説明

脱水装置に用いられる膜容器

【課題】本発明の目的は、脱水装置に用いられる膜容器において被処理流体の流速が速くなり、十分な水の分離性能を得ることが可能な膜容器を提供することにある。
【解決手段】本発明は、脱水装置1に用いられる膜容器6である。本発明の膜容器6は、被処理流体が流入する流体入口14と、被処理流体が流出する流体出口16とを有するケーシング10と、被処理流体の流れ方向に沿って並列に配置された複数の流路11を有する膜容器本体9とを備え、複数の流路11は、流体入口14に接続された最上流部分11Aと、流体出口16に接続された最下流部分11Cとを備え、最上流部分11Aと最下流部分11Cとの間には、被処理流体の流れ方向を逆向きに折り返すための折返部15,17が設けられ、流体入口14に流入した被処理流体が、最上流部分11Aを流れて折返部15,17を経由して最下流部分11Cまで流れるようになっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水との共沸組成を持つエタノールと水との混合物(被処理流体)を脱水する脱水装置に関する。詳しくは、本発明は、水分離膜を有する、脱水装置内の膜容器に関するものである。
【背景技術】
【0002】
近年、石油燃料を代替する燃料源としてエタノールが注目されている。しかしながら、エタノールを燃料として採用するためには、トウモロコシ等のバイオ原料から得た粗製物を蒸留精製し、少なくとも99.5wt%以上の濃度に脱水しなければならない。
【0003】
従来、脱水の方法としては、水分離膜を用いたパーベーパレーション法(PV法)によって被処理流体から水を分離する方法が知られている(例えば、特許文献1)。
特許文献1の脱水装置においては、複数の円柱状の水分離膜がシェル部の内部において直列に配置されている。各水分離膜は、所定の直径を有する複数の流路を備えている。この水分離膜においては、被処理流体が、全ての流路を所定の速度で同時に流れるようになっており、流路を流れている間に被処理流体から水が分離されるようになっている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−115596号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、従来より、上述のような水分離膜を用いる構成では、被処理流体の流速によって水の分離性能が大きく変化することが知られている。以下に詳しく説明する。
【0006】
図6は、水分離膜を透過した物質(水及びエタノール)の透過量に対する水の透過量の比を示している。
図6に示すように、流速が約0.6m/sでは水の透過量の比が約1になっているが、被処理流体の流速が小さくなるほど、水分離膜を透過した物質における水の透過量の割合が小さくなる。このように、水分離膜を用いる場合、被処理流体の流速が小さい場合には、水分離膜における水の透過量の割合が小さくなり、水の分離性能が低下することになる。
【0007】
また、被処理流体の流速が小さいと、水分離膜の近傍で濃度分極が生じるという問題もある。濃度分極とは、水分離膜の近傍で発生する現象であり、水分離膜に透過されない溶質(ここでは、水)が水分離膜に垂直な方向に濃度の勾配を作る現象である。
【0008】
図7は、濃度分極が発生した場合と濃度分極が発生していない場合とを示しており、(a)は被処理流体の流速が小さい場合であり、(b)は被処理流体の流速が大きい場合を示している。
図7(a)の(1)のグラフに示すように、被処理流体の流速が小さいと、水分離膜の近傍ほど水の濃度が低く、水分離膜に対して垂直な方向(断面方向)に水分離膜から離れるほど水の濃度が高くなる。このような濃度分極が生じる結果、図7(a)の(2)のグラフに示すように、被処理流体の流れ方向に水の濃度の変化を見ると、水の濃度がほとんど小さくならず、水の分離性能が低下していることがわかる。
一方、図7(b)の(1)に示すように、被処理流体の流速が十分にある場合、水分離膜において水が透過し、濃度分極が発生しない。その結果、図7(b)の(2)のグラフに示すように、被処理流体の流れ方向に水の濃度の変化を見ると、水の濃度が徐々に小さくなっており、十分な水の分離性能が得られている。
【0009】
例えば、20万t/年のエタノール処理を考慮した場合、従来の特許文献1の水分離膜では、以下の問題が生じる。
従来の特許文献1の水分離膜では、被処理流体が全ての流路を同時に流れる構成となっているので、被処理流体の流量に対して流路の断面積(被処理流体の流れ方向に垂直方向の断面積)が大きく、被処理流体の流速が速くならなかった。その結果、十分な水の分離性能が得られないという問題があった。当然ながら、20万t/年以下のエタノール処理の場合では、更に被処理流体の流速が遅くなるので、水の分離性能が更に低下することになる。つまり、水の分離性能の低下が影響し、脱水装置をスケールダウンできないという問題もあった。
また、被処理流体の流速を速くするためにポンプの容量を上げることも考えられるが、装置のコストが増大してしまう。したがって、ポンプの容量を上げずに流速を速くする対策が必要となる。
【0010】
本発明はこのような実情に鑑みてなされたものであって、その目的は、脱水装置に用いられる膜容器において被処理流体の流速を速くし、十分な水の分離性能を得ることが可能な膜容器を提供することにある。
【課題を解決するための手段】
【0011】
上記従来技術の有する課題を解決するために、本発明は、被処理流体が流入する流体入口と、前記被処理流体が流出する流体出口とを有するケーシングと、前記被処理流体の流れ方向に沿って並列に配置された複数の流路を有する膜容器本体とを備え、前記被処理流体が前記複数の流路を通過している間に前記被処理流体から水を分離する膜容器において、前記複数の流路は、前記流体入口に接続された最上流部分と、前記流体出口に接続された最下流部分とを備え、前記最上流部分と前記最下流部分との間には、前記被処理流体の流れ方向を逆向きに折り返すための折返部が設けられ、前記流体入口に流入した前記被処理流体が、前記最上流部分を流れて前記折返部を経由して前記最下流部分まで流れるようになっている。
【0012】
また、本発明によれば、前記複数の流路の前記最上流部分と前記最下流部分との間には、前記折返部によって前記被処理流体の流れ方向が少なくとも1回折り返される中間部分が設けられており、前記流体入口に流入した前記被処理流体が、前記最上流部分及び前記中間部分を順次通過して、前記最下流部分まで流れるようになっている。
【0013】
また、本発明によれば、前記最上流部分は、前記膜容器本体の中心軸周りに配置され、前記中間部分は、前記最上流部分の外側周囲に配置され、前記最下流部分は、前記中間部分の外側周囲に配置されている。
【0014】
また、本発明において、より好ましくは、前記最上流部分における前記被処理流体の流れ方向に対して垂直方向の断面積の総計と、前記最下流部分における前記断面積の総計と、前記中間部分において前記被処理流体の流れ方向が同じで且つ前記最上流部分から数えてn番目(nは1以上)に位置する流路の部分における前記断面積の総計とが、同じになるように設定されているとよい。
【発明の効果】
【0015】
本発明に係る脱水装置に用いられる膜容器によれば、被処理流体が流入する流体入口と、前記被処理流体が流出する流体出口とを有するケーシングと、前記被処理流体の流れ方向に沿って並列に配置された複数の流路を有する膜容器本体とを備え、前記被処理流体が前記複数の流路を通過している間に前記被処理流体から水を分離する膜容器において、前記複数の流路は、前記流体入口に接続された最上流部分と、前記流体出口に接続された最下流部分とを備え、前記最上流部分と前記最下流部分との間には、前記被処理流体の流れ方向を逆向きに折り返すための折返部が設けられ、前記流体入口に流入した前記被処理流体が、前記最上流部分を流れて前記折返部を経由して前記最下流部分まで流れるようになっている。
従来では、被処理流体が膜容器本体の全ての流路を同時に流れるので、被処理流体の流量に対して流路の断面積(被処理流体の流れ方向に垂直方向の断面積)が大きく、十分な流速を得ることができなかった。
本発明によれば、複数の流路を最上流部分と最下流部分とに分けているので、被処理流体の流量に対して流路の断面積が小さくなり、従来と同じポンプを使用した場合でも膜容器本体内を流れる被処理流体の流速を速くすることができる。これにより、膜容器本体内において濃度分極が生じず、十分な水の分離性能を確保することができる。
また、膜容器本体内において被処理流体の流速が十分に得られるので、水の分離性能を低下させずに、脱水装置を容易にスケールダウンすることもできる。
【0016】
また、本発明に係る脱水装置に用いられる膜容器によれば、前記複数の流路の前記最上流部分と前記最下流部分との間には、前記折返部によって前記被処理流体の流れ方向が少なくとも1回折り返される中間部分が設けられており、前記流体入口に流入した前記被処理流体が、前記最上流部分及び前記中間部分を順次通過して、前記最下流部分まで流れるようになっているので、被処理流体の流量に対して流路の断面積がより小さくなり、膜容器本体内を流れる被処理流体の流速をさらに速くすることができる。したがって、濃度分極が生じるのをより効果的に防ぐことができ、十分な水の分離性能を確保することができる。
【0017】
また、本発明に係る脱水装置に用いられる膜容器によれば、前記最上流部分は、前記膜容器本体の中心軸周りに配置され、前記中間部分は、前記最上流部分の外側周囲に配置され、前記最下流部分は、前記中間部分の外側周囲に配置されているので、膜容器本体内において被処理流体が中心から外側に向かって順次通過する構成となり、膜容器のケーシングの構成もより簡易化することができる。
【0018】
また、本発明に係る脱水装置に用いられる膜容器によれば、前記最上流部分における前記被処理流体の流れ方向に対して垂直方向の断面積の総計と、前記最下流部分における前記断面積の総計と、前記中間部分において前記被処理流体の流れ方向が同じで且つ前記最上流部分から数えてn番目(nは1以上)に位置する流路の部分における前記断面積の総計とが、同じになるように設定されているので、流路の各部分を流れる被処理流体の流速を一定の範囲に維持することができる。これにより、複数の流路の各部分において水の分離性能に差が生じることもなく、十分な水の分離性能を各部分において安定して得ることができる。
【図面の簡単な説明】
【0019】
【図1】本発明の実施形態に係る脱水装置の全体を示した模式図である。
【図2】本発明の実施形態に係る膜容器の斜視図である。
【図3】本発明の実施形態に係る膜容器の膜容器本体を示した図であり、(a)は、膜容器本体における横断面図であり、(b)は膜容器本体における縦断面図(長手方向の断面図)である。
【図4】図2のA−A線断面図である。
【図5】本発明の実施形態に係る膜容器の平面図であり、(a)は、膜容器を上方から見た平面図であり、(b)は、膜容器を下方から見た平面図である。
【図6】水分離膜を透過した物質(水及びエタノール)の透過量に対する水の透過量の比を示した図である。
【図7】(a)は、被処理流体の流速が小さいために濃度分極が発生した場合を示した図であり、(b)は、被処理流体の流速が大きいために濃度分極が発生していない場合を示した図である。
【発明を実施するための形態】
【0020】
以下、本発明の実施形態に係る脱水装置を、図面を参照しながら説明する。図1は、本発明の実施形態に係る脱水装置の全体を示した模式図である。
【0021】
本実施形態に係る脱水装置1は、被処理流体として、粗エタノール水溶液を脱水するものである。この粗エタノール水溶液の濃度としては、エタノール濃度約91wt%を想定している。本実施形態に係る脱水装置1は、有機成分としてエタノールを含む粗エタノールを処理し、最終的には、エタノール濃度が99.5wt%〜99.8wt%の範囲の製品エタノール(無水エタノール)を精製するものである。
【0022】
図1に示すように、脱水装置1は、被処理流体(粗エタノール水溶液)が供給される第1のタンク2と、脱水処理後の製品エタノールが流入する第2のタンク3と、第1のタンク2と第2のタンク3との間に配置された複数の水分離膜ユニット4A,4B,4C,4D,4Eと、被処理流体から分離された水が流入する第3のタンク5とから構成されている。
【0023】
図1に示すように、複数の水分離膜ユニット4A,4B,4C,4D,4Eは、直列に接続されている。各水分離膜ユニット4A,4B,4C,4D,4Eは、後述する膜容器6(図2参照)を備えており、供給側が液相で透過側が気相となるパーベパレーション法によって水を分離するものである。ここで、水分離膜ユニット4A,4B,4C,4D,4Eの膜容器6においては、被処理流体の流路を供給側と呼び、膜容器6の外側を透過側と呼ぶ。
水分離膜ユニット4A,4B,4C,4D,4Eにおいては、透過側を減圧装置(図示)により減圧した状態で被処理流体が流入し、これにより、被処理流体の中の水が水蒸気となって透過側に引き抜かれる。各水分離膜ユニット4A,4B,4C,4D,4Eにおいて引き抜かれた水蒸気は、図1に示すように、第3のタンク5に流入することになる。
【0024】
図1に示すように、各水分離膜ユニット4A,4B,4C,4D,4Eの間には、熱交換器7A,7B,7C,7D,7Eがそれぞれ配置されている。パーベパレーション法における水の透過速度は、一般に、非処理流体の温度低下によって大きく低下することが知られているため、熱交換器7A,7B,7C,7D,7Eが、水分離膜ユニット4A,4B,4C,4D,4Eに流入する被処理流体の温度を加熱し、被処理流体の温度低下を防止するようになっている。
【0025】
以上から、本実施形態に係る脱水装置1においては、第1のタンク2に供給された被処理流体がポンプ8により送出され、被処理流体が、熱交換器7A→水分離膜ユニット4A→熱交換器7B→水分離膜ユニット4B→熱交換器7C→水分離膜ユニット4C→熱交換器7D→水分離膜ユニット4D→熱交換器7E→水分離膜ユニット4Eの順で流れる。最下流の水分離膜ユニット4Eを出た被処理流体は、第2のタンク3に流入し、製品エタノールとして回収される。また、図1に示すように、各水分離膜ユニット4A,4B,4C,4D,4Eにおいて引き抜かれた水蒸気は、第3のタンク5に流入することになる。
【0026】
図2は、本発明の実施形態に係る水分離膜ユニット4A,4B,4C,4D,4E内の膜容器6を示した図である。
本実施形態において、水分離膜ユニット4A,4B,4C,4D,4E(図1参照)は、膜容器6を備えている。図2に示すように、膜容器6は、膜容器本体9と、膜容器本体9に嵌合されるケーシング10とを備えている。
【0027】
図3は、本発明の実施形態に係る膜容器6の膜容器本体9を示した図であり、(a)は、膜容器本体9における横断面図であり、(b)は膜容器本体9における縦断面図(長手方向の断面図)である。
膜容器本体9は、モノリス型の水分離膜からなり、円柱状に形成されている。図3に示すように、膜容器本体9には、膜容器本体9の長手方向に沿って複数の流路11が並列に設けられている。膜容器本体9は、被処理流体の流れ方向が流路11の延在方向と平行になるように、水分離膜ユニット4A,4B,4C,4D,4E内に設置されている。
【0028】
図3に示すように、水分離膜ユニット4A,4B,4C,4D,4Eに流入した被処理流体は、膜容器本体9の流路11(すなわち、供給側)を通る。そして、減圧装置(図示せず)による減圧操作により、被処理流体の中の水が水蒸気となって膜容器本体9の側面9aから膜容器本体9の外側(すなわち、透過側)に引き抜かれる。
【0029】
なお、図3に示した膜容器本体9は、分かり易くするため流路11の穴を大きくして概略的に示しているが、膜容器本体9の材質としては、無機材でナノオーダー又はそれより小さい孔径が精密に制御された微細孔多孔膜を用いることができる。微細孔多孔膜は、小分子ガスを通し、大分子ガスを排除する分子ふるい効果を発現し、その透過係数は、温度上昇とともに増加する活性化拡散の挙動を示す。微細孔多孔膜の例としては、炭素膜、シリカ膜、ゼオライト膜が挙げられる。
【0030】
また、特許第2808479号記載の無機水分離膜も適用可能である。該特許第2808479号の無機水分離膜は、無機多孔体の細孔内に、エトキシ基又はメトキシ基を含むアルコキシシランの加水分解を経て得られたシリカゲルを担持することによって得られる耐酸性複合分離膜である。
なお、無機水分離膜が担持される多孔質基材としては、アルミナ、シリカ、ジルコニア、チタニアのようなセラミック基材が一般的であり、筒型形状であって、長手方向に複数の断面円形の流路(内管)を持つものが好適である。無機水分離膜は、このような内管の内部壁を被覆するように形成される。
【0031】
また、水分離膜としては、無機水分離膜以外に、ポリビニルアルコール膜、ポリイミド膜、ポリアミド膜といった有機膜を用いることもできる。
【0032】
なお、一例として、膜容器本体9の直径が180mmであり、膜容器本体9の長手方向の長さが1000mmの円柱状のものを使用することができる。この例では、膜容器本体9の長手方向に直径3mmの流路が2000個設けられている。なお、膜容器本体9の材質やサイズ、流路の直径及び数等は、使用目的に応じて当業者が適宜選択することができる。
【0033】
以下では、本発明に係る膜容器6の特徴について詳しく説明する。
また、図4は、図2のA−A線断面図である。図5は、膜容器6の平面図を示しており、(a)は、図2の膜容器6を上方から見た平面図であり、(b)は、図2の膜容器6を下方から見た平面図である。
【0034】
図4に示すように、本実施形態に係る膜容器本体9の複数の流路11は、最上流に位置する最上流部分11Aと、2番目に上流側に位置する中間部分11Bと、最下流に位置する最下流部分11Cとから構成されている。最上流部分11Aは、膜容器本体9の中心軸(半径方向の中心)周りに配置されており、中間部分11Bは、最上流部分11Aに対して半径方向外側の周囲に配置されている。また、最下流部分11Cは、中間部分11Bに対して半径方向外側の周囲に配置されている。
【0035】
図3ないし図5に示すように、膜容器6のケーシング10は、膜容器本体9の下端部9bに配置された下側シェル部12と、膜容器本体9の上端部9cに配置された上側シェル部13とを備えている。
【0036】
図4及び図5に示すように、下側シェル部12の半径方向の略中央の位置には、被処理流体が流入する円形状の流体入口14が設けられている。この下側シェル部12の流体入口14は、流路11の最上流部分11Aに接続されている。
また、下側シェル部12の流体入口14の周囲には、流路11の中間部分11Bと最下流部分11Cとを接続する下側折返部15が設けられている。この下側折返部15は、下側シェル部12における膜容器本体9との接触表面を凹状にして形成したものである。下側折返部15は、中間部分11Bを流れて来た被処理流体を逆方向に折返して最下流部分11Cに流すようになっている。
【0037】
図4及び図5に示すように、上側シェル部13には、膜容器本体9の上端部9cの円周方向に沿うように流体出口16が設けられている。この流体出口16は、流路11の最下流部分11Cに接続されている。
また、上側シェル部13の半径方向の略中央の位置には、流路11の最上流部分11Aと中間部分11Bとを接続する上側折返部17が設けられている。この上側折返部17は、上側シェル部13における膜容器本体9との接触表面を凹状にして形成したものである。上側折返部17は、最上流部分11Aを流れて来た被処理流体を逆方向に折返して中間部分11Bに流すようになっている。
【0038】
以上の構成から、本実施形態に係る膜容器6においては、被処理流体が下側シェル部12の流体入口14に流入すると、被処理流体は、流路11の最上流部分11A→上側折返部17→流路11の中間部分11B→下側折返部15→流路11の最下流部分11C→上側シェル部13の流体出口16の順に流れる。この際、減圧装置による減圧操作により、被処理流体の中の水が水蒸気となって膜容器本体9の側面9aから膜容器本体9の外側に引き抜かれる。
【0039】
なお、本実施形態において、より好ましくは、最上流部分11A、中間部分11B、及び最下流部分11Cを流れる被処理流体の流速が一定の範囲に収まるように設定するのがよい。これは、例えば、最上流部分11Aにおける半径方向(被処理流体の流れ方向に対して垂直方向)の断面積の総計と、中間部分11Bにおける半径方向の断面積の総計と、最下流部分11Cにおける半径方向の断面積の総計とが、同じになるように設定すればよい。例えば、各流路11の直径が全て同じである場合は、最上流部分11A、中間部分11B、及び最下流部分11Cのそれぞれに割り当てられる流路11の本数が同じになるように設定すればよい。これにより、最上流部分11A、中間部分11B、及び最下流部分11Cの半径方向の断面積の総計を略同じにすることができる。このような構成とすることで、最上流部分11A、中間部分11B、及び最下流部分11Cを流れる被処理流体の流速を一定の範囲に維持することができる。
【0040】
本実施形態に係る脱水装置1の膜容器6によれば、被処理流体が流入する流体入口14と、被処理流体が流出する流体出口16とを有するケーシング10と、被処理流体の流れ方向に沿って並列に配置された複数の流路11を有する膜容器本体9とを備え、複数の流路11は、最上流に位置する最上流部分11Aと、2番目に上流側に位置する中間部分11Bと、最下流に位置する最下流部分11Cとから構成され、最上流部分11Aと中間部分11Bとの間には、被処理流体の流れ方向を逆向きに折り返すための上側折返部17が設けられ、中間部分11Bと最下流部分11Cとの間には、被処理流体の流れ方向を逆向きに折り返すための下側折返部15が設けられ、流体入口14に流入した被処理流体が、最上流部分11A及び中間部分11Bを順次通過して、最下流部分11Cまで流れるようになっている。
例えば、20万t/年のエタノール処理を考慮した場合、従来の特許文献1の水分離膜では、被処理流体が膜容器本体の全ての流路を同時に流れるので、被処理流体の流量に対して流路の断面積(被処理流体の流れ方向に垂直方向の断面積)が大きく、十分な流速を得ることができなかった。
これに対し、本実施形態に係る脱水装置1の膜容器6によれば、被処理流体の流量に対して流路の断面積が小さくなり、従来と同じポンプを使用した場合でも膜容器本体9内を流れる被処理流体の流速を速くすることができる。これにより、膜容器本体9内において濃度分極が生じず、十分な水の分離性能を確保することができる。
【0041】
また、20万t/年以下のエタノール処理の場合では、水の分離性能の低下が影響し、脱水装置1をスケールダウンできないという問題があった。これに対し、本実施形態に係る脱水装置1の膜容器6によれば、膜容器本体9内において被処理流体の流速が十分に得られるので、水の分離性能を低下させずに、脱水装置1を容易にスケールダウンすることもできる。
【0042】
なお、本実施形態において、膜容器6内を流れる被処理流体の流速は少なくとも0.4m/sとなるように設定するのがよい。このような流速の設定にすれば、被処理流体の流れが乱流となり、濃度分極を回避できる可能性が高いためである。また、水の分離性能をより向上させるために、より好ましくは、被処理流体の流速を1.0m/sに設定するのがよい。
【0043】
また、本実施形態に係る脱水装置1の膜容器6によれば、最上流部分11Aは、膜容器本体9の中心軸(半径方向の中心)周りに配置されており、中間部分11Bは、最上流部分11Aに対して半径方向外側の周囲に配置されており、最下流部分11Cは、中間部分11Bに対して半径方向外側の周囲に配置されているので、膜容器本体9内において被処理流体が中心から外側に向かって順次通過する構成となり、膜容器6のケーシング10の構成もより簡易化することができる。
【0044】
更に、本実施形態に係る脱水装置1の膜容器6によれば、最上流部分11Aにおける半径方向(被処理流体の流れ方向に対して垂直方向)の断面積の総計と、中間部分11Bにおける半径方向の断面積の総計と、最下流部分11Cにおける半径方向の断面積の総計とが、同じになるように設定されているので、複数の流路11における各部分11A,11B,11Cの被処理流体の流速が一定となる。これにより、複数の流路11の各部分11A,11B,11Cにおいて水の分離性能に差が生じることもなく、十分な水の分離性能を各部分において安定して得ることができる。
【0045】
以上、本発明の実施の形態につき述べたが、本発明は既述の実施形態に限定されるものでなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
【0046】
本実施形態では、膜容器6内において被処理流体が中心から外側に向かって順次通過するように最上流部分11A、中間部分11B、及び最下流部分11Cを配置しているが、このような構成に制限されない。例えば、膜容器本体9において半径方向の外側から中心に向かって順次通過するように最上流部分11A、中間部分11B、及び最下流部分11Cを配置してもよい。
【0047】
本実施形態では、複数の流路11を3つの部分、すなわち、最上流部分11A、中間部分11B、及び最下流部分11Cで構成しているが、このような構成に制限されない。
例えば、膜容器本体9において被処理流体の流れ方向が少なくとも1回折り返すようにすればよく、複数の流路11を最上流部分11Aと最下流部分11Cの2つで構成してもよい。
【0048】
また、流路11の中間部分11Bにおいて被処理流体の流れ方向が複数回折り返すように構成してもよい。例えば、流路11の中間部分11Bを更に3つの部分に分けてもよい。この場合、中間部分11Bは、最上流部分11Aから折り返して被処理流体が下向きに流れる第1の部分と、第1の部分から折り返して被処理流体が上向きに流れる第2の部分と、第2の部分から折り返して被処理流体が下向きに流れる第3の部分とを備えることになる。ここで、中間部分11Bの第1の部分は、最上流部分11Aから数えて1番目に上流に位置する部分であり、第2の部分は、最上流部分11Aから数えて2番目に上流に位置する部分であり、第3の部分は、最上流部分11Aから数えて3番目に上流に位置する部分である。
このような構成において、流路11の各部分における被処理流体の流速を一定にするためには、最上流部分11Aにおける半径方向の断面積の総計と、中間部分11Bの第1の部分における半径方向の断面積の総計と、中間部分11Bの第2の部分における半径方向の断面積の総計と、中間部分11Bの第3の部分における半径方向の断面積の総計と、最下流部分11Cにおける半径方向の断面積の総計とが、同じになるように設定すればよい。
【0049】
本実施形態では、エタノールを有機成分として含む被処理流体を脱水の対象としている。しかしながら、本発明に係る膜容器6においては、被処理流体が、有機水溶液であれば適用することができる。例えば、有機水溶液の有機成分としては、エタノール、プロパノール、イソプロパノール、グリコール等のアルコール、酢酸等のカルボン酸、ジメチルエーテル、ジエチルエーテル等のエーテル、アセトアルