説明

給湯装置

【課題】浴槽から安定的に熱回収を行うことができるとともに、貯湯槽内の水の沸き上げ運転を効率的に行える給湯装置を提供すること。
【解決手段】貯湯槽1と、浴槽3と、前記貯湯槽1内の湯水と前記浴槽3内の湯水とを熱交換する熱交換器4と、前記貯湯槽1内の湯水を前記熱交換器4に搬送し再び前記貯湯槽1内に戻す第1の搬送ポンプ5aと、前記浴槽3内の湯水を前記熱交換器4に搬送し再び前記浴槽3内に戻す第2の搬送ポンプ5bと、制御手段18とを備え、前記浴槽3の湯水が有する熱を前記貯湯槽1の湯水に回収する熱回収運転時には、前記第2の搬送ポンプ5bの搬送流量を、前記第1の搬送ポンプ5aの搬送流量よりも大きくすることを特徴とする給湯装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱回収機能を有する給湯装置に関するものである。
【背景技術】
【0002】
従来、この種の給湯装置には、浴槽の湯を加温する追い焚き運転と浴槽の湯から熱を回収する熱回収運転を機能として備えたものがある(例えば、特許文献1参照)。
【0003】
図18は、熱回収運転を機能として有する給湯装置であり、1は貯湯槽、2はヒートポンプユニット、3は浴槽、4は熱交換器、5aは貯湯槽水搬送ポンプ、5bは浴槽水搬送ポンプ、6は熱回収分岐管、7は三方弁、8は高温水供給管、9は低温水供給管、10は給湯管、11は混合弁、12は浴槽水循環配管、13は開閉弁、14は給水管、15は給湯分岐管、16は熱交戻り管である。浴槽水循環配管12は、浴槽3の往き管と戻り管とを環状に接続して構成され、回路上に熱交換器4および浴槽水搬送ポンプ5bを備える。
【0004】
また、混合弁11は、高温水供給管8と低温水供給管9とを入口側に接続し、給湯管10を出口側に接続するように構成され、開閉弁13を介して浴槽水循環配管12と接続される。さらに浴槽内の水温を検知する浴槽水温検知手段17が、浴槽水循環配管12の途中に設けられている。
【0005】
この給湯装置が風呂自動運転を行う場合は、まず、貯湯槽1に貯えられた湯と給水管14から供給される水とを混合弁11で所望温度の湯に混合して浴槽3へ給湯する。浴槽3へ給湯した後は、一定時間だけ湯の温度を一定に保つために保温動作を行う。
【0006】
保温動作は、浴槽湯温が一定温度以下に降下した場合に行い、貯湯槽水搬送ポンプ5aと浴槽水搬送ポンプ5bとを運転して、熱交換器4において、貯湯槽1内の湯(例えば約80℃)により浴槽3内の湯(例えば約35℃)を加温する。
【0007】
また、浴槽3の水温が一定温度以下に降下しているかどうかを判断するために、浴槽水搬送ポンプ5bのみを運転させる浴槽水温検知動作を間欠的に行う。浴槽水温検知手段17により浴槽3の水温が一定温度以下に降下していることが検知された場合には保温動作を行い、降下していない場合にはそのまま待機する。一定時間が経過した後には風呂自動運転を自動で終了する。
【0008】
次に、追い焚き運転を行う場合は、貯湯槽水搬送ポンプ5aと浴槽水搬送ポンプ5bとが運転を行って、熱交換器4において、貯湯槽1内の湯(例えば約80℃)が浴槽3内の湯(例えば約35℃)を加温する。その結果、浴槽3内の水温は上昇し、貯湯槽1内に湯として貯えられている熱量(蓄熱量)は減少する。
【0009】
最後に、熱回収運転を行う場合は、同様に貯湯槽水搬送ポンプ5aと浴槽水搬送ポンプ5bとが運転を行うが、熱交換器4において、貯湯槽1内の水(例えば約10℃)が浴槽3内の水(例えば約35℃)を冷却して熱を回収する。その結果、浴槽3内の水温は降下し、貯湯槽1内に湯として貯えられる熱量(蓄熱量)は増加するので、ヒートポンプユニット2により沸き上げる熱量を軽減することができる。
【0010】
また、このような運転を制御する方式のひとつに、風呂自動運転を停止した後、熱回収運転を開始するまでの時間を予め設定し、この時間を満了すると熱回収運転を行うというものがある(例えば、特許文献2参照)。
【0011】
図19は、特許文献2に記載された従来の給湯装置の制御ブロックを示すものである。
【0012】
運転制御手段18は、風呂自動運転検出部19が風呂自動運転の停止を検出した後、熱回収運転を開始させるまでの時間を測定するタイマ20を動作させ、予め設定された時間を満了すれば熱回収運転制御手段21に熱回収運転を開始させる。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】特開2009−198115号公報
【特許文献2】特開2007−278578号公報
【発明の概要】
【発明が解決しようとする課題】
【0014】
しかしながら、前記従来の構成では、熱回収運転の開始タイミングについては記述されているものの、機器回路構成はもとより、熱回収運転開始時における各機器の運転制御方法に関する記述がないため、詳細は不明である。
【0015】
従って、ユーザーが設定した熱回収運転開始タイミングで熱回収運転を実施する場合、貯湯槽と浴槽との間の配管(図示していない)の長さや浴槽の形態によっては、効率的な熱回収運転が出来ずに省エネ性が低下するという課題を有していた。
【0016】
本発明は、前記従来の課題を解決するもので、浴槽から安定的に熱回収を行うことができるとともに、貯湯槽内の水の沸き上げ運転を効率的に行える給湯装置を提供することを目的とする。
【課題を解決するための手段】
【0017】
前記従来の課題を解決するために、本発明の給湯装置は、貯湯槽と、浴槽と、前記貯湯槽内の湯水と前記浴槽内の湯水とを熱交換する熱交換器と、前記貯湯槽内の湯水を前記熱交換器に搬送し再び前記貯湯槽内に戻す第1の搬送ポンプと、前記浴槽内の湯水を前記熱交換器に搬送し再び前記浴槽内に戻す第2の搬送ポンプと、制御手段とを備え、前記浴槽の湯水が有する熱を前記貯湯槽の湯水に回収する熱回収運転時には、前記第2の搬送ポンプの搬送流量を、前記第1の搬送ポンプの搬送流量よりも大きくすることを特徴とするものである。
【0018】
これにより、前記第2の搬送ポンプ必要流量が確保されて浴槽内の温度分布が均一化され浴槽から安定的に熱回収を行うことができるとともに、前記第1の搬送ポンプの搬送流量が過大になって貯湯槽内が攪拌されることなく温度成層を保持できるため、貯湯槽内の水の沸き上げ運転を効率的に行うことが可能となる。
【発明の効果】
【0019】
本発明によれば、浴槽から安定的に熱回収を行うことができるとともに、貯湯槽内の水の沸き上げ運転を効率的に行える給湯装置を提供できる。
【図面の簡単な説明】
【0020】
【図1】本発明の実施の形態1における給湯装置の構成図
【図2】同給湯装置の熱回収運転制御手段のブロック図
【図3】同給湯装置の風呂自動運転と熱回収運転の制御方法概念図
【図4】同給湯装置の追い焚き運転と熱回収運転の制御方法概念図
【図5】同給湯装置の風呂自動運転中の浴槽への給湯時の水および湯の流れ方向を示した回路構成図
【図6】同給湯装置の風呂自動運転中の保温動作時および追い焚き運転時の水および湯の流れ方向を示した回路構成図
【図7】同給湯装置の風呂自動運転中の浴槽水温検知運転時の水および湯の流れ方向を示した回路構成図
【図8】同給湯装置の熱回収運転時の水および湯の流れ方向を示した回路構成図
【図9】同給湯装置の熱回収運転による貯湯槽内の温度分布の変化を示した図
【図10】同給湯装置のヒートポンプユニットの効率を示した図
【図11】同給湯装置の熱回収量とヒートポンプユニットの入力の関係を示した図
【図12】同給湯装置の熱回収運転制御動作のフローチャート
【図13】(a)同給湯装置の和風浴槽の形態を示す図(b)同給湯装置の洋風浴槽の形態を示す図(c)同給湯装置のベンチ付浴槽の形態を示す図
【図14】同給湯装置の熱回収運転のポンプ動作のフローチャート
【図15】本発明の実施の形態2における給湯装置の構成図
【図16】同給湯装置熱回収運転時の水および湯の流れ方向を示した回路構成図
【図17】同給湯装置沸き上げ運転時の水および湯の流れ方向を示した回路構成図
【図18】従来の給湯装置の構成図
【図19】同給湯装置の制御のブロック図
【発明を実施するための形態】
【0021】
第1の発明は、貯湯槽と、浴槽と、前記貯湯槽内の湯水と前記浴槽内の湯水とを熱交換する熱交換器と、前記貯湯槽内の湯水を前記熱交換器に搬送し再び前記貯湯槽内に戻す第1の搬送ポンプと、前記浴槽内の湯水を前記熱交換器に搬送し再び前記浴槽内に戻す第2の搬送ポンプと、制御手段とを備え、前記浴槽の湯水が有する熱を前記貯湯槽の湯水に回収する熱回収運転時には、前記第2の搬送ポンプの搬送流量を、前記第1の搬送ポンプの搬送流量よりも大きくすることを特徴とする給湯装置である。
【0022】
これにより、前記第2の搬送ポンプ必要流量が確保されて浴槽内の温度分布が均一化され浴槽から安定的に熱回収を行うことができるとともに、前記第1の搬送ポンプの搬送流量が過大になって貯湯槽内が攪拌されることなく温度成層を保持できるため、貯湯槽内の水の沸き上げ運転を効率的に行うことが可能となる。
【0023】
第2の発明は、前記熱回収運転時の前記第2の搬送ポンプの搬送流量が、毎分5L以上となるよう制御することを特徴とするもので、浴槽の形状によらず浴槽内の温度分布が均一化され浴槽から安定的に熱回収を行うことができる。
【0024】
第3の発明は、前記熱回収運転時の前記第1の搬送ポンプの搬送流量が、毎分0.5L以上かつ毎分2L以下となるよう制御することを特徴とするもので、前記第1の搬送ポンプの搬送流量が過大になって貯湯槽内が攪拌されることなく温度成層を保持できるため、貯湯槽内の水の沸き上げ運転を効率的に行うことが可能となる。
【0025】
第4の発明は、前記貯湯槽内の湯水を加熱する加熱手段を備え、前記熱回収運転停止後の前記加熱手段の加熱運転時における入力が略最小となるように、前記熱回収運転を停止させることを特徴とするものである。
【0026】
これにより、熱回収運転中の貯湯槽の温度分布に基づき、加熱手段によって所定の貯湯量を沸き上げるための消費熱量(消費電力)が最小となる時点を判断して、熱回収運転を停止するので、本来の目的であるシステム全体としての効率向上を実現し、省エネルギー性を高める効果がある。
【0027】
第5の発明は、前記貯湯槽の水温を検知する複数の貯湯温検知手段を備え、前記複数の貯湯温検知手段のうち少なくともひとつの検知温度に基づいて、前記熱回収運転を停止させることを特徴とするもので、熱回収運転を行う際に、熱回収運転の運転停止を最適化することにより、システム効率を向上させ省エネルギー性を高めた給湯装置を提供できる。
【0028】
第6の発明は、前記貯湯槽に接続された給水管と、前記貯湯槽の高温水を供給するように接続された高温水供給管と、低温水を供給するように、前記貯湯槽下部または前記給水管に接続された低温水供給管と、入口側に前記高温水供給管と前記低温水供給管とを接続して前記高温水と前記低温水とを混合する混合弁と、前記熱交換器と前記浴槽内の湯水が循環するように接続された浴槽循環配管と、前記浴槽へ所定の温度の湯水を供給するように前記混合弁の出口側と前記浴槽循環配管とに接続された給湯管と、前記給湯管の途中に接続された開閉弁と、前記開閉弁の上流で分岐して前記熱交換器に接続された給湯分岐管と、前記熱交換器で前記浴槽の湯水と熱交換した前記貯湯槽の湯水を再び前記貯湯槽へ戻すように前記熱交換器と前記貯湯槽とに接続された熱交戻り管と、前記貯湯槽と前記熱交換器で湯水を循環させる第1の搬送ポンプと、前記浴槽と前記熱交換器で湯水を循環させる第2の搬送ポンプとを備え、前記開閉弁を閉じ、前記混合弁を前記高温水供給管からの湯水よりも前記低温水供給管からの水を優先して給湯管へ供給する開度に調整し、かつ、前記第1の搬送ポンプと前記第2の搬送ポンプを動作させ、前記熱回収運転を行うことを特徴とするものである。
【0029】
これにより、給湯と追い焚きと熱回収の3つの機能を最小限の配管や弁の構成で実現することができ、前記貯湯槽の筐体内設置空間の省スペース化とそれによる装置の小型化を図ることができる。また、給湯と追い焚きと熱回収の3つの機能を、前記混合弁の開度の制御によって実現できるので、制御が簡素化されて誤動作などの不具合が減少するという効果がある。
【0030】
第7の発明は、前記貯湯槽に接続された給水管と、前記貯湯槽の高温水を供給するように接続された高温水供給管と、前記貯湯槽内の湯水を加熱する加熱手段と、前記貯湯槽内の略上部の湯が前記熱交換器に流れるように切換手段を介して前記熱交換器に接続された熱交往き管と、前記熱交換器で前記浴槽の湯水と熱交換された湯水が再び前記貯湯槽内へ戻るように前記貯湯槽に接続された熱交戻り管と、前記貯湯槽の略下部の湯水が前記熱交換器に流れるように、前記加熱手段、前記切換手段を順に介して前記熱交換器に接続された熱回収往き管と、前記加熱手段にて加熱された湯水が前記貯湯槽内に戻るように、前記切換手段から前記貯湯槽に接続された沸き上げ戻り管と、制御手段とを備え、前記熱交換器により前記浴槽の湯の有する熱を前記貯湯槽の湯水に回収する熱回収運転を行うときには、前記熱回収往き管、前記加熱手段、前記切換手段、前記熱交換器、前記熱交戻り管の順に前記貯湯槽からの湯水が流れるように、また、前記加熱手段により前記貯湯槽内の湯水を加熱する沸き上げ運転を行うときには、前記熱回収往き管、前記加熱手段、前記切換手段、前記沸き上げ戻り管の順に前記貯湯槽からの湯が流れるように、前記制御手段が前記切換手段を切り換える構成としたことを特徴とする給湯装置である。
【0031】
これにより、熱回収時に使用する配管の一部を貯湯槽内の湯水の沸き上げ運転時にも使用する構成とすることができ、低コスト化を実現した給湯装置を提供できる。
