説明

粒子線照射装置

【課題】異なる患部形状に容易に対応可能としつつ、装置全体の簡素化を図ることができる照射装置を提供する。
【解決手段】照射装置において、ビームの進行方向に対し垂直な第1の方向に移動可能としつつ第1の方向に互いに対向配置された対の遮蔽用リーフ板400a,400bをビームの進行方向に対し垂直な第2の方向に複数配設した遮蔽用リーフ板群400と、第1の方向に移動可能としつつ第1の方向に互いに対向配置された対の減衰用リーフ板401a,401bを第2の方向に複数配設し、それら複数対の減衰用リーフ板401a,401bをビームの進行方向に沿って複数段設け、遮蔽用リーフ板群400に対しビームの進行方向下流側直下に配置した減衰用リーフ板群401と、遮蔽用リーフ板400a,400b及び減衰用リーフ板401a,401bの配置をそれぞれ調整するリーフ板駆動機構とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、粒子線を整形して照射する粒子線照射装置に関する。
【背景技術】
【0002】
腫瘍等の患部に放射線(例えばX線や荷電粒子ビーム等)を照射する放射線治療は、患者に直接苦痛を与えないことから癌治療において重要な位置を占めつつある。例えばX線を照射した場合における患者の体内の線量分布は、体表付近で最も大きく、深さが増すにしたがって減衰していく。一方、例えば陽子線や炭素線等の荷電粒子ビームを照射した場合における患者の体内の線量分布は、停止する直前でブラッグピークを示し、それ以外の領域で低くなっている。すなわち、荷電粒子ビームは、患部領域に線量を集中できるという点で優れている。そのため、近年、荷電粒子ビームを利用する粒子線治療システムが広まりつつある。
【0003】
粒子線治療システムは、例えば、シンクロトロン等の加速器で加速した荷電粒子ビームを照射装置から出力して患者の患部に照射するものである。照射装置は、大別して、荷電粒子ビームを散乱させて径方向に拡大した後、患部形状に切り取って照射するパッシブ照射方式と、細い荷電粒子ビームを患部形状に沿って照射するスキャニング照射方式とが知られている。
【0004】
パッシブ照射方式の照射装置は、ビームの進行方向に沿う順序で、例えば、第一散乱体、第二散乱体、リッジフィルタ、レンジシフタ、患者コリメータ、及び患者ボーラスを備えている。第一散乱体は、例えばタングステン等の材質からなる板部材で構成されており、ビームの径方向線量分布を正規分布状としつつビームを径方向に拡大させる。第二散乱体は、例えば沿等の材質からなる中央円盤部と樹脂等の材質からなる外周側リング部とで構成された二重リング構造を有し、ビームの径方向線量分布を一様としつつビームを径方向に拡大させる。リッジフィルタは、複数の楔形構造を有し、ビームのエネルギ分布幅を拡げて患者体内におけるビームの到達深度を深さ方向に拡大させる。レンジシフタは、厚さが異なる複数のアクリル板で構成されており、ビームを通過させるアクリル板を選択してビームのエネルギを調整し、ビームの到達深度を調整する。患者コリメータは、患部の横方向形状(言い換えれば、ビーム進行方向に対し垂直な方向における形状)に対応する貫通穴が形成された遮蔽体で構成されており、ビームの照射野を整形する。患者ボーラスは、患部の深さ形状に対応して掘削加工された樹脂製ブロック体で構成されており、患者体内におけるビームの到達深度の分布形状を整形する。
【0005】
ところで、上述の患者コリメータは、異なる患部の横方向形状に対応して毎回製作しなければならないため、コスト高になるばかりか、廃棄する場合の取り扱いが困難であるという課題が生じる。そこで、例えば、ビームの進行方向に対し垂直な一方向で互いに対向する対の遮蔽用リーフ板をビームの進行方向に対し垂直な他の方向に複数配設したマルチリーフコリメータが提唱されている(例えば、特許文献1参照)。このマルチリーフコリメータは、各対の遮蔽用リーフ板の対向間隔を調整してビームの照射野を設定するので、患部の横方向形状に対応可能としている。
【0006】
また、上述の患者ボーラスも、異なる患部の深さ形状に対応して毎回製作しなければならないため、コスト高になるばかりか、廃棄する場合の取り扱いが困難であるという課題が生じる。そこで、例えば、ビームの進行方向に対し垂直かつ互いに直交する方向にそれぞれ移動可能な対の減衰用リーフ板(プレートボーラス)をビームの進行方向に沿って複数段設けたマルチリーフボーラス(スライドボーラス機構)が提唱されている(例えば、特許文献2参照)。このマルチリーフボーラスは、減衰用リーフ板の位置を調整して患者体内におけるビームの到達深度の分布形状を設定するので、患部の深さ形状に対応可能としている。
【0007】
【特許文献1】特開2002−224230号公報
【特許文献2】特開2001−276240号公報(図15)
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、上記従来技術には以下のような課題が存在する。
すなわち、上記マルチリーフコリメータと上記マルチリーフボーラスは全く別体の構成であり、それらの構造(詳細には、リーフ板の形状、移動方向、及び駆動機構等)も全く異なっている。そのため、上記マルチリーフコリメータと上記マルチリーフボーラスを照射装置に備えさせようとすると、装置全体が複雑化するという課題が生じる。
【0009】
本発明の目的は、異なる患部形状に容易に対応可能としつつ、装置全体の簡素化を図ることができる照射装置を提供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するために、本発明は、荷電粒子ビームを整形して照射する粒子線照射装置において、ビームの進行方向に対し垂直な第1の方向に移動可能としつつ前記第1の方向に互いに対向配置された対の遮蔽用リーフ板をビームの進行方向に対し垂直な第2の方向に複数配設した遮蔽用リーフ板群と、前記第1の方向に移動可能としつつ前記第1の方向に互いに対向配置された対の減衰用リーフ板を前記第2の方向に複数配設し、それら複数対の減衰用リーフ板をビームの進行方向に沿って複数段設け、前記遮蔽用リーフ板群に対しビームの進行方向下流側直下に配置した減衰用リーフ板群と、ビームの照射野を設定するために前記遮蔽用リーフ板の配置をそれぞれ調整する第1のリーフ板駆動機構と、照射対象におけるビームの到達深度の分布形状を設定するために前記減衰用リーフ板の配置をそれぞれ調整する第2のリーフ板駆動機構とを備える。
【発明の効果】
【0011】
本発明によれば、異なる患部形状に容易に対応可能としつつ、装置全体の簡素化を図ることができる。
【発明を実施するための最良の形態】
【0012】
以下、本発明の一実施形態を、図面を参照しつつ説明する。
図1は、本発明の照射装置の一実施形態を備えた粒子線治療システムの全体構成を表す概略図である。また、図2は、本実施形態の照射装置における出射ノズルの構成を表す概略図である。
【0013】
これら図1及び図2において、粒子線治療システムは、制御装置121の制御に基づき、荷電粒子ビーム発生装置100で加速した荷電粒子ビーム(本実施形態では、陽子線)を回転式の照射装置113から出射し、治療ベッド18に固定された患者17の患部に照射するものである。
【0014】
荷電粒子ビーム発生装置100は、イオン生成装置102、前段加速器103、及びシンクロトロン101を備えている。
【0015】
イオン生成装置102は、制御装置121からの指令に応じて、水素分子のイオン源(図示せず)から負水素イオンを生成させ、生成した負水素イオンを静電気的に例えば50keVまで加速して、前段加速器103に出射する。前段加速器103は、例えばターミナル電圧2.5MeVのタンデム静電加速器であり、制御装置121からの指令に応じて、イオン生成装置102からの負水素イオンを2.5MeVまで加速し、シンクロトロン101に出射する。
【0016】
シンクロトロン101は、前段加速器103からのビームを入射する入射器104と、ビームの軌道を曲げる複数(図1では8つ)の偏向電磁石106と、ビームのベータトロン振動を制御する複数(図1では8つ)の四極電磁石107と、ビームにエネルギを与える、すなわちビームを加速する高周波加速空洞110と、ビームに高周波電磁場を印加することによりビームのベータトロン振動を増加させる出射用の高周波印加装置109と、ビーム出射時の共鳴を励起するための複数(図1では4つ)の六極電磁石108と、ビームを出射する出射用デフレクタ105と備えている。また、制御装置121からの指令に応じて、偏向電磁石106、四極電磁石107、高周波加速空洞110、高周波印加装置109、及び六極電磁石108にそれぞれ供給する電流を制御する電源装置111が設けられている。
【0017】
電源装置111は、偏向電磁石106、四極電磁石107、及び高周波加速空洞110に供給する電流を制御することにより、ビームを安定して周回させつつ加速させ、ビームのエネルギを設定値(詳細には、患部を深さ方向に分割した複数の層に対応して複数段階で設定された値)まで高める。その後、高周波印加装置109、四極電磁石107、及び六極電磁石107に供給する電流を制御することにより、ビームを出射用デフレクタ105からビーム輸送系112に出射する。
【0018】
なお、制御装置121は、治療計画装置120から入力された患部の深さ位置に基づき、ビームのエネルギの設定値を決定している。また、ビームをエネルギの設定値まで加速するために必要とされる偏向電磁石6、四極電磁石107、及び高周波加速空洞110にそれぞれ供給する電流値を計算し、記憶装置(図示せず)に記憶している。そして、記憶装置に記憶された装置毎の電流値が、シンクロトロン101の加速時や出射時に電源装置111に出力される。
【0019】
回転式の照射装置113は、ビーム輸送系112の一部及びこれに接続された出射ノズル117を取り付けたガントリ116と、このガントリ116を回転軸115廻りに回転駆動するモータ114とを備えており、任意の方向から患部(言い換えれば、回転軸115と出射ノズル117におけるビーム中心軸119との交点であるアイソセンタ)にビームを照射可能としている。
【0020】
ビーム輸送系112に入射されたビームは、複数(図1では4つ)の偏向電磁石106により軌道が曲げられ、かつ複数(図1では5つ)の四極電磁石107によってベータトロン振動が調節されて出射ノズル117に導かれる。
【0021】
出射ノズル117に導かれたビームは、真空窓2を通過した後、一次位置モニタ(プロファイルモニタ)3でビームの位置が計測される。その後、ビームは、第一散乱体4を通過し、さらに第二散乱体6を通過する。第一散乱体4は、例えばタングステン等の材質からなる板部材で構成されており、ビームの径方向線量分布を正規分布状としつつビームを径方向に拡大させる。なお、本実施形態では、厚み寸法の異なる複数(図2では3つ)の第一散乱体4がビーム進行方向に沿って配置されており、任意の第一散乱体4をビームの通過位置に配置するための駆動機構5が設けられている。第二散乱体6は、例えば沿等の材質からなる中央円盤部と樹脂等の材質からなる外周側リング部とで構成された二重リング構造を有し、ビームの径方向線量分布を一様としつつビームを径方向に拡大させる。なお、本実施形態では、種類の異なる複数の第二散乱体6が回転テーブル7に配設されており、この回転テーブル7の回転によって任意の第二散乱体6がビームの通過位置に配置される。
【0022】
第二散乱体6を通過したビームは、一次線量モニタ8で線量が計測された後、リッジフィルタ9を通過し、さらにレンジシフタ11を通過する。リッジフィルタ9は、複数の楔形構造を有し、ビームのエネルギ分布幅を拡げて患者17の体内におけるビームの到達深度を深さ方向に拡大させる。なお、本実施形態では、形状の異なる複数のリッジフィルタ9が回転テーブル10に配設されており、この回転テーブル10の回転によって任意のリッジフィルタ9がビームの通過位置に配置される。レンジシフタ11は、厚さが異なる複数のアクリル板で構成されており、ビームを通過させるアクリル板を選択してビームのエネルギを調整し、ビームの到達深度を調整する。なお、本実施形態では、厚み寸法の異なる複数(図2では3つ)のレンジシフタ11がビーム進行方向に沿って配置されており、任意のレンジシフタ11をビームの通過位置に配置するための駆動機構12が設けられている。
【0023】
レンジシフタ11を通過したビームは、二次位置モニタ(平坦度モニタ)13でビームの位置が計測され、さらに二次線量モニタ14でビームの線量が計測された後、本実施形態の要部であるマルチリーフコリメータ・ボーラス15で整形されて、患者17の患部に照射される。
【0024】
なお、制御装置121は、一次位置モニタ3及び二次位置モニタ13からの検出信号を入力し、ビームの位置のずれが許容範囲内にあるかどうかを判定する。また、一次線量モニタ8及び二次線量モニタ14からの検出信号を入力し、ビームの線量が目標値に達したかどうか、若しくは許容値を超えていないかどうかを判定する。そして、例えばビームの位置のずれが許容範囲を超えるか、若しくはビームの線量が許容値を超えたと判定した場合、出射ノズル117の上流側に設けられたシャッタ機構118を閉じ状態に切り換えて、ビームの照射を中止させる。
【0025】
図3は、上記マルチリーフコリメータ・ボーラス15の基本構成を表す平面図であり、図4は、図3中断面IV−IVによる断面図である。なお、この図4において、301は患者17の患部、302は患者17の体表面である。
【0026】
図3及び図4において、マルチリーフコリメータ・ボーラス15は、マルチリーフコリメータ機能を有する遮蔽用リーフ板群400と、この減衰用リーフ板群400に対しビーム進行方向直下に配置され、マルチリーフボーラス機能を有する減衰用リーフ板群401とを備えている。
【0027】
遮蔽用リーフ板群400は、荷電粒子ビームを遮蔽する材質(例えば鉄等)で形成された複数対の遮蔽用リーフ板400a,400bで構成されている。詳細には、ビーム進行方向に対し垂直な第1の方向(図3中左右方向)に移動可能としつつ互いに対向配置された対の遮蔽用リーフ板400a,400bをビーム進行方向に対し垂直な第2の方向(図3中上下方向)に複数配設している。そして、リーフ板駆動機構(詳細は後述)によって遮蔽用リーフ板400a,400bの配置がそれぞれ調整され、各対の遮蔽用リーフ板400a,400bにおける対向間隔(空隙)が調整される。これにより、遮蔽用リーフ板群400に到達したビームのうち、遮蔽用リーフ板400a,400bの配置によって形成された空隙以外の成分は遮られるので、ビームの照射野が設定される。その結果、患部の横方向形状に対応することが可能である。
【0028】
減衰用リーフ板群401は、荷電粒子ビームのエネルギを減衰する材質(例えば樹脂等)で形成された複数対の減衰用リーフ板401a,401bで構成されている。詳細には、前述の第1の方向に移動可能としつつ互いに対向配置された対の減衰用リーフ板401a,401bを前述の第2の方向に複数配設し、これら複数対の減衰用リーフ板401a,401bをビーム進行方向に沿って例えば4段配設している。4段の減衰用リーフ板401a,401bは、互いに幅方向(図3中上下方向)及び長さ方向(図3中左右方向)の寸法を同じとしている。その一方で、ビーム進行方向上流側から1段目及び2段目における減衰用リーフ板401a,401bは、遮蔽用リーフ板400a,400bより厚み方向(図4中上下方向)の寸法を小さくし、3段目及び4段目における減衰用リーフ板401a,401bは、1段目及び2段目における減衰用リーフ板401a,401bより厚み方向の寸法を小さくしている。そして、リーフ板駆動機構(詳細は後述)によって減衰用リーフ板401a,401bの配置がそれぞれ調整され、各ビーム入射位置における減衰用リーフ板401a又は401bの重ね厚み寸法(言い換えれば、4段のうちの組み合わせ)が調整される。これにより、遮蔽用リーフ板群400の空隙を通過したビームのうち、減衰用リーフ板401a又は401bを通過した成分はその重ね厚み寸法に応じてエネルギが減衰されるので、患者17の体内におけるビームの到達深度の分布形状が設定される。その結果、患部の深さ形状に対応することが可能である。
【0029】
なお、本実施形態では、遮蔽用リーフ板400a,400bと各段の減衰用リーフ板401a,401bは、ビーム進行方向に対し垂直な方向の形状(幅方向の寸法及び長さ方向の寸法)を互いに同じとしている。また、遮蔽用リーフ板400a,400bと各段の減衰用リーフ板401a,401bは、幅方向の位置が互いに同じとなるように配設されている。
【0030】
図5は、上記マルチリーフコリメータ・ボーラス15に係わる制御系の構成を表す機能ブロック図である。なお、この図5においては、便宜上、複数対の遮蔽用リーフ板400a,400bの駆動機構を代表的に図示している。
【0031】
図5において、マルチリーフコリメータ・ボーラス15の遮蔽用リーフ板400a(又は400b、以降かっこ内の対応同じ)の駆動機構として、遮蔽用リーフ板400a(又は400b)を移動させる駆動力を発生するリーフ位置駆動アクチュエータ402a(又は402b)と、リーフ位置駆動アクチュエータ402a(又は402b)から遮蔽用リーフ板400a(又は400b)への駆動力の伝達・遮断状態を切り換える駆動力伝達・遮断機構403a(又は403b)と、遮蔽用リーフ板400a(又は400b)を制動させる制動力を発生する制動機構(図示せず)と、この制動機構から遮蔽用リーフ板400a(又は400b)への制動力の伝達・遮断状態を切り換える制動力伝達・遮断機構405a(又は405b)と、遮蔽用リーフ板400aの位置を検出する位置(リーフポジション)検出機構404とが備えられている。
【0032】
そして、例えば駆動力伝達・遮断機構403a(又は403b)において駆動力の遮断状態、かつ制動力伝達・遮断機構405a(又は405b)において制動力の伝達状態とすることにより、遮蔽用リーフ板400a(又は400b)の位置を保持するようになっている。一方、例えば駆動力伝達・遮断機構403a(又は403b)において駆動力の伝達状態、かつ制動力伝達・遮断機構405a(又は405b)において制動力の遮断状態とすることにより、遮蔽用リーフ板400a(又は400b)の位置を移動させるようになっている。
【0033】
なお、減衰用リーフ板401a及び401bの駆動機構は、遮蔽用リーフ板400a及び400bの駆動機構と同様の構成であり、説明を省略する。
【0034】
治療計画装置120は、例えば、計算機、複数のディスプレイ装置、入力装置、及び患者データベースから構成されており(なお、患者データベースを別体とし、ネットワークを介し接続する構成としてもよい)、実際の照射を行う前段階として医師によって行われる治療計画作業を補助する機能を持つ。その詳細を具体的に説明する。例えば治療前の診断時に、X線CT検査及びMRI検査により体内腫瘍の3次元画像データが予め取得される。この患部画像データは患者ごとにナンバリングされ、デジタルデータとして患者データベースに保存・管理される。医師は、患者データベースにアクセスして患部画像データを取得し、治療計画装置120のディスプレイ装置に、患部画像を任意の方向から見た3次元画像、または任意の方向から見て深さごとにスライスした断面画像として表示する(図6参照)。医師はこれらを基に各照射スライスにおける照射輪郭を決定する。そして、治療計画装置120は、照射輪郭情報を元に遮蔽用リーフ板400a,400bの位置を自動決定する機能を持ち、自動決定した遮蔽用リーフ板400a,400bの位置と断面画像を重ね合わせて表示する。また、3次元形状データを元に減衰用リーフ板401a,401bの位置を自動決定する機能を持ち、自動決定した減衰用リーフ板401a,401bの位置と3次元画像を重ね合わせて表示する。そして、それらリーフ板の設定位置情報をベースに、体内での線量分布を計算によりシミュレートし計算結果をディスプレイ装置に表示する。このとき、医師により照射線量やビームエネルギなどの照射パラメータが与えられており、幾つかの照射方向に対してのシミュレーションを実施して、最も好適な結果が得られた照射方向が医師により最終的に選択される。なお、リーフ板の設定位置情報及び照射パラメータは、患者固有の治療データとして患者データベースに保存される。
【0035】
制御装置121は、ユーザの操作インターフェースとしての入力装置及び表示装置を備えている。そして、治療計画装置120で決定したリーフ板の設定位置情報を含む患者治療データをネットワークを介して取得し、それらを表示装置に表示し、医師らの確認を受けることが可能となっている。そして、入力装置による治療開始の入力に応じて、コリメータ・ボーラスコントローラ16に対しリーフ板の移動開始指令を出力する。
【0036】
コリメータ・ボーラスコントローラ16は、制御装置121からリーフ板の設定位置情報を入力し、図示しない記憶装置に記憶する。そして、位置検出機構で検出したリーフ板の位置が設定位置となるように、リーフ位置駆動アクチュエータ、駆動力伝達・遮断機構、及び制動力伝達・遮断機構に指令信号を出力して制御する。このとき、リーフ板の位置情報と駆動状態は、制御装置121に常時送信されて制御装置121の表示装置に表示される。
【0037】
以上のように本実施形態の照射装置113においては、マルチリーフコリメータ機能を有する遮蔽用リーフ板群400と、この減衰用リーフ板群400のビーム進行方向直下に配置され、マルチリーフボーラス機能を有する減衰用リーフ板群401とを備えたマルチリーフコリメータ・ボーラス15を備えている。これにより、異なる患部の横方向形状や深さ形状に容易に対応することができる。また、遮蔽用リーフ板400a,400bと各段の減衰用リーフ板401a,401bは、互いに幅方向の寸法を同じとしつつ移動方向を同じとするので構造が複雑化せず、装置全体の簡素化を図ることができる。
【0038】
なお、上記一実施形態においては、遮蔽用リーフ板400a,400bと各段の減衰用リーフ板401a,401bは、互いに幅方向の寸法を同じとしつつ幅方向の位置を同じとした場合を例にとって説明したが、これに限られない。すなわち、例えば、少なくとも1段の減衰用リーフ板は、遮蔽用リーフ板に対して幅方向寸法又は幅方向位置を異ならせることにより、隣接する対の遮蔽用リーフ板と対の遮蔽用リーフ板との間に生じる僅かな隙間を遮るように配設してもよい。このような場合には、遮蔽用リーフ板の隙間からのビームの洩れを抑えることができる。
【図面の簡単な説明】
【0039】
【図1】本発明の照射装置の一実施形態を備えた粒子線治療システムの全体構成を表す概略図である。
【図2】本発明の照射装置の一実施形態における出射ノズルの構成を表す概略図である。
【図3】本発明の照射装置の一実施形態を構成するマルチリーフコリメータ・ボーラスの基本構成を表す平面図である。
【図4】図3中断面IV−IVによる断面図である。
【図5】本発明の照射装置の一実施形態を構成するマルチリーフコリメータ・ボーラスに係わる制御系の構成を表す機能ブロック図である。
【図6】患部及びそれをスライスした断面画像を一例として表す図である。
【符号の説明】
【0040】
113 照射装置
400 遮蔽用リーフ板群
400a,400b 遮蔽用リーフ板
401 減衰用リーフ板群
401a,401b 遮蔽用リーフ板
402a,402b リーフ位置アクチュエータ(第1のリーフ板駆動機構)
403a,403b 駆動力伝達・遮断機構(第1のリーフ板駆動機構)
405a,405b 制動力伝達・遮断機構(第1のリーフ板駆動機構)

【特許請求の範囲】
【請求項1】
荷電粒子ビームを整形して照射する粒子線照射装置において、
ビームの進行方向に対し垂直な第1の方向に移動可能としつつ前記第1の方向に互いに対向配置された対の遮蔽用リーフ板をビームの進行方向に対し垂直な第2の方向に複数配設した遮蔽用リーフ板群と、
前記第1の方向に移動可能としつつ前記第1の方向に互いに対向配置された対の減衰用リーフ板を前記第2の方向に複数配設し、それら複数対の減衰用リーフ板をビームの進行方向に沿って複数段設け、前記遮蔽用リーフ板群に対しビームの進行方向下流側直下に配置した減衰用リーフ板群と、
ビームの照射野を設定するために前記遮蔽用リーフ板の配置をそれぞれ調整する第1のリーフ板駆動機構と、
照射対象におけるビームの到達深度の分布形状を設定するために前記減衰用リーフ板の配置をそれぞれ調整する第2のリーフ板駆動機構とを備えたことを特徴とする粒子線照射装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate