説明

耐衝撃強度に優れた熱硬化性樹脂材料

【課題】熱硬化性樹脂と、衝撃改質剤とからなる耐衝撃強度に優れた熱硬化性材料と、その衝撃改質剤での使用。
【解決手段】衝撃改質剤がブロックコポリマー:A−B−CおよびA−Bの中から選択される少なくとも一種のコポリマーから成り、各ブロックは共有結合によって連結されているか、一方のブロックに一つの共有結合形成を介して結合され、他方のブロックに他の共有結合形成を介して結合された中間分子を介して連結されており、Aはメチルメタクリレートと少なくとも一種の水溶性モノマーとのコポリマーであり、Cは(i)水溶性モノマーを含んでいてもよいPMMA(ホモポリマーまたはコポリマー)または(ii)ビニルモノマーまたはビニルモノマーの混合物をベースにしたポリマーであり、Bは熱硬化性樹脂に非相溶または部分的相溶で、ブロックAおよびブロックCに非相溶で、ガラス転移温度Tgは熱硬化性材料の使用温度以下。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐衝撃強度に優れた熱硬化性材料(materiaux thermodurs)に関するものである。
【0002】
熱硬化性材料は、三次元のネットワークを形成するように種々の長さのポリマー鎖が共有結合によって互いに結合した材料と定義できる。この熱硬化性材料は例えば熱硬化性樹脂、例えばエポキシとアミン型の硬化剤との反応で得られる。熱硬化性材料は構造接着剤として、複合材料のマトリックスとして、さらには電子部品の保護材料として使用可能な多くの重要な性質を有している。
本発明の熱硬化性材料は、熱硬化性樹脂と水溶性ポリマーと共重合するメチルメタクリレート単位から成る少なくとも一種のブロックを有するブロックコポリマーとを主にしたものである。本発明の熱硬化性材料は熱硬化性樹脂中にコポリマーを溶解し、硬化剤を加え、加熱架橋することで製造できる。
【背景技術】
【0003】
エポキシ材料は架橋密度が高く、ガラス転移温度Tgが高く、それによって優れた熱機械的性質を有している。架橋密度が高くなるとガラス転移温度Tgが高くなり、熱機械的性質もよくなり、材料の使用限界温度も高くなる。しかし、エポキシ材料の耐衝撃強度は多くの用途で不充分である。
【0004】
この問題を解決するために多くの対策が提案されてきた。エポキシ材料は全て、耐衝撃強度を高くするのが難しいが、Tg値が高いエポキシ材料の耐衝撃強度を高くするのは最も難しい。Tg値が高いエポキシ材料の耐衝撃強度を強くする研究は多数なされてきたが、高Tg値のエポキシにゴムを添加しても耐衝撃強度は良くならないということは分かっている。その例としてはBADGE/DDS系(Tg=220℃)またはBADGE/MCDEA系(Tg=180℃)が挙げられる(ここで、DDSはジアミノジフェニルスルホン、MCDEAは4,4'-メチレンビス(3- クロロ−2,6−ジエチルアニリンを表し、BADGEはビスフェノールAジグリシジルエーテルを表す)。
【0005】
反応性ゴム(ATBN、CTBN)を添加することが知られている(CTBN:カルボキシル末端を有するブタジエンとアクリロニトリルとのランダムコポリマー、ATBN:アミノ末端を有するブタジエンとアクリロニトリルとのランダムコポリマー)。
これらの化合物はカルボキシル基またはアミン基で終わるブタジエンとアクリロニトリルをベースにしたオリゴマーである。ブタジエンは非常に低いTgを有し、衝撃強度を良くするのに好ましいが、エポキシ樹脂とは相溶性がない。しかし、アクリロニトリルの比率を特定の値にすることでブタジエンと共重合でき、初期状態でエポキシ樹脂と密に相溶し、従って、エポキシ樹脂と容易に混合できる。
しかし、架橋反応の結果、機能性オリゴマの一部がエラストマー粒子を形成して無視しえない量がマトリックス中に残るということが下記文献に記載されている:
【非特許文献1】P. LoveIl(Macromol. Symp. 92、p71-81, 1995)
【非特許文献2】A. Mazouz et al. Polymer Material Science Engineering、70、p17, 1994)
【0006】
このことは上記で得られた材料のTgが純粋なエポキシ樹脂に比べて低下することで分かる。これは良好な熱機械的性質を必要とする用途では望ましくないことである。また、この方法で生じるエラストマー領域の寸法は0.5〜5ミクロンと大きく、得られる強度も満足ではない。
この理由からエポキシ樹脂の耐衝撃強度を良くするための他の解決方法が求められた。例えば下記文献には予備形成したコア/シェル粒子を用いて強度を良くすることが記載されている。
【非特許文献3】P. Lovell (Macromol. Symp. 92, p71-81, 1995)
【0007】
この強化法で用いるコア/シェル粒子はガラス転移温度が−20℃以下のエラストマーのコアと、反応性官能基を有するか、有していないガラス転移温度が50℃以上のリジッドなシェルとからなる粒子である。上記反応性官能基はエポキシ分子のオキシラン基またはその硬化剤の化学基と反応可能な基と定義され、反応性官能基の例としてはオキシラン基、アミン基またはカルボキシル基等が挙げられている。この方法では寸法が正確に規定された粒子を反応物(エポキシおよび硬化剤)に加える。反応後に形成される材料は熱硬化性樹脂マトリックス中にこれらの粒子が分散している点に特徴がある。得られた材料のエラストマー粒子の寸法は反応前の出発材料の寸法と同じである。この結果は周知で、例えば下記文献に記載されている。
【非特許文献4】Maazouz et aL, Polymer Bulletin 33, p67−74, 1994
【非特許文献5】Sue et al., Rubber-Toughened Plastics, 1993, p259-291(特にp261)
【0008】
上記粒子は二段階の乳化重合で得られ、エラストマーのコアは最初の段階で合成され、第2段階でこのコア上にシェルがグラフトされる。この合成法で得られる粒子のコアの寸法は30ナノメータ〜2ミクロンの間である(下記文献参照)。
【非特許文献6】Sue et al, Rubber-Toughened Plastics, 1993, p259-291 (特にp261)
【0009】
最適衝撃強度が得られる上記粒子のエラストマーコアの寸法を決定するために多くの研究が行われ、その研究から、予備形成した粒子で満足な強度を得るのには120ナノメータ以上の粒度でなければならないということが明らかになっている。
しかし、この寸法の粒子をエラストマー中に含む物質は透明ではない。この不透明性は多くの用途で問題になる。例えば、メーカが複合材料で熱硬化性材料を用い、構造(熱硬化性材料+繊維または熱硬化性材料+充填材)を目視で見えるようにしたい場合を挙げることができる。さらに、電子回路の例では不透明なエポキシ材料は良くなく、ユーザが嫌う。
PEO−PEEジブロックを加えることも公知である。
下記文献では熱硬化性エポキシ/無水フタル酸/ABジブロック混合物系が研究されている(ここで、Aはポリ(エチレンオキシド)、Bはポリ(エチルエチレン)(PEO−PEE)である。
【非特許文献7】Hillmyer et al. (M. A. Hillmyer, P. M. Lipic, D. A. Hajduk, K. Almdal, F. S. Bates, Journal of the American Chemical Society, 1997, 119, 2749-2750)
【0010】
この著者は得られた材料の特徴は極めて特殊な形態にあることを記載している。すなわち、この材料では熱硬化性樹脂マトリックス中に5〜10ナノメータの同じ直径を有するPEEの円筒体が均一に分配しており、この円筒体自身は数ナノメータ厚さのPEOからなるシェルで被われている。この著者は得られた物質は透明であるとしているが、その特性の研究はしておらず、その性状については記載も示唆もない。
BADGE−MDA系中にジブロックPEO-PEPを加えることも公知である(下記文献参照)(MDAはメチレンジアミンを表す)。
【非特許文献8】Lipic PM, Bates FS, Hillmyer MA、Journal of Americal Chemical Society、1998、120、8963-8970
【0011】
その研究および結果は上記の場合と同じである。
ポリシロキサン−ポリカプロラクトンブロックコポリマーPCL-b-PDMS-b-PCLおよび(PCL)2-b-PDMS-b-(PCL)2を加えることも公知である。
【非特許文献9】Konczol et al. Journal of Applied Polymer Science, vol. 54, p815-826, 1994
【0012】
この文献にはエポキシ/無水物系と、PCL-bPDMS-b-PCLまたは(PCL)2-b-PDMS-b-(PCL)2のマルチブロックコポリマーとのブレンド物が研究されている(ここで、PCLはポリカプロラクトンを表し、PDMSポリジメチルシロキサンを表す)。この著者は得られた物質は透明で、5%〜15%のコポリマーの添加でエポキシ材料の耐衝撃強度が改善すると記載している。
熱可塑性/熱硬化性樹脂系を相溶化するためにブロックコポリマーを使用することも公知である。下記文献で研究されている熱可塑性/熱硬化性樹脂ブレンド物の熱可塑性材料はPPE(ポリフェニレンエーテル)またはPEI(ポリエーテルイミド)で、熱硬化性樹脂系はBADGE/MCDEAの組合わせである。しかし、これらのブレンド物は脆い。
【非特許文献10】Girard-Reydet et al., Polymer, 1999, No. 40, page 1677
【0013】
この著者は予めモノアミンまたはジアミン(例えばMCDEA)と反応させて変成したマレイン化したSEBSブロックコポリマーを用いることで、熱可塑性/熱硬化性樹脂ブレンド物の耐衝撃強度を改良することができることを確認している。
下記文献には、99〜20%の熱硬化性樹脂と、1〜80%の衝撃改質剤とからなる耐衝撃強度に優れた熱硬化性材料が記載されている。
【特許文献1】国際特許出願第WO01/92415号
【0014】
この熱硬化性材料の特徴は衝撃改質剤がブロックコポリマー:
S−B−M、
B−M、および
M−B−M
の中から選択される少なくとも一種のコポリマーから成り、
上記の各ブロックは共有結合によって連結されているか、一方のブロックに一つの共有結合形成を介して結合され、他方のブロックに他の共有結合形成を介して結合された中間分子によって連結されており、
MはPMMAのホモポリマーまたはメチルメタクリレートを少なくとも50重量%含むコポリマーであり、
Bは熱硬化性樹脂およびMブロックに非相溶で、そのガラス転移温度Tgは熱硬化性材料の使用温度以下であり、
Sは熱硬化性樹脂、ブロックBおよびブロックMに非相溶で、そのTgまたは融点M.t.はブロックBのTgより高い点にある。
上記Bブロックはポリブタジエンまたはポリ(ブチルアクリレート)で、Sブロックがポリスチレンであるのが有利である。
【0015】
熱硬化性材料にメチルメタクリレート単位を主とする少なくとも一種のブロックを有するブロックコポリマーを加えると熱硬化性材料の耐衝撃強度は改善する。しかも、この材料は透明で、そのTgは維持され、12℃以上下がることはない。メチルメタクリレート単位を主成分とするブロックコポリマーの外に、他のブロックコポリマーや衝撃改質剤(例えばコア/シェル型衝撃改質剤または官能化されたエラストマー)を加えることもできる。加えた改質材料の種類によっては得られた材料が透明ではなくなるが、耐衝撃強度は大きく改善される。
【発明の開示】
【発明が解決しようとする課題】
【0016】
本発明者は、メチルメタクリレート単位をベースにしたブロックが水溶性モノマーを含む場合には、熱硬化性材料を容易に製造できるということを見出した。
【課題を解決するための手段】
【0017】
本発明の対象は、99〜20重量%の熱硬化性樹脂と、1〜80重量%の衝撃改質剤とからなる耐衝撃強度に優れた熱硬化性材料であって、
衝撃改質剤がブロックコポリマー:A−B−CおよびA−Bの中から選択される少なくとも一種のコポリマーから成り、各ブロックは共有結合によって連結されているか、一方のブロックに一つの共有結合形成を介して結合され、他方のブロックに他の共有結合形成を介して結合された中間分子によって連結されており、
Aはメチルメタクリレートと少なくとも一種の水溶性モノマーとのコポリマーであり、
Cは(i)水溶性モノマーを含んでいてもよいPMMA(ホモポリマーまたはコポリマー)または(ii)ビニルモノマーまたはビニルモノマーの混合物をベースにしたポリマーであり、
Bはガラス転移温度Tgが熱硬化性材料の使用温度より低く、上記熱硬化性樹脂に非相溶か、部分的に相溶で、ブロックAおよび任意成分としてのブロックCに非相溶である、ことを特徴とする熱硬化性材料にある。
【0018】
本発明の別の対象は上記熱硬化性樹脂の衝撃改質剤での使用にある。
【発明を実施するための最良の形態】
【0019】
上記熱硬化性材料とは、三次元のネットワークを形成するように種々の長さのポリマー鎖が共有結合によって互いに結合した材料と定義できる。例としては不飽和ポリエステル樹脂、ポリアクリル酸、ポリウレタン、シアノアクリレート、ビスマレイミドおよび硬化剤によって架橋されたエポキシ樹脂がある。
シアノアクリレートの中ではモノマーCH2=C(CN)COORの重合(Rは各種の基にすることができる)で得られる熱硬化性材料である2-シアノアクリル酸のエステルが挙げられる(硬化剤の添加は不要)。
ビスマレイミド型の熱硬化性樹脂の例としては下記を挙げることができる:
メチレンジアニリン+ベンゾフェノンジアンヒドリド+ナディクイミド
メチレンジアニリン+ベンゾフェノンジアンヒドリド+フェニルアセチレン
メチレンジアニリン+無水マレイン酸+マレイミド。
【0020】
本発明の熱硬化性材料は熱硬化性エポキシ樹脂と硬化剤との反応で得られるものが好ましい。これはオキシラン基を有するオリゴマーと硬化剤との反応で得られる任意の化合物と定義できる。このエポキシ樹脂の反応によって得られる架橋物質は三次元網を形成し、この三次元網の密度は使用する樹脂と硬化剤の種類に依存する。
【0021】
「エポキシ樹脂」(以下、Eで表す)とは開環によって重合可能な少なくとも二つのオキシラン型官能基を有する任意の有機化合物を意味する。この「エポキシ樹脂」という用語には室温(23℃)またはそれ以上の温度で液体である任意のエポキシ樹脂が含まれる。このエポキシ樹脂はモノマー状またはポリマー状でよく、また、脂肪族、芳香族、脂環式化合物、複素環式化合物でよい。エポキシ樹脂の例としてはレゾルシノールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、トリグリシジル-p-アミノフェノール、ブロモビスフェノールFジグリシジルエーテル、m-アミノフェノールトリグリシジルエーテル、テトラグリシジルメチレンジアニリン、(トリヒドロキシフェニル)メタントリグリシジルエーテル、フェノールホルムアルデヒドノボラック(ポリ)グリシジルエーテル、オルト-クレゾールノボラックグリシジルエーテルおよびテトラフェニルエタンテトラグリシジルエーテルを挙げることができる。これらの樹脂の少なくとも2つの混合物を使うこともできる。
【0022】
一分子当たり少なくとも1.5個のオキシラン基、好ましくは2〜4個のオキシラン基を有するエポキシ樹脂が好ましい。また、少なくとも一つの芳香環を有するエポキシ樹脂、例えばビスフェノールAジグリシジルエーテルが好ましい。
【0023】
硬化剤は室温または室温以上の温度で反応するエポキシ樹脂の硬化剤として一般に使用されている硬化剤である。例としては以下のものを挙げることができるが、下記のものに限定されるものではない。
酸無水物、特に無水コハク酸、
芳香族または脂肪族ポリアミン、特にジアミノジフェニルスルホン(DDS)、メチレンジアニリン、4,4'-メチレンビス(3-クロロ-2,6-ジエチルアニリン)(MCDEA)または4,4'-メチレンビス(2,6-ジエチルアニリン)(M-DEA)
ジシアンジアミドと、その誘導体、
イミダゾール、
ポリカルボン酸、
ポリフェノール
【0024】
ジブロックABのAはメチルメタクリレートと少なくとも一種の水溶性モノマーとのコポリマーである。水溶性モノマーの例としては、アクリル酸またはメタクリル酸、これらの酸から得られるアミド、例えばジメチルアクリルアミド、2−メトキシ−エチルアクリレートまたはメタクリレート、2−アミノエチルアクリレートまたはメタクリレート(四級化されていてもよい)、ポリエチレングリコール(PEG)(メタ)アクリレート、水溶性ビニルモノマー、例えばN−ビニルピロリドン、その他の任意の水溶性モノマーが挙げられる。ポリエチレングリコール(メタ)アクリレートのポリエチレングリコール基の質量は400〜10,000g/molであるのが有利である。
【0025】
MMAの比率は10〜95モル%、水溶性モノマーの比率は90〜5モル%にすることができる。MMAの比率は60〜90モル%、水溶性モノマーは40〜10%であるのが好ましい。このAブロックを構成する他のモノマーはアクリル系のモノマーであってもなくてもよく、反応性モノマーであってもなくてもよい。「反応性モノマー」とはエポキシ分子のオキシラン基または硬化剤の化学基と反応可能な化学基を意味し、例としてはオキシラン基、アミン基またはカルボキシル基等の反応性官能基を挙げることができるが、これらに限定されるものではない。反応性モノマーは(メタ)アクリル酸またはこの酸に加水分解可能な他の任意のモノマーにすることができる。Aブロックを構成できる他のモノマーとしてはメタクリル酸グリシジルまたはtert-ブチルメタクリレートが挙げられる。
【0026】
BのTgは0℃以下、好ましくは−40℃以下にする。
Bのエラストマブロックを合成するのに用いられるモノマーはブタジエン、イソプレン、2,3-ジメチル-1,3- ブタジエン、1,3-ペンタジエン、2-フェニル-1,3-ブタジエンから選択されるジエンにすることができる。このBはポリ(ジエン)、特にポリ(ブタジエン)、ポリ(イソプレン)およびこれらのランダムコポリマーまたは部分的または完全に水素化されたポリ(ジエン類)の中から選択するのが好ましい。ポリブタジエンの中ではTgが最も低い例えば1,4-ポリブタジエン(約-90℃)を使用するのが有利である(1,2-ポリブタジエン(約0℃)よりTgが低い)。Bのブロックは水素化されていてもよい。この水素化は通常の方法に従って実行される。
【0027】
エラストマのBブロックを合成するのに用いるモノマーはアルキル(メタ)アクリレートにすることができる。得られるTg値はアクリレートの名称の後にカッコ中に示す:アクリル酸エチル(-24℃)、アクリル酸ブチル(-54℃)、2-エチルヘキシルアクリレート(-85℃)、ヒドロキシエチルアクリレート(-15℃)および2-エチルヘキシルメタアクリレート(-10℃)。アクリル酸ブチルを用いるのが好ましい。BとAは非相溶であるという条件から、このアクリレートはAブロックのアクリレートとは相違する。
このBブロックは主として1,4-ポリブタジエンから成るのが好ましい。
ジブロックABは10,000〜500,000g/mol、好ましくは20,000〜200,000g/molの数平均分子量を有するのが好ましい。また、このジブロックABのAの重量比率は5〜95%、好ましくは15〜85%であるのが好ましい。
【0028】
トリブロックA−B−CのCは(i)PMMA(ホモポリマーまたはコポリマー)(このPMMAは水溶性モノマーを含んでいてもよい)または(ii)ビニルモノマーまたはビニルモノマーの混合物をベースにしたポリマーである。
(i)はCブロックのモノマーおよび任意成分としてのコモノマーをABジブロックのAブロックと同じモノマーおよび任意成分としてのコモノマーから選択することができる。しかし、水溶性モノマーの存在は必須ではない。Cの例としてはPMMAホモポリマー、PMMAのコポリマー(例えばMMAと別のアクリレート、例えばメチルアクリレートまたはエチルアクリレートとのコポリマー)またはMMAのコポリマー、水溶性モノマーおよび任意成分としての別のモノマーが挙げられる。トリブロックA−B−Cの2つのブロックAとCは互いに同一でも異っていてもよい。また、同じモノマーで、分子量が異なるものにすることもできる。Cブロックが水溶性モノマーを含む場合には、CブロックはAブロックの水溶性モノマーと同一でも、異なっていてもよい。
【0029】
Cブロックの(ii)の例としては芳香族ビニル化合物、例えばスチレン、α−メチルスチレンまたはビニールトルエンから得られるもの、アルキル鎖が1〜18の炭素原子を有するアクリル酸および/またはメタクリル酸のアルキルエステルから得られるものを挙げることができる。
BブロックはABジブロックのBブロックと同じモノマーおよび任意成分のコモノマーから成る。A−B−CトリブロックおよびABジブロックのBブロックは同一でも、異なっていてもよい。
【0030】
A−B−Cトリブロックは10,000〜500,000g/mol、好ましくは20,000〜200,000g/molの数平均分子量を有する。このA−B−Cトリブロックは下記重量組成を有するのが好ましい(全体で100%):
A+C: 10〜80%、好ましくは15〜70%、
B: 90〜20%、好ましくは85〜30%。
これらコポリマーA−B−CおよびA−Bは任意の重合手段、特に制御ラジカル重合によって製造できる。
【0031】
制御されたラジカル重合は周知である。すなわち、従来のラジカル重合ではラジカルの寿命が短く、反応性が高く、中間単位の立体化学性が無い、等の理由で制御された構造を有するポリマーおよびコポリマーを作ることはできなかった。「制御されたラジカル重合」とは従来のラジカル重合において開始、生長反応、停止および移動の中から選択される少なくとも一つの段階が制御されるラジカル重合を意味する。制御の例としては、生長するマクロラジカルの可逆的非活性化を挙げることができる。この可逆的非活性化は反応媒体中にニトロオキシドを添加して行うことができる。難分解性ラジカル(persistent radical)の例はTEMPO(2,2,6,6−テトラメチル−1−ピペリジニルオキシ)で、このTEMPOはマクロラジカルを捕獲し、一般に、多分散性が極めて狭いホモポリマーが得られる。すなわち、このラジカルはラジカル重合にリビング特性を与える。また、ニトロオキシド官能基に対してα位に水素を有するβ−ホスホリル化分子を挙げることもできる。
【0032】
熱硬化性樹脂と衝撃改質剤の比率は、95〜80重量%の熱硬化性樹脂に対して衝撃改質剤の比率を5〜20重量%にするのが好ましい。95〜85重量%の熱硬化性樹脂に対して衝撃改質剤の比率は5〜15重量%にするのが好ましい。
本発明材料は未架橋の熱硬化性樹脂と上記ブロックコポリマーとを従来の混練装置を用いて混練することで製造できる。
【0033】
エポキシ樹脂の場合、本発明材料は通常の撹拌反応器を使用して製造できる。すなわち、熱硬化性エポキシ樹脂を反応器に導入し、数分間で液体になる十分な温度にする。次に、上記ブロックコポリマーを加え、液体で完全に溶けるのに十分な温度にする。混合時間は加えるコポリマーの種類に依存する。次に、硬化剤を加え、液体の均一混合物が得られるまで十分な温度で5分間攪拌する。この攪拌でエポキシ−硬化剤の反応が開始するので、できるだけ短時間に行わなければならない。得られた混合物を注型し、型中で硬化させる。
【0034】
硬化条件:
硬化条件は通常条件である。また、通常の添加物を熱硬化性材料に加えても本発明の範囲を逸脱するものではない。
【実施例】
【0035】
以下の材料を使用した:
エポキシ樹脂:
下記のエポキシドプレポリマーを使用:
ビスフェノールAジグリシジルエーテル(BADGE):これは383g/molの分子量を有し、1エポキシ基当たりの水酸基の平均数がn= 0.075である、Huntman社からLY556の名称で市販。
テトラグリシジルメチレンジアニリン(TGDDM):質量422g/mol、Vantico社から市販。
硬化剤:
4,4'メチレンビス-(2,6- ジエチルアニリン):芳香族ジアミンのアミン硬化剤、Lonza社からLonzacure M-DEAの名称で市販。この化合物の特徴は融点が87〜90℃で、分子量が380g/molである点にある。
ジアミノジフェニルスルホン(DDS):質量が248g/molの芳香族ジアミンのアミン硬化剤、アルドリッチ社から市販。
Jeffamine T403型の脂肪族アミン硬化剤:質量400g/mol、Huntsman社から市販。
【0036】
衝撃改質剤
SBM
これはSがポリスチレンで、Bがポリブタジエンで、MがPMMAであるS−B−Mトリブロックコポリマーで、24%のポリスチレンと、26%のポリブタジエンと、50%のポリ(メチルメタクリレート)からなり、数平均分子量が21,000g/molのポリスチレンブロックを作り、続いて22,000g/molのポリブタジエンブロックを作り、さらに数平均分子量が43,000g/molのポリ(メチルメタクリレート)ブロックを作るアニオン重合によって得られる。この化合物は下記文献に記載の方法で得られる。この化合物は三つのガラス転移点:-90℃、95℃および130℃を有する。
【特許文献2】欧州特許第EP 524,054号公報
【特許文献3】欧州特許第EP 749,987号公報
【0037】
MBuAM−1
これはMがPMMAで、BuAがブチルアクリレートホモポリマーであるトリブロックコポリマーである。このコポリマーはAおよびCブロックが同じPMMAで、BブロックがブチルアクリレートのホモポリマーであるA−B−Cで表すこともできる。このコポリマーは制御されたラジカル重合で得られる。ブチルアクリレートの数平均分子量は22,000g/molで、コポリマー全体の重量平均分子量は140,000g/molである。
【0038】
MBuAM−2
Mがメチルメタクリレート(MMA)とジメチルアクリルアミド(DMA)とのコポリマー(モル比:MMA:80%、DMA:20%)のトリブロックコポリマー。このトリブロックコポリマーはAとCのブロックは同一のメチルメタクリレート(MMA)とジメチルアクリルアミド(DMA)とのコポリマーで、BブロックがブチルアクリレートホモポリマーであるA−B−Cで表すこともできる。
【0039】
硬化条件:
10重量%の添加物を含む混合物を135℃で14時間、予備硬化(precure)し、220℃で4時間、後硬化(postcure)した。
【0040】
衝撃補強の測定−KlCの測定
K1Cは下記文献に記載の3点曲げテストで室温でノッチ付きサンプルで測定した。各試験片にはダイヤモンドソーでノッチを付けた。サンプルを万力で締付け、カミソリの刃を用いて細かい亀裂を作り、軽く打撃を与えてひび割れを生じさせる。これによって自然な亀裂と同様な非常に細かい亀裂を付けることができる。切痕の全深さを双眼ルーペを使用して測定する。
【非特許文献11】Williams and Cawood,Polymer Testing, 9 (1990), 15-26
【0041】
熱機械的解析によるガラス転移温度Tgの測定
TgはRheometrics装置(Rheometrics Solid Analyser, RSAII)を使用して後硬化後のサンプルでの動的機械分析によって測定した。平行四辺形のサンプル(1×2.5×34mm3)に50℃〜250℃の温度で1Hzのストレス周波数を加える。最大tanδ値をガラス転移温度とする。
【0042】
膨潤度の測定:
トルエンを充填した100mlビーカー中に20×20×1mm寸法の平行四辺形のサンプルを入れ、ビーカーを密封し、室温で15日間放置する。15日間液に浸した後、サンプルを取り出し、重量(m)を計る。膨張度を下記方程式で求める:
膨潤度%=[m(15日目)−m(初期)]/m(初期)
次ぎにサンプルを乾燥して、材料中の各成分がトルエンによって溶かされなかったかを調べるために再び重量を計る。
【0043】
実施例1:(比較例)
10%のSBMを含むBADGE−DDSをベースにしたブレンド物を上記混練プロトコルに従って調製した。結果は[表1]に示した。
実施例2:(比較例)
10%のMBuAM−1を含むBADGE−DDSをベースにしたブレンド物を上記混練プロトコルに従って調製した。結果は[表1]に示した。
実施例3:(本発明)
10%のMBuAM−2を含むBADGE−DDSをベースにしたブレンド物を上記混練プロトコルに従って調製した。結果は[表1]に示した。
実施例4:(比較例)
10%のMBuAM−1を含むTGDDM−MDEAをベースにしたブレンド物を上記混練プロトコルに従って調製した。結果は[表1]に示した。
実施例5:(本発明)
10%のMBuAM−2を含むTGDDM−MDEAをベースにしたブレンド物を上記混練プロトコルに従って調製した。結果は[表1]に示した。
実施例6:(比較例)
10%のMBuAM−1を含むBADGE−Jeffamine T403をベースにしたブレンド物を上記混練プロトコルに従って調製した。結果は[表1]に示した。
実施例7:(本発明)
10%のMBuAM−2を含むBADGE−Jeffamine T403をベースにしたブレンド物を上記混練プロトコルに従って調製した。結果は[表1]に示した。
【0044】
【表1】

【0045】
(注)
未改質BADGE−DDS系はTgが220℃で、KICが0.55MPa.m1/2である。
未改質TGDDM−MDEA系はTgが235℃で、KICが0.5MPa.m1/2である。
未改質BADGE−Jeffamine T403系はTgが70℃で、KICが1.1MPa.m1/2である。

【特許請求の範囲】
【請求項1】
99〜20重量%の熱硬化性樹脂と、1〜80重量%の衝撃改質剤とからなる耐衝撃強度に優れた熱硬化性材料であって、
上記衝撃改質剤がブロックコポリマー:A−B−CおよびA−Bの中から選択される少なくとも一種のコポリマーから成り、各ブロックは共有結合によって連結されているか、一方のブロックに一つの共有結合形成を介して結合され、他方のブロックに他の共有結合形成を介して結合された中間分子を介して連結されており、
Aはメチルメタクリレートと少なくとも一種の水溶性モノマーとのコポリマーであり、
Cは(i)水溶性モノマーを含んでいてもよいPMMA(ホモポリマーまたはコポリマー)または(ii)ビニルモノマーまたはビニルモノマーの混合物をベースにしたポリマーであり、
Bは熱硬化性樹脂に非相溶または部分的に相溶で、ブロックAおよび任意成分としてのブロックCに非相溶で、そのガラス転移温度Tgは熱硬化性材料の使用温度より低い、
ことを特徴とする熱硬化性材料。
【請求項2】
Aの比率が、90〜5モル%のMMAと10〜95モル%の水溶性モノマーである請求項1に記載の材料。
【請求項3】
MMAの比率が40〜10モル%で、水溶性モノマーの比率か60〜90モル%である請求項2に記載の材料。
【請求項4】
水溶性モノマーがジメチルアクリルアミドである請求項1〜3のいずれか一項に記載の材料。
【請求項5】
BのTgが0℃以下である請求項1〜4のいずれか一項に記載の材料。
【請求項6】
BのTgが−40℃以下である請求項5に記載の材料。
【請求項7】
Bがポリブタジエンおよびポリ(ブチルアクリレート)の中から選択される請求項1〜6のいずれか一項に記載の材料。
【請求項8】
衝撃改質剤の比率が95〜80重量%の熱硬化性樹脂に対して5〜20重量%である請求項1〜7のいずれか一項に記載の材料。
【請求項9】
衝撃改質剤の比率が95〜85重量%の熱硬化性樹脂に対して5〜15重量%である請求項8に記載の材料。

【公表番号】特表2008−528718(P2008−528718A)
【公表日】平成20年7月31日(2008.7.31)
【国際特許分類】
【出願番号】特願2007−551629(P2007−551629)
【出願日】平成18年1月18日(2006.1.18)
【国際出願番号】PCT/EP2006/000564
【国際公開番号】WO2006/077153
【国際公開日】平成18年7月27日(2006.7.27)
【出願人】(591004685)アルケマ フランス (112)
【Fターム(参考)】