【0032】
第8の発明は、前記高温水供給管と連通し、前記貯湯槽の略上部に接続された第1の出湯管と、前記貯湯槽の上下方向において前記第1の出湯管が接続された位置と前記給水管が接続された位置との間に接続された第2の出湯管とを備え、前記熱交戻り管は、前記貯湯槽の上下方向において、前記第2の出湯管の前記貯湯槽の接続位置よりも高い位置で、前記貯湯槽に接続されていることを特徴とするものである。
【0033】
これにより、温度成層型の貯湯槽において不可避な貯湯槽上部の高温水と下部の低温水との間にできる中間程度の温度の水(以下、中温水)を有効に利用できる結果として、同じ蓄熱量でも貯湯槽下方に低温の水が多く確保できることから浴槽水からの回収熱量を大きくできる。
【0034】
また、熱回収により発生した中温水を貯湯槽の比較的上部に流入させることは、増加しながら貯湯槽下方に移動する中温水を、熱回収した湯の流入位置よりも下にある第2の出湯管を通じて給湯に利用できるので、貯湯された湯の熱量を最大限有効に使うことができる。同時に加熱手段がヒートポンプユニットである場合には、沸き上げ効率の低下を招く貯湯槽内の中温水が減少することでシステム全体の効率低下を防ぐことができ、熱量の有効利用による良好な使い勝手と高い省エネルギー性とを実現する。
【0035】
さらに、通常、熱回収運転される時間帯は深夜であるが、熱回収運転中に使用者の入浴を検出した場合を想定すると、その時点から浴槽水の追い焚き運転が必要となる。このとき、それ以前の給湯の際に中温水を有効に利用し、深夜になっても貯湯槽の上部の水は比較的高温に保たれて残っているので、追い焚き性能を確保できるという効果があるとともに、中温水が貯湯槽の比較的上部に戻されることで貯湯槽下部の水温の上昇は小さいので、使用者の入浴完了後に熱回収運転を再開した場合にヒートポンプユニットへの流入水温が低く保たれて効率的な運転がなされ、省エネルギー性を損なわない。
【0036】
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
【0037】
(実施の形態1)
図1は本発明の実施の形態1における給湯装置の構成を示す図である。
【0038】
図1において、給湯装置は、貯湯槽1と、この貯湯槽1の水を加熱する加熱手段としてのヒートポンプユニット2と、熱回収を行う対象の浴槽3と、浴槽3の水と貯湯槽1の水とを熱交換するように構成された熱交換器4と、貯湯槽1に接続された給水管14と、貯湯槽1の略上部に接続された第1の出湯管22と、第1の出湯管22と給水管14とが接続された位置の間、すなわち、高さ方向において貯湯槽1の胴部略中央部に接続された第2の出湯管23と、第1の出湯管22と第2の出湯管23とが入口側に接続された高温水混合弁24と、この高温水混合弁24の出口側に接続され、貯湯槽1内の高温水を供給する高温水供給管8と、給水管14から分岐され、貯湯槽1内または給水管14からの低温水を供給する低温水供給管9とを備えている。
【0039】
また、これら高温水供給管8と低温水供給管9とを入口側に接続された混合弁11と、この混合弁11の出口側に接続された給湯管10と、給湯管10の途中に接続された開閉弁13と、開閉弁13の上流で分岐して熱交換器4の第1の流路に接続された給湯分岐管15と、熱交換器4で浴槽3の水と熱交換した貯湯槽1の水を再び貯湯槽1へ戻すように熱交換器4の第1の流路と貯湯槽1とに接続された熱交戻り管16と、貯湯槽1と熱交換器4の第1の流路内の水を循環させる第1の搬送ポンプとしての貯湯槽水搬送ポンプ5aと、熱交換器4の第2の流路内へ浴槽3の水が循環するように接続された浴槽水循環配管12と、浴槽3と熱交換器4の第2の流路内の水を循環させる第2の搬送ポンプとしての浴槽水搬送ポンプ5bとを備えている。
【0040】
ここで熱交戻り管16は、貯湯槽1の上下方向において第1の出湯管22と第2の出湯管23の間の位置で貯湯槽1に接続される。また、給湯管10は、浴槽水循環配管12の途中に接続し、浴槽3への給湯の際はこの浴槽水循環配管12を利用する。
【0041】
また、浴室内に設置されたリモコン25には、人体検知手段としての赤外線センサ26と、使用者が任意に熱回収運転を起動するための熱回収運転起動スイッチ27を設け、貯湯槽1には、貯湯槽1内の水温を検知するための複数の貯湯温検知手段28a〜28e、浴槽水循環配管12には、浴槽3の水温を検知するための浴槽水温検知手段17を設けている。
【0042】
さらに、これら複数の貯湯温検知手段28a〜28eと赤外線センサ26と浴槽水温検知手段17の出力および熱回収運転起動スイッチ27の操作に基づいて、浴槽3への給湯およびそれ以降予め設定された時間だけ浴槽水の保温と水量維持を行う風呂自動運転を制御する給湯制御手段としての風呂自動運転制御手段29と、浴槽3内の水を加熱する追い焚き運転を制御する追い焚き運転制御手段30と、貯湯槽1に浴槽3の水の熱を回収する熱回収運転を制御する熱回収運転制御手段21とからなる運転制御手段18を設けている。
【0043】
図2は熱回収運転制御手段21のブロック図を示し、赤外線センサ26の出力および風呂自動運転制御手段29の動作状態あるいは熱回収運転制御手段21で予め設定された熱回収運転の開始時刻、さらには熱回収運転起動スイッチ27などから熱回収運転の開始を判断する熱回収運転開始判断部31と、ヒートポンプユニット2による沸上運転を制御する沸上運転制御手段(図示せず)から貯湯後の給湯利用に必要な貯湯熱量を取得する所要貯湯熱量取得部32と、貯湯温検知手段28a〜28eにより貯湯温度分布を測定する貯湯温度分布測定部33とからなる。
【0044】
また、これら所要貯湯熱量取得部32と貯湯温度分布測定部33で得られた結果に基づいて必要な沸上熱量を算出する必要沸上熱量算出部34と、貯湯温度分布測定部33による現在の温度分布と必要沸上熱量算出部34から沸上完了時の温度分布を推定する沸上完了時貯湯温度分布推定部35と、さらに貯湯温度分布測定部33による現在の温度分布から沸上完了時貯湯温度分布推定部35での沸き上げ完了時の推定温度分布に至る間のヒートポンプユニット2への入力を推定する沸上所要入力推定部36と、この沸上所要入力推定部36による入力推定値の時間変化に基づいて貯湯槽水搬送ポンプ5a、浴槽水搬送ポンプ5bとを制御するポンプ制御部37とからなる。
【0045】
以上のように構成された給湯装置について、以下その動作、作用を説明する。
【0046】
一般的な家庭での湯の利用における基本的な動作として、朝には貯湯槽1にその日使う分の湯が貯えられており、活動している時間帯に順次給湯に利用される。給湯利用中に貯湯量が不足する場合には必要に応じてヒートポンプユニット2を運転し、追加で貯湯運転を行うこともある。近年では、浴槽3への給湯から保温までを自動で行う風呂自動運転の機能を備えている給湯装置が多くなっている。
【0047】
風呂自動運転制御手段29により浴槽3への給湯および保温運転を行う場合は、貯湯槽1内に貯えられている湯を用いて浴槽3へ給湯し、浴槽水温が低下した場合には、貯湯槽1内に貯えられている湯の熱を利用して保温運転を行い、浴槽水温を予め設定された温度に保つ。
【0048】
また、追い焚き運転制御手段30により追い焚き運転を行って浴槽3内の湯を加温する場合も、貯湯槽1内に貯えられている湯の熱を利用して行う。これら一日の給湯などの熱利用が終わる時点で貯湯槽1内の湯は大部分が給水と置換され、その後の深夜に再び次の利用のための貯湯運転が行われる。
【0049】
このとき、入浴のために浴槽3に供給された湯は、給湯利用終了時には貯湯槽1内の水
温に対して比較的高温で残されていることが多いので、熱回収運転制御手段21が、ヒートポンプユニット2による深夜の沸上運転の前、あるいは運転中に熱回収運転を行って貯湯槽1内に熱を回収する。
【0050】
次に、風呂自動運転、追い焚き運転、および熱回収運転の制御方法について説明する。風呂自動運転制御手段29は、浴槽3へ所定量の湯を所定温度で自動で給湯し、その後、浴槽水温を予め設定された時間だけ予め設定された温度に保つように間欠的に保温動作を行う(風呂自動運転)。
【0051】
風呂自動運転を行っている間は、保温動作を行う必要があるかないかを判断するために、定期的に浴槽湯温を検出するための浴槽湯温検知動作を行う。浴槽水温の検知は浴槽水温検知手段17で行い、その結果、浴槽水温が予め設定された温度より所定温度以上(例えば1K以上)低い場合には、保温運転を行って浴槽水温を保ち、所定温度未満の場合には、保温運転を行わない。
【0052】
この予め設定された時間内は、風呂自動運転を優先とし、熱回収運転制御手段21が自動で、あるいは使用者による熱回収運転起動スイッチ27の操作で熱回収運転開始の指示を受けても熱回収運転を行わず、予め設定された時間が経過した後に、熱回収運転を行うように制御する。逆に、熱回収運転中に風呂自動運転制御手段29が風呂自動運転開始の指示を受けた場合には、風呂自動運転を優先として、熱回収運転制御手段21は熱回収運転を停止し、風呂自動運転制御手段29が風呂自動運転を開始する(図3に概念図を示す)。
【0053】
追い焚き運転制御手段30は、浴槽3内の湯を循環加温し、浴槽水温検知手段17が検知する浴槽水温が所定の温度になる、または動作開始から所定の時間経過すると終了する(追い焚き運転)。追い焚き運転制御手段30が追い焚き運転を行っている間は、追い焚き運転を優先とし、熱回収運転制御手段21は熱回収運転を行わず、追い焚き運転が終了した後に、熱回収運転を行うように制御する。
【0054】
逆に、熱回収運転中に追い焚き運転制御手段30が追い焚き運転の指示を受けた場合にも、追い焚き運転を優先として、熱回収運転制御手段21は熱回収運転を停止し、追い焚き運転制御手段30が追い焚き運転を開始する(図4に概念図を示す)。
【0055】
各々の運転を行う場合の弁およびポンプの動作と、それに伴う水および湯の流れについて図5〜図8を用いて説明する。図中、流れのある経路は太線で示してある。
【0056】
まず、風呂自動運転制御手段29が風呂自動運転を行うときの動作について説明する。最初に浴槽3へ給湯を行う場合における回路中の水および湯の流れを図5に示す。貯湯槽1からは、第1の出湯管22と第2の出湯管23からの湯を高温水混合弁24で混合して高温水供給管8へ供給する。この高温水供給管8に供給された湯と給水管14から低温水供給管9へと供給される給水とが混合弁11にて給湯所望温度の湯に混合され、給湯管10へと供給される。
【0057】
ここで、高温水混合弁24から高温水供給管8に供給される湯の温度は、上記の給湯所望温度よりも所定温度以上高い温度(たとえば給湯所望温度が40℃の場合に45℃以上)に調節されている。開閉弁13は開かれ、給湯管10へと供給された所望温度の湯は、浴槽水循環配管12より浴槽3へと給湯される。
【0058】
なお、高温水混合弁24と混合弁11の開度は、それぞれ出口側に接続された高温水供給管8と給湯管10に供給される湯の温度に基づいてフィードバック制御されるのが一般
的であり、高温水混合弁24については第1の出湯管22と第2の出湯管からの湯、混合弁11については高温水供給管8からの湯と低温水供給管9からの給水の温度により変化する。
【0059】
浴槽3内の湯を保温する場合における回路中の水および湯の流れを図6に示す。貯湯槽水搬送ポンプ5aと浴槽水搬送ポンプ5bとが運転を開始し、貯湯槽水搬送ポンプ5aの運転により、貯湯槽1の略上部より第1の出湯管22から高温水混合弁24を経て高温水供給管8へと湯が供給され、さらに混合弁11を経て給湯管10へと供給される。
【0060】
このとき、開閉弁13を閉じ、給湯管10へと供給された湯は、給湯分岐管15へと供給され、熱交換器4にて浴槽水循環配管12を循環する浴槽3の湯を加熱して、浴槽水温を上昇させる。一方、熱交換器4を出て比較的低温となった湯は熱交戻り管16を経て貯湯槽1へと還流する。このとき、高温水混合弁24と混合弁11の開度は、それぞれ第1の出湯管22と高温水供給管8側が全開となり、貯湯槽1上部の高温の湯が熱交換器4に供給されるように制御されるのが一般的であるが、第2の出湯管23と低温水供給管9より一定量の湯または水が流入して混合するものであってもよい。
【0061】
浴槽3内の水温を検知するための浴槽水温検知動作を行う場合における回路中の水および湯の流れを図7に示す。浴槽水搬送ポンプ5bが運転を開始し、浴槽水循環配管12内を浴槽3内の湯が循環する。このとき、開閉弁13を閉じ、貯湯槽水搬送ポンプ5aは運転を行わない。浴槽水温検知手段17が浴槽水温を検知し、保温動作をするかしないかを判断する。
【0062】
次に、追い焚き運転制御手段30が追い焚き運転を行う場合の動作であるが、追い焚き運転を行う場合における回路中の水および湯の流れは風呂自動運転制御手段29が保温動作を行う場合と同じで図6に示す通りであるので省略する。
【0063】
最後に、熱回収運転制御手段21が、浴槽3に残された湯の熱回収運転を行う場合における回路中の水および湯の流れを図8に示す。熱回収運転を開始すると、貯湯槽水搬送ポンプ5aの運転により、貯湯槽1の略下部より低温水供給管9へと水が供給され、混合弁11を経て給湯管10へと供給される。
【0064】
このとき、開閉弁13を閉じ、給湯管10へと供給された水は、給湯分岐管15へと供給され、熱交換器4にて浴槽水循環配管12を循環する浴槽3の湯と熱交換を行って熱を回収する。一方、熱交換器4を出て比較的高温となった水は熱交戻り管16を経て貯湯槽1へと還流する。このとき、混合弁11の開度は、低温水供給管9側が全開となるように制御されるのが一般的であるが、高温水供給管8より一定量の湯が流入し混合するものであってもよい。
【0065】
熱回収運転を行った場合の貯湯槽1内の温度分布は図9に示す38、39、40の順に変化する。つまり、浴槽3と熱交換されて熱交戻り管16から貯湯槽1に流入する水41の温度は貯湯槽1の貯湯温よりも低い場合が多く、貯湯槽水搬送ポンプ5aの作用によって貯湯槽1の湯と混合しつつ貯湯槽1の下方に向けて移動する。
【0066】
第2の出湯管23の接続位置は熱交戻り管16の接続位置よりも下部にあるので、給湯が発生すると、下がってきた中温の水42を第2の出湯管23から出湯し、第1の出湯管からの高温水43と混合して利用することができる。図9に示す44は、熱回収後に給湯が発生した場合の温度分布を示している。このように第2の出湯管23が熱交戻り管16の貯湯槽への接続位置よりも下にあることで、回収した熱を効果的に利用することができる。
【0067】
給湯の発生が比較的少なく、使い切れないで残った中温の水は、ヒートポンプユニット2で再加熱して利用することになるが、ヒートポンプユニット2の運転効率は、図10に示すように加熱前の水温が高いほど低下する。図9に示した貯湯槽1の温度分布からわかるように、熱回収運転後のヒートポンプユニット2による必要加熱量は、浴槽3からの回収熱量が増加するほど少なくなるものの、それと同時にヒートポンプユニット2で加熱する前の水温は高くなって、再加熱時の運転効率は低下するので、できるだけ多くの熱回収を行うことが必ずしも省エネルギーにつながらない。
【0068】
すなわち、ヒートポンプユニット2への入力(消費熱量あるいは消費電力)は、所要貯湯熱量を得るための熱回収前の必要加熱量から熱回収運転によって得られた回収熱量を減じたものを、ヒートポンプユニット2による貯湯運転中の平均効率で除したものとなり、この値は図11に示すように、回収熱量に対して最小値を有する場合がある。
【0069】
したがって、浴槽3からの熱回収運転を、熱回収運転停止後に行われる再加熱運転において、ヒートポンプユニット2への入力が略最小となる時点で停止することが、より高い省エネルギー効果を得るために必要である。最小値となる時点を見つける具体的な方法としては、所定の時間間隔で測定される貯湯槽1の温度分布に基づいて予想されるヒートポンプユニット2への入力値の刻々の変化の推移を求めて、その値の減少度合いが小さいか減少しなくなる、あるいは増加に転じることで判断する。
【0070】
図10に示したように、貯湯槽1内の湯水をヒートポンプユニット2にて加熱する場合、貯湯槽1からヒートポンプユニット2に水を搬送させる部位の温度(本実施の形態においては、貯湯槽1の下部の温度)が低くなるにつれて、ヒートポンプユニット2の運転効率は高くなるが、浴槽3からの熱回収運転時、浴槽3から熱回収した水が貯湯槽1内に流入してくることで、貯湯槽1からヒートポンプユニット2に水を搬送させる部位の温度が上昇し始める状態が存在する。
【0071】
したがって、浴槽3からの熱回収運転時に、貯湯槽1のヒートポンプユニット2に水を搬送させる部位の温度を測定し、その温度の上昇度合いが増加に転じる付近で、浴槽3からの熱回収運転動作を停止させることで、熱回収運転後の加熱運転時におけるヒートポンプユニット2の運転効率の略最大を実現できるのである。
【0072】
上記を勘案して高い省エネルギー効果を得るための熱回収運転制御手段21の制御方法について説明する。
【0073】
図12は熱回収運転制御手段21の動作のフローチャートである。使用者による熱回収運転起動スイッチ27の操作、あるいは風呂自動運転制御手段29による風呂自動運転終了後の所定時間経過後など、熱回収運転の開始を熱回収運転開始判断部31が判断すると、最初に赤外線センサ26によって入浴者の有無を検知し(ステップ1)、ここで入浴者が検知された場合は、熱回収運転を開始しないで終了する(ステップ2)。
【0074】
ステップ1で入浴者を検知しなければ、所要貯湯熱量取得部31で取得された所要貯湯熱量と貯湯温検知手段28a〜28eにより測定された現在の貯湯槽1の温度分布、およびヒートポンプユニット2の沸き上げ温度等の運転条件から貯湯運転完了時の貯湯槽1内の温度分布を予測し、それを現在の温度分布と比較して、その時点からヒートポンプユニット2で加熱する場合の残りの加熱量Qrを求める(ステップ3)。
【0075】
次に、測定された現在の温度分布から、予測された貯湯運転完了時の温度分布に達するまでの間にヒートポンプユニット2で沸き上げる前の平均水温を推定する(ステップ4)

【0076】
さらにステップ4で求めた平均水温と図4で示したヒートポンプユニット2の特性とから貯湯運転時の平均効率を求め、ステップ3で求めた残りの加熱量Qrをこの平均効率で除して、貯湯運転時の入力Qinを推定する(ステップ5)。Qinは前回の評価時刻において求めた値であるQin−fとの差を求め、それが予め定めた偏差qより小さい場合、すなわち推定入力の変化が次第に小さくなって最小値と判断されたら(ステップ6)、ステップ2で貯湯槽水搬送ポンプ5aと浴槽水搬送ポンプ5bとを停止して熱回収運転を終了する。QinとQin−fとの差がq以上の場合は熱回収運転を継続し、次の評価時刻になれば(ステップ8)、以上の動作を繰り返す。
【0077】
なお、補足として熱回収運転開始後一回目の動作時は、ステップ6での比較は行わずにステップ7を実行する。
【0078】
ここでは熱回収運転の開始時に入浴者を検知した場合を説明したが、ステップ1では熱回収運転が開始された後で入浴者が検知された場合にも、熱回収運転は停止されることになる(ステップ2)。
【0079】
さらに、このフローチャートには示していないが、入浴が終わって赤外線センサ26が人体を検知しなくなれば、この手順を再度実行することにより熱回収運転を再開し、上記の動作を行う。
【0080】
図13は、浴槽形態と浴槽内の循環の様子を示す図である。浴槽形態の種類としては、図13(a)に示す浴槽面積が比較的狭くて水深が深い和風浴槽、図13(b)に示す浴槽面積が広くて水深が浅い洋風浴槽、図13(c)に示す浴槽に腰掛部(ベンチ)が付いたベンチ付浴槽(などがあり、それぞれの浴槽内では概ね図中の矢印に沿って湯水が循環・攪拌される。
【0081】
上記、浴槽形態と浴槽水搬送ポンプの搬送流量とが熱回収運転性能に与える影響や、熱回収運転時における貯湯槽水搬送ポンプの搬送流量が貯湯槽内の温度成層や沸き上げ性能に与える影響については、以下のことが明らかとなっている。
【0082】
まず、浴槽水搬送ポンプの搬送流量が毎分5L以上確保できる場合には、浴槽内の温度分布は水面付近の一部を除いて概ね均一であり、安定的に熱回収運転を行えること。
【0083】
次に、浴槽水搬送ポンプの搬送流量が毎分5L未満になると、和風浴槽や特にベンチ付浴槽の温度分布が顕著になって風呂アダプター近傍の温度が急激に低下し、十分な熱回収運転が行えなくなること。
【0084】
そして、貯湯槽水搬送ポンプの搬送流量が毎分2L以上の場合には、貯湯槽内に戻された湯水によって貯湯槽内部が攪拌されて温度成層が崩れてしまい、沸き上げ運転効率が大きく低下すること。
【0085】
さらには、貯湯槽水搬送ポンプの搬送流量が毎分0.5L未満の場合には、貯湯槽内の温度成層は良好に保持されるが、熱回収能力が小さいために熱回収運転時間が長くなること。
【0086】
図14は、熱回収運転制御手段21のポンプ動作のフローチャートである。図14において、ユーザーによるリモコン操作等により熱回収運転開始の指示があった場合には、STEP1からSTEP2に移行して浴槽水搬送ポンプ5bを運転して、浴槽3の湯または
水を浴槽水搬送ポンプ5bを介して熱交換器4に搬送した後に浴槽3に戻す。
【0087】
浴槽水搬送ポンプ5bを所定時間(例えば1分間)運転すると、STEP3に移行して浴槽温度検出手段である浴槽水温検知手段17の検出温度を浴槽温度として確定させ、STEP4に移行する。浴槽3と貯湯槽1とは通常、数メートル(2〜5m)の配管で接続されているため、浴槽3の温度を浴槽水温検知手段17(通常は貯湯槽1付近に設置されている)で検出するためには、浴槽水搬送ポンプ5bを所定時間運転して配管内の水を循環させる必要がある。
【0088】
一方、貯湯槽温度は、貯湯槽1の壁面に設置された複数の貯湯温検知手段28a〜28eにより常時検出されている。STEP4では、浴槽温度(浴槽水温検知手段17の検出温度)が所定温度(例えば35℃)よりも高く、かつ、貯湯槽1下部の水温(貯湯温検知手段28eの検出温度)よりも高い場合に貯湯槽水搬送ポンプ5aを運転させる。浴槽水搬送ポンプ5bにより浴槽3から搬送された湯と、貯湯槽水搬送ポンプ5aにより貯湯槽1下部から搬送された水とが熱交換器4で熱交換することにより、浴槽3から貯湯槽1に熱回収運転される(STEP6)。
【0089】
この時、浴槽水搬送ポンプ5bの流量が貯湯槽水搬送ポンプ5aの流量よりも大きくなるように、浴槽水搬送ポンプ5b、及び貯湯槽水搬送ポンプ5aを制御する。浴槽水搬送ポンプ5bの流量は毎分5L以上であることが望ましく、流量を確保することにより浴槽3内が循環・攪拌されて温度分布が均一となり、安定的に熱回収運転を行える。
【0090】
また、貯湯槽水搬送ポンプ5aの流量は毎分0.5L以上かつ毎分2L以下であることが望ましく、この範囲に流量制御することにより、貯湯槽1内が攪拌されることなく温度成層を保持できるため、ヒートポンプユニット2による貯湯槽1内の水の沸き上げ運転を効率的に行うことができる。
【0091】
貯湯槽1と浴槽3との間の配管(以下、浴槽配管と称する)の長さは、各ユーザー宅の設置条件により様々であるが、浴槽配管長が最大となる場合(一般的には、浴槽配管径13A、浴槽配管長15m)に浴槽水搬送ポンプ5bの流量が毎分5Lを確保できる回転数で運転すれば、浴槽形態や浴槽配管長に影響されずに安定的に熱回収運転を行うことができる。
【0092】
また、貯湯槽水搬送ポンプ5aが水を搬送する回路は貯湯槽1を収納するケーシング(図示していない)に収められているため、設置条件に影響されることはない。従って、貯湯槽水搬送ポンプ5aの流量が、毎分0.5L以上かつ毎分2L以下になるような回転数で運転すれば良い。
【0093】
この熱回収運転を継続すると、時間とともに浴槽温度は低下していき、所定温度(例えば20℃)未満になった場合にSTEP7に移行して貯湯槽水搬送ポンプ5aと浴槽水搬送ポンプ5bとを停止して熱回収運転を終了させる。
【0094】
尚、上記以外の貯湯槽水搬送ポンプ5aや浴槽水搬送ポンプ5bの流量制御方法としては、回転数を固定するのではなく、それぞれの配管途中に流量計を設置し(図示していない)、流量計検出値に従ってポンプの回転数フィードバック制御を行う方法などが考えられる。
【0095】
このように、本発明の実施の形態によれば、熱回収運転時の浴槽水搬送ポンプ5bの流量が貯湯槽水搬送ポンプ5aの流量よりも大きくなるように、浴槽水搬送ポンプ5b、及び貯湯槽水搬送ポンプ5aを制御する。
【0096】
特に、浴槽水搬送ポンプ5bの流量は毎分5L以上、貯湯槽水搬送ポンプ5aの流量は毎分0.5L以上かつ毎分2L以下であることが望ましく、浴槽3内の温度分布が均一となり安定的に熱回収運転を行えるとともに、貯湯槽1内の温度成層を保持できるため、ヒートポンプユニット2による貯湯槽1内の水の沸き上げ運転を効率的に行うことができる。
【0097】
以上が動作の説明であるが、人体検知によらない熱回収運転の停止は、ヒートポンプユニット2の入力の最小値の判断を減少度合いが小さくなったことで行っている。この方法以外に、評価時刻間の入力の差qが0となる場合、またはqの符号が前回の評価時刻と逆になる場合、すなわち推定入力が増加に転じるときを最小値として、熱回収運転を停止してもよい。
【0098】
また、測定される貯湯槽1の温度の値の測定誤差等により、推定入力は最小値に至る間に増減のあることも多い。したがって、最近の数回の評価時刻における推定入力を記憶しておき、その移動平均値を用いて最小値に達したかどうかを判断することによって、最小値に達したかどうかの判定精度をより高められる場合もある。
【0099】
さらには、以上説明したような、その都度温度分布を評価して入力を求める方法は精度が高いものの計算が煩雑となり、熱回収運転制御手段21の負荷が大きい。その場合は、入力に対して最も影響を与える位置の貯湯温の変化を予め把握しておき、その位置に対応する貯湯温検知手段28a〜28eのうち、いずれかの温度が上昇し始めたときや所定の温度上昇がみられたとき、あるいは、たとえば貯湯温検知手段28dの検知温度が上昇し、かつ貯湯温検知手段28eの検知温度は上昇しない間は熱回収運転を継続するというように、二つ以上の温度の組み合わせに応じて停止の判断をしてもよい。
【0100】
具体的には、比較的貯湯槽1の下部に近い温度が上昇してくることを検出して熱回収運転を停止させることによってもヒートポンプユニット2の効率を損なうことが少なくなって所望の効果を得ることができる。さらに、貯湯槽1のより上部の温度の変化を考慮すれば、熱回収運転による回収熱量の確保を同時に評価でき、精度は向上する。
【0101】
このように、本発明の実施の形態によれば、浴室内に人体が存在することを検知した場合には熱回収運転をせず、熱回収機能によって浴槽内の湯温が低下して入浴ができなくなることを防止できる。
【0102】
また、浴槽3内の温度分布が均一となり安定的に熱回収運転を行えるとともに、貯湯槽1内の温度成層を保持できるため、ヒートポンプユニット2による貯湯槽1内の水の沸き上げ運転を効率的に行うことができる。このとき、熱回収運転を開始するタイミングで入浴者がいる場合には熱回収運転を開始せず、また熱回収運転中に入浴者があった場合にも即座に熱回収運転を停止することによって快適性を損ねない。
【0103】
さらに、入浴が終われば熱回収運転を改めて開始、あるいは再開することにより、省エネルギー性を損なわない運転ができる。熱回収運転の再開は、入浴者を検知しなくなってから所定の時間が経過することなどで自動でも行われるが、入浴者が退室する際に熱回収運転起動スイッチ27を操作することによって即座に再開することができるので、時間経過による浴槽3からの無駄な放熱が抑えられ、省エネルギー性が高まる。
【0104】
また、風呂自動運転と追い焚き運転と熱回収運転を実現するための配管系の構成において、ひとつの混合弁11の開度調整にてそれらを切り換えているので、機能の向上に対して筐体内に新たな部材の設置スペースを確保する必要がなく、重量や材料の増加、さらに
は待機電力の増大もなく、省資源、省エネルギーにも寄与する。また、併せて熱交換器4は熱交換効率の高いプレート式とするとともに、貯湯槽1の熱交戻り管16の接続位置近傍に設置することで、熱交換器4自体をコンパクトにした上で最小限の配管長として、同様に省資源となる。
【0105】
そして、熱回収運転を行う際には、所要貯湯熱量を沸き上げるためのヒートポンプユニット2への入力が最小となる時点で熱回収運転を停止することによって、本来の目的であるシステム全体としての効率向上を実現し、省エネルギー性を高めることができる。
【0106】
構成としては、貯湯槽1下部の水を取り出して熱交換器4で加熱し、貯湯槽1の比較的上部へ戻しているが、熱回収運転による貯湯槽1内の温度分布はこの取り出し位置や戻し位置の違いによって変わる。さらに、貯湯槽水搬送ポンプ5aの能力制御によって熱回収の速度なども制御でき、これら構成や制御の違いに応じて運転効率も変化する。
【0107】
したがって、この実施の形態では、使われ方や貯湯槽1の容量などを考慮して適切な取り出し位置や戻り位置を設定したり、貯湯槽水搬送ポンプ5aの能力制御を行えるといった最適化設計の自由度が高いために複数の異なる機種に適用しやすく、その結果、多くの使用者に提供することによって大きな省エネルギー効果を得ることができる。
【0108】
さらに、貯湯槽1からの給湯において、第1の出湯管22と第2の出湯管23とからの湯を高温水混合弁24で適切に混合して貯湯槽1内の中温水を有効に利用するとともに、熱交戻り管16の貯湯槽1への接続位置を第2の出湯管23よりも上にすることによって、温度成層型の貯湯槽において不可避な貯湯槽上部の高温水と下部の低温水との間にできる中温水を有効に利用できる結果、同じ蓄熱量でも貯湯槽下方に低温の水が多く確保できることから浴槽水からの回収熱量を大きくできる。
【0109】
また、熱回収により発生した中温水を貯湯槽1の比較的上部に流入させることは、増加しながら貯湯槽1下方に移動する中温水を、熱回収した湯の流入位置よりも下にある第2の出湯管23を通じて給湯に利用できるので、貯湯された湯の熱量を最大限有効に使うことができる。同時にヒートポンプユニット2の沸き上げ効率の低下を招く貯湯槽1内の中温水が減少することでシステム全体の効率低下を防ぐことができ、熱量の有効利用による良好な使い勝手と高い省エネルギー性とを実現する。
【0110】
さらに、通常、熱回収運転される時間帯は深夜であるが、熱回収運転中に使用者の入浴を検出した場合を想定すると、その時点から浴槽水の追い焚き運転が必要となる。このとき、それ以前の給湯の際に中温水を有効に利用し、深夜になっても貯湯槽1の上部の水は比較的高温に保たれて残っているので、追い焚き性能を確保できるという効果があるとともに、中温水が貯湯槽1の比較的上部に戻されることで貯湯槽1下部の水温の上昇は小さく、使用者の入浴完了後に熱回収運転を再開した場合にヒートポンプユニット2への流入水温が低く保たれて効率的な運転がなされ、省エネルギー性を損なわない。
【0111】
すなわち、使用者の快適性を損ねることなく、高い省エネルギー性能を実現した給湯装置を提供することができるものである。
【0112】
(実施の形態2)
図15は本発明の第2の実施の形態における給湯装置の構成を示す図である。
【0113】
図15において、第1の実施の形態と異なる点は、切換手段51を設け、熱交換器4の一次側入口に、切換手段51を介して、第1の出湯管22から分岐された追い焚き運転の流路となる熱交往き管52を接続するとともに、貯湯槽1の下部と切換手段51とを、ヒ
ートポンプユニット2を介して、熱回収往き管53にて接続している。
【0114】
さらには、貯湯槽1の上部と切換手段51とを沸き上げ戻り管54にて接続し、貯湯槽水搬送ポンプ5aを熱交戻り管16に配設している。
【0115】
以上のように構成された給湯装置について、以下その動作、作用を説明する。動作全体については第1の実施の形態で説明したものと同様であり、回路の違いによる湯水の経路が異なる部分について説明する。
【0116】
熱交換器4により浴槽3の湯の有する熱を貯湯槽1の湯水に回収する熱回収運転を行うときには、図16に示すように、浴槽3の湯を熱交換器4の二次側流路に搬送するために浴槽水搬送ポンプ5bを運転する。
【0117】
その後、貯湯槽1の下部から、熱回収往き管53、ヒートポンプユニット2、切換手段51、熱交換器4の一次側流路、熱交戻り管16、貯湯槽1の略中央部へと順に貯湯槽1からの湯水を流すよう、貯湯槽水搬送ポンプ5aを運転する。これにより、浴槽3の湯が有する熱が貯湯槽1の湯水に回収される。
【0118】
なお、浴槽水搬送ポンプ5bによる湯の搬送量を貯湯槽水搬送ポンプ5aによる湯水の搬送量より大きくすることで、浴槽水搬送ポンプ5bによる必要流量が確保されて、浴槽3内の温度分布が均一化され、浴槽3から安定的に熱回収を行うことができるとともに、貯湯槽水搬送ポンプ5aによる搬送流量が過大になって、貯湯槽1内の湯水が攪拌されることなく、温度成層を保持できるため、後述する貯湯槽1内の湯水の沸き上げ運転を効率的に行うことが可能となる。
【0119】
また、ヒートポンプユニット2により、貯湯槽1内の湯水を加熱する沸き上げ運転を行うときには、図17に示すように、運転制御手段18によって切換手段51の流路方向を上述した熱回収運転時とは異なる方向に切り換えて、熱回収往き管53に設けたポンプを運転することで、貯湯槽1の下部から、熱回収往き管53、ヒートポンプユニット2、切換手段51、沸き上げ戻り管54、貯湯槽1の上部へと順に貯湯槽1からの湯水を流し、ヒートポンプユニット2通過後の湯が、所定の沸き上げ温度になるように、熱回収往き管53に設けたポンプによる湯水の搬送量を制御する。
【0120】
これにより、貯湯槽1下部の水がヒートポンプユニット2で加熱されて、貯湯槽1の上部に戻され、高温湯が貯湯槽1内で貯湯される。
【0121】
なお、熱回収運転の場合には、熱交換器4の一次側に貯湯槽1の下部の湯水を搬送するために、熱交戻り管16に設けた貯湯槽水搬送ポンプ5aを用いたが、熱回収往き管53に設けたポンプを用いてもよい。
【0122】
この実施の形態では、切換手段51を用いることで熱回収運転と沸き上げ運転の流路のかなりの部分を共用できるため、使用する配管部材を少なくできることから、省資源化、低コスト化が実現できるという効果がある。
【産業上の利用可能性】
【0123】
以上のように、本発明にかかる給湯装置は、安定的に熱回収運転を行えるとともに、貯湯槽内の水の沸き上げ運転を効率的に行うことができ、省エネ性が向上するという効果を有することより、家庭用の給湯装置に適用できるほか、業務用などの規模の大きい用途にも適用し、実用性に優れた給湯装置を提供できる。
【符号の説明】
【0124】
1 貯湯槽
2 加熱手段(ヒートポンプユニット)
3 浴槽
4 熱交換器
5a 第1の搬送ポンプ(貯湯槽水搬送ポンプ)
5b 第2の搬送ポンプ(浴槽水搬送ポンプ)
8 高温水供給管
9 低温水供給管
10 給湯管
11 混合弁
12 浴槽水循環配管
13 開閉弁
14 給水管
15 給湯分岐管
16 熱交戻り管
17 浴槽水温検知手段
18 運転制御手段
21 熱回収運転制御手段
22 第1の出湯管
23 第2の出湯管
24 高温水混合弁
25 リモコン
26 人体検知手段(赤外線センサ)
27 熱回収運転起動スイッチ
28 貯湯温検知手段
29 風呂自動運転制御手段
30 追い焚き運転制御手段
51 切換手段
52 熱交往き管
53 熱回収往き管
54 沸き上げ戻り管

【特許請求の範囲】
【請求項1】
貯湯槽と、浴槽と、前記貯湯槽内の湯水と前記浴槽内の湯水とを熱交換する熱交換器と、前記貯湯槽内の湯水を前記熱交換器に搬送し再び前記貯湯槽内に戻す第1の搬送ポンプと、前記浴槽内の湯水を前記熱交換器に搬送し再び前記浴槽内に戻す第2の搬送ポンプと、制御手段とを備え、前記浴槽の湯水が有する熱を前記貯湯槽の湯水に回収する熱回収運転時には、前記第2の搬送ポンプの搬送流量を、前記第1の搬送ポンプの搬送流量よりも大きくすることを特徴とする給湯装置。
【請求項2】
前記熱回収運転時の前記第2の搬送ポンプの搬送流量が、毎分5L以上となるように制御することを特徴とする請求項1に記載の給湯装置。
【請求項3】
前記熱回収運転時の前記第1の搬送ポンプの搬送流量が、毎分0.5L以上かつ毎分2L以下となるように制御することを特徴とする請求項1または2に記載の給湯装置。
【請求項4】
前記貯湯槽内の湯水を加熱する加熱手段を備え、前記熱回収運転停止後の前記加熱手段の加熱運転時における入力が略最小となるように、前記熱回収運転を停止させることを特徴とする請求項1〜3のいずれか1項に記載の給湯装置。
【請求項5】
前記貯湯槽の水温を検知する複数の貯湯温検知手段を備え、前記複数の貯湯温検知手段のうち少なくともひとつの検知温度に基づいて、前記熱回収運転を停止させることを特徴とする請求項4に記載の給湯装置。
【請求項6】
前記貯湯槽に接続された給水管と、前記貯湯槽の高温水を供給するように接続された高温水供給管と、低温水を供給するように、前記貯湯槽下部または前記給水管に接続された低温水供給管と、入口側に前記高温水供給管と前記低温水供給管とを接続して前記高温水と前記低温水とを混合する混合弁と、前記熱交換器と前記浴槽内の湯水が循環するように接続された浴槽循環配管と、前記浴槽へ所定の温度の湯水を供給するように前記混合弁の出口側と前記浴槽循環配管とに接続された給湯管と、前記給湯管の途中に接続された開閉弁と、前記開閉弁の上流で分岐して前記熱交換器に接続された給湯分岐管と、前記熱交換器で前記浴槽の湯水と熱交換した前記貯湯槽の湯水を再び前記貯湯槽へ戻すように前記熱交換器と前記貯湯槽とに接続された熱交戻り管と、前記貯湯槽と前記熱交換器で湯水を循環させる第1の搬送ポンプと、前記浴槽と前記熱交換器で湯水を循環させる第2の搬送ポンプとを備え、前記開閉弁を閉じ、前記混合弁を前記高温水供給管からの湯水よりも前記低温水供給管からの水を優先して給湯管へ供給する開度に調整し、かつ、前記第1の搬送ポンプと前記第2の搬送ポンプを動作させ、前記熱回収運転を行うことを特徴とする請求項1〜5のいずれか1項に記載の給湯装置。
【請求項7】
前記貯湯槽に接続された給水管と、前記貯湯槽の高温水を供給するように接続された高温水供給管と、前記貯湯槽内の湯水を加熱する加熱手段と、前記貯湯槽内の略上部の湯が前記熱交換器に流れるように切換手段を介して前記熱交換器に接続された熱交往き管と、前記熱交換器で前記浴槽の湯水と熱交換された湯水が再び前記貯湯槽内へ戻るように前記貯湯槽に接続された熱交戻り管と、前記貯湯槽の略下部の湯水が前記熱交換器に流れるように、前記加熱手段、前記切換手段を順に介して前記熱交換器に接続された熱回収往き管と、前記加熱手段にて加熱された湯水が前記貯湯槽内に戻るように、前記切換手段から前記貯湯槽に接続された沸き上げ戻り管と、制御手段とを備え、前記熱交換器により前記浴槽の湯の有する熱を前記貯湯槽の湯水に回収する熱回収運転を行うときには、前記熱回収往き管、前記加熱手段、前記切換手段、前記熱交換器、前記熱交戻り管の順に前記貯湯槽からの湯水が流れるように、また、前記加熱手段により前記貯湯槽内の湯水を加熱する沸き上げ運転を行うときには、前記熱回収往き管、前記加熱手段、前記切換手段、前記沸き上
げ戻り管の順に前記貯湯槽からの湯が流れるように、前記制御手段が前記切換手段を切り換える構成としたことを特徴とする請求項1〜5のいずれか1項に記載の給湯装置。
【請求項8】
前記高温水供給管と連通し、前記貯湯槽の略上部に接続された第1の出湯管と、前記貯湯槽の上下方向において前記第1の出湯管が接続された位置と前記給水管が接続された位置との間に接続された第2の出湯管とを備え、前記熱交戻り管は、前記貯湯槽の上下方向において、前記第2の出湯管の前記貯湯槽の接続位置よりも高い位置で、前記貯湯槽に接続されていることを特徴とする請求項6または7に記載の給湯装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2013−76552(P2013−76552A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【出願番号】特願2012−21923(P2012−21923)
【出願日】平成24年2月3日(2012.2.3)
【特許番号】特許第5163822号(P5163822)
【特許公報発行日】平成25年3月13日(2013.3.13)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】