずれかのスケールが,少なくとも部分的に1ミリメートル以下のオーダーであり,前記流路内において流体は安定な層流を保ちながら流れる,というものである。
【0023】
したがって,本発明のうち請求項4に記載の発明によれば,粒子の動きが乱流によって撹乱されることがないため,安定的な粒子の位置制御と,それを利用した粒子の計測が可能となる。
【0024】
また,本発明のうち請求項5に記載の発明は,請求項1,請求項2,請求項3または請求項4のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路構造は平面的に構成されており,端点Mと端点Nを結ぶ直線に対して,線対称な構造である,というものである。
【0025】
したがって,本発明のうち請求項5に記載の発明によれば,本流路に対し左右から,ある一定の大きさ以上の粒子を含まない流体をそれぞれ等量ずつ分岐し,合流することができるため,粒子を前記流路Aの中心付近に整列させつつ流すことができる。
【0026】
また,本発明のうち請求項6に記載の発明は,請求項1,請求項2,請求項3,請求項4または請求項5のいずれか1項に記載の粒子位置の制御方法および構造において,流体は液体である,というものである。
【0027】
したがって,本発明のうち請求項6に記載の発明によれば,流路内において,液体中に分散した粒子の位置を制御しつつ流すことが可能となる。
【0028】
また,本発明のうち請求項7に記載の発明は,請求項1,請求項2,請求項3,請求項4,請求項5または請求項6のいずれか1項に記載の粒子位置の制御方法および構造において,流体は気体である,というものである。
【0029】
したがって,本発明のうち請求項7に記載の発明によれば,流路内において,気体中に分散した粒子の位置を制御しつつ流すことが可能となる。
【0030】
また,本発明のうち請求項8に記載の発明は,請求項1,請求項2,請求項3,請求項4,請求項5,請求項6または請求項7のいずれか1項に記載の粒子位置の制御方法および構造において,粒子とは,動物,植物,微生物などの細胞,もしくは,オルガネラ,染色体などの生体微粒子を含む粒子混合物である,というものである。
【0031】
したがって,本発明のうち請求項8に記載の発明によれば,動物,植物,微生物などの細胞,もしくは,オルガネラ,染色体などの生体微粒子を,流路内に整列しつつ流すことが可能となる。
【0032】
また,本発明のうち請求項9に記載の発明は,請求項1,請求項2,請求項3,請求項4,請求項5,請求項6,請求項7または請求項8のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路構造はフローサイトメトリー装置の一部に組み入れられている,というものである。
【0033】
したがって,本発明のうち請求項9に記載の発明によれば,既存のフローサイトメトリーやセルソーター等の装置における新しい粒子整列技術としての利用が可能になる。
【0034】
また,本発明のうち請求項10に記載の発明は,請求項1,請求項2,請求項3,請求項4,請求項5,請求項6,請求項7,請求項8または請求項9のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路構造は,微細加工技術を用いてマイクロデバイス内に形成されたマイクロチャネルである,というものである。
【0035】
したがって,本発明のうち請求項10に記載の発明によれば,形状を正確にコントロールされたマイクロ流路を用いることで,より正確な粒子位置の制御が可能となり,また,マイクロデバイス上でのフローサイトメトリーにおける新しい粒子整列技術としての利用が可能となり,さらにはマイクロデバイスでのフローサイトメトリー以外の細胞や粒子操作としての利用も可能となる。
【発明の効果】
【0036】
本発明は,以上に述べられたような特徴を有するため,粒子を含む流体を,ある形状を持つ流路構造に連続的に導入するだけで,流路内での粒子位置を正確に制御しつつ,粒子を連続的に流すことができる,という優れた効果を発揮する。
【0037】
また,本発明は以上に述べられたような特長を有するため,粒子を含まない流体の流れの外部からの導入を必要とせず,複雑な流量操作を必要としないため,操作が簡便になり,応用範囲が拡大し,また,経済的である,という利点がある。
【0038】
また,本発明は以上に述べられたような特長を有するため,押し付けのための流体によって対象粒子が希釈されない,という利点がある。
【0039】
更に,本発明は以上に述べられたような特長を有するため,細胞,生体高分子,オルガネラといった生物学的な粒子から,エマルション,気泡といった非定形の粒子まで,流路内に整列させつつ流すことが可能である,という優れた効果を発揮する。
【発明を実施するための最良の形態】
【0040】
以下,添付の書類に基づいて,本発明による粒子の位置制御方法および構造の最良の形態を詳細に説明するものとする。
【0041】
図1(a)(b)(c)には,本発明における請求項1に記載の,粒子位置の制御方法および構造の原理が示されており,図1(a)は,粒子を流路の中心付近に整列させつつ流すための流路構造10の,最も基本的な原理図の一例であり,図1(b)(c)はそれぞれ図1(a)流路11における,ある分岐部11a,合流部11bの拡大図である。
【0042】
図1(a)において,流路構造全体は平面的に構成され,深さが均一であり,ある所定の方向に延長される流路11は,その途中のそれぞれ両側に,分岐して合流する分岐流路群12と13を有している。
【0043】
流路11は請求項1における流路Aに相当する流路であり,流路における中心点14は,請求項1における点Xに相当する。
【0044】
図1(b)に示すように,流路11に粒子15を含む流体が連続的に流れている場合,まず分岐点の直前において,分岐流路に導入される流れの一部分16の流れの幅16aが,ある大きさの粒子15の半径より小さい場合,その粒子はたとえ分岐流路の断面より小さい場合でも,分岐流路内に導入されることはなく,ある大きさより大きい粒子を含まない流体のみが分岐流路に導入される。なお流路11を直進する流れ17の幅17aは,それぞれの流路に流れる流量比によって決まる。
【0045】
つまり,図1(b)のように,流路11に粒子を含む流体が連続的に流れている場合,分岐流路12,13に流れる流量がある値より少ない場合には,ある一定の大きさより大きい粒子を含まない流体のみを分岐流路12,13の中へと抜き出すことが可能である。
【0046】
なお,粒子が球形でない場合には,粒子の形状のうち最も短い長さである,短径,厚み,などが,流れの一部分16の流れの幅16aより大きい場合には,それらの粒子は分岐流路内に導入されることはない。
【0047】
そして,図1(c)に示すように,合流点において,ある大きさより大きな粒子を含まない流体18を合流させることにより,ある大きさより大きな粒子の流れる範囲は合流点より下流において狭められ,流れる位置は制御される。
【0048】
なお,図1(a)に示すように,分岐流路を多数設けることにより,効率的に粒子の流れる位置を流路の中心付近に整列させながら,粒子を流すことができる。
【0049】
また,この場合は流路11の左右両側に分岐流路が設けられているが,目的によっては,左右のどちらか一方でも良く,その場合は粒子の流れる範囲は流路の片側になる。
【0050】
なお,各分岐点における分岐流路への流量は,流路の設計段階において適切な流路形状に設定することで,より正確な調節が可能となる。
【0051】
また,上記流路構造において,各流路はマイクロチャネルであるものが好ましい。ここでマイクロチャネルとは,断面形状,つまりチャネルの流れ方向に垂直な面の形状のうち,最も短い間隔(長方形なら短辺,楕円なら短径に相当する)の長さが通常5mm以下,好ましくは500μm以下,より好ましくは200μm以下が適当であるが,この長さの下限は特に限定されず,マイクロチャネルとしての機能を有する長さであればよい。
【0052】
さらに,上記流路構造では,流路の断面形状が矩形であり,また深さが均一であるが,断面は円形,楕円形,などでも良く,さらに部分的に深さが異なっていても良い。
【実施例】
【0053】
以下,添付の書類に基づいて,本発明による粒子位置の制御方法および構造の実施例を詳細に説明するものとする。
【0054】
図2には,本発明による粒子位置の制御方法および構造の実施形態を備えたマイクロデバイス19が示されており,図2(a)は図2(b)と図2(c)におけるA矢視図であり,図2(b)は図2(a)におけるB−B線による断面図,図2(c)は図2(a)におけるC−C線による断面図である。また,図3は,図2(a)における流路構造20全体の拡大図(模式図)である。
【0055】
このマイクロデバイス19は,粒子を含む流体を連続的に導入すると,直径約5μm以上の粒子を流路11の中心に整列させることができるマイクロデバイスであり,高分子(ポリマー)材料,例えば,PDMS(ポリジメチルシロキサン)を用いて作製された平板状の基板21と基板22により形成されている。
【0056】
なお,マイクロ流体デバイスの材料としては,PDMSのほかにも,アクリル等の各種ポリマー材料,ガラス,シリコン,セラミクス,ステンレスなどの各種金属,などを用いることができる。
【0057】
基板21の下面21aには,流路構造20が形成されており,その深さは例えば13μm程度であるが,この値は0.1μmから1cmまでの任意の値に設定することが可能であり,また,基板22の上面にも同様の加工が施されていても良く,流路構造20は部分的に深さが異なっていても良い。
【0058】
入口側ポート23は粒子を含む流体の入口であり,出口側ポート24は流体の出口であり,それぞれ請求項1における端点M,Nに相当する。
【0059】
また流路25は,ポート23と24を直線的に連結する流路であり,その途中において,それぞれ左右方向に分岐し,さらに流路25の下流において再合流する,分岐流路群26,27と接続されている。なお流路25は,請求項1における流路Aに相当する流路である。
【0060】
なお,流路25の全体の長さは,例えば10mmであり,幅は,例えば25μmであるが,必要に応じて,長さは100μm以上,幅は0.1μm以上の任意の値に設定することが可能である。
【0061】
また,分岐流路群26,27は,それぞれ73本の分岐流路(2601〜2673,2701〜2773)から成っており,その幅は全て10μmであるが,この値は必要に応じて,0.1μm以上の任意の値に設定することが可能である。
【0062】
また,分岐流路2601〜2673,2701〜2773の長さは,1.4〜34.0mmであるが,この値は必要に応じて,50μm以上の任意の値に設定することが可能である。なお,これらの流路の長さは,例えば分岐流路群26では,中心側(分岐流路2601)から外側(分岐流路2673)に向かうほど徐々に長くなるように設計されている。この設計により,上流での73箇所の分岐点において,その各分岐点を通過する流量のおよそ1.4%ずつが左右の分岐流路に分配されるようになっている。これらの流量比の値は,流路ネットワークの圧力損失を,電気回路における電気抵抗のアナロジーによって計算されたものである。また,流量・管径と圧力損失の関係は,ハーゲン・ポアズイユの式とその派生式に基づいて計算することにより導くことが可能である。従って,流路の長さ・管径を適切に設定することにより圧力損出を変化させれば,分岐点における流量比を任意に設定することができる。
【0063】
以上の構成において,上記したマイクロデバイス19を用いて動植物細胞,バクテリアなどの微生物,ポリマー粒子,エマルション,金属微粒子などの粒子を流路内に連続的に整列させつつ流すための方法について説明する。
【0064】
流体としては,水もしくは化学物質の水溶液,有機溶媒,などの液体の他に,空気等の気体を用いても良い。ただし,粒径が比較的大きな場合には,流体の密度と粒子の密度の差があまり大きくない系がより望ましい。
【0065】
まず,上記の流体(必要に応じてフィルター処理を行う)中に粒子を懸濁させる。もしくは,環境水,血液,エアロゾルを含む空気,などのように,あらかじめ粒子が懸濁している流体を必要に応じて希釈または濃縮したものを用意する。
【0066】
そして,用意した粒子を含む流体を,入口側ポート23から連続的に供給する。この時,流路構造内では,流体が層流を保ちつつ流れるほうが望ましい。なお,流体の供給に際して,シリンジポンプ等を用いた定流量導入,ボンベ,圧力発生装置,減圧装置等を用いた定圧導入のほかに,電気浸透流や遠心力等を用いた方法などを用いることができる。
【0067】
この流路構造20では,粒子を懸濁させた流体を連続的に導入した流体の約90%が左右の分岐流路群26,27内に導入され,さらに下流において再合流し,また,直径が約5μmより大きな粒子は,分岐流路内に導入されないように設計されている。また,流路25における出口側ポート24付近では,流路の中心の2.5μm幅の部分を粒子の中心が通過するように設計されている。
【0068】
実際に,粒径10μmのポリスチレン微粒子を0.5%デキストラン水溶液に懸濁させ,シリンジポンプを用いて2μL/minの流速で導入したところ,流路25における出口側ポート24付近では,ほぼ中央付近に一直線に整列して流れる様子が確認できた。なおこれらの粒子の通過位置は,設計段階における見積もり通り,流路25における中心の2.5μm幅の部分であることが観察された。
【0069】
なお,整列させる対象となる粒子の大きさは,流路の幅,深さ,長さ等を適当に変更することで,任意に調節することが可能である。
【0070】
図2(a)検出部28に検出機器を置くことで,整列しつつ流れてきた粒子の情報を読み取ることができる。
【0071】
さらに,図4(a)に示す流路構造29のような流路構造を用いれば,流路の片側のみに,粒子を整列しつつ流すことが可能となる。
【0072】
さらに,図4(b)に示す複合流路構造30は,請求項2における複合流路構造の一例であり,このような複合流路構造を用いれば,流路における片側ずつ,段階的に粒子位置の制御が可能となり,より効率的に,粒子を整列させることが可能となる。また,請求項1の方法に較べて,図4(b)の構造では,一直線上に粒子を整列させて流すことが容易になる。このように,流路の片側から流体を抜き出し,元に戻す操作を,必要に応じて,複数回繰り返すことにより,より正確かつ容易に粒子位置を制御することが可能となる。
【0073】
さらに,図5(a)に示す流路構造31のような流路構造を用いれば,左右に異なる数の分岐流路が配列されているため,流路内における,中心以外の任意の位置に粒子を整列させつつ流すことが可能となる。
【0074】
さらに,図5(b)は,3次元的に構成された流路構造32の俯瞰図であるが,このような流路構造を用いれば,上下左右方向からの流れによって,粒子を流路の上下・左右どちらの方向に対しても,中心付近に整列させつつ流すことが可能となる。
【0075】
さらに,図5(c)は,3次元的に構成された流路構造32の俯瞰図であり,図5(c)は図5(d)における流路構造の一部34の拡大図であるが,このような流路構造を用いれば,矩形な断面を有する流路の四隅からの流れによって,粒子を流路の上下・左右どちらの方向に対しても,中心付近に整列させつつ流すことが可能となる。なお35が流路であり,36が分岐流路である。
【0076】
さらに,図6は,流れの断面を90度回転させる装置37を有する複合流路構造38であるが,このような複合流路構造を用いることによって,粒子を流路の上下・左右どちらの方向に対しても,中心付近に整列させつつ流すことが可能となる。
【産業上の利用可能性】
【0077】
本発明は,以上説明したように構成されているため,既存のフローサイトメトリー装置や,蛍光活性化細胞選別システム等のセルソーター装置において,粒子の位置制御を経済的かつ簡便に行うことのできる技術として,広く利用されるものと期待される。
【0078】
また,本発明は,以上説明したように構成されているため,マイクロ流体デバイスにおける正確な細胞や粒子の操作技術として利用でき,単細胞解析装置,環境微粒子や微生物の分析装置あるいは濃縮装置などとして利用できると期待される。
【図面の簡単な説明】
【図1】本発明による粒子を連続的に整列させるための流路構造および方法の原理図を示し,図1(a)は粒子を流路における中心に整列させる流路構造および原理図であり,図1(b)は図1(a)における分岐部11aのうちある一つの分岐点の拡大図であり,図1(c)は図1(a)における合流部11bのうちある一つの合流点の拡大図である。
【図2】本発明による液体制御機構の実施形態を備えたマイクロデバイス19を示し,図3(a)は図3(b)と図3(c)におけるA矢視図であり,図3(b)は図3(a)におけるB−B線による断面図であり,図3(c)は図3(a)におけるC−C線による断面図である。
【図3】本発明による液体制御機構の実施形態を備えたマイクロデバイス19における流路構造20の模式図である。
【図4】(a)(b)は本発明による液体制御機構の実施形態を備えた流路構造29,複合流路構造30を示した図である。
【図5】(a)(b)(c)は本発明による液体制御機構の実施形態を備えた流路構造31,32,33を示した図であり,図5(d)は流路構造33における一部34の拡大図である。
【図6】本発明による液体制御機構の実施形態を備えたマイクロデバイス38を示した図である。
【符号の説明】
10 流路構造
11 流路
11a 分岐部
11b 合流部
12 分岐流路,もしくは分岐流路群
12a?d 分岐流路
13 分岐流路,もしくは分岐流路群
13a?d 分岐流路
14 流路における中心点
15 粒子
16 流れの一部分
16a 流れの幅
17 流れの一部分
17a 流れの幅
18 粒子を含まない流体
19 マイクロデバイス
20 流路構造
21 基板
21a 基板21下面
22 基板
23 入口側ポート
24 出口側ポート
25 流路
26 分岐流路群
2601〜2673 分岐流路
27 分岐流路群
2701〜2773 分岐流路
28 検出部
29 流路構造
30 複合流路構造
31 流路構造
32 流路構造
33 流路構造
34 流路構造の一部
35 流路
36 分岐流路
37 流れの断面を90度回転させる装置
38 複合流路構造

【特許請求の範囲】
【請求項1】
端点M,端点Nを連結する流路Aと,前記流路Aにおける途中の点Xと前記端点Mの間に存在する分岐点において前記流路Aより分岐し,前記流路Aにおける前記点Xと前記端点Nの間に存在する合流点において前記流路Aに合流する,1つまたは複数の分岐流路を有する流路構造を用い,前記流路構造に前記端点Mから粒子を含む流体を連続的に導入すると,前記流路Aにおける前記分岐点において,前記分岐流路にはある一定の大きさより大きな粒子を含まない流体が流入し,かつ前記合流点において,前記流路Aに前記分岐流路からある一定の大きさより大きな粒子を含まない流体が流れ込むことにより,前記流路Aにおける前記合流点と端点Nの間において,ある一定の大きさより大きな粒子の流れる位置を制御する,粒子位置の制御方法および構造。
【請求項2】
請求項1における前記流路構造を,直列に2つ以上接続した複合流路構造を用い,前記複合流路構造の一方の端点から粒子を含む流体を連続的に導入すると,前記流路Aにおける前記分岐点において前記分岐流路にはある一定の大きさより大きな粒子を含まない流体が流入し,かつ前記合流点において,前記流路Aに前記分岐流路からある一定の大きさより大きな粒子を含まない流体が流れ込み,さらにこれらの状態が繰り返されることにより,前記複合流路構造のもう一方の端点付近において,ある一定の大きさより大きな粒子の流れる位置を制御する,粒子位置の制御方法および構造。
【請求項3】
請求項1または請求項2のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路構造は計算的手法によって設計されている,粒子位置の制御方法および構造。
【請求項4】
請求項1,請求項2または請求項3のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路の幅,深さ,直径等のいずれかのスケールが,少なくとも部分的に1ミリメートル以下のオーダーであり,前記流路内において流体は安定な層流を保ちながら流れる,粒子位置の制御方法および構造。
【請求項5】
請求項1,請求項2,請求項3または請求項4のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路構造は平面的に構成されており,端点Mと端点Nを結ぶ直線に対して,線対称な構造である,粒子位置の制御方法および構造。
【請求項6】
請求項1,請求項2,請求項3,請求項4または請求項5のいずれか1項に記載の粒子位置の制御方法および構造において,流体は液体である,粒子位置の制御方法および構造。
【請求項7】
請求項1,請求項2,請求項3,請求項4,請求項5または請求項6のいずれか1項に記載の粒子位置の制御方法および構造において,流体は気体である,粒子位置の制御方法および構造。
【請求項8】
請求項1,請求項2,請求項3,請求項4,請求項5,請求項6または請求項7のいずれか1項に記載の粒子位置の制御方法および構造において,粒子とは,動物,植物,微生物などの細胞,もしくは,オルガネラ,染色体などの生体微粒子を含む粒子混合物である,粒子位置の制御方法および構造。
【請求項9】
請求項1,請求項2,請求項3,請求項4,請求項5,請求項6,請求項7または請求項8のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路構造はフローサイトメトリー装置の一部に組み入れられている,粒子位置の制御方法および構造。
【請求項10】
請求項1,請求項2,請求項3,請求項4,請求項5,請求項6,請求項7,請求項8または請求項9のいずれか1項に記載の粒子位置の制御方法および構造において,前記流路構造は,微細加工技術を用いてマイクロデバイス内に形成されたマイクロチャネルである,粒子位置の制御方法および構造。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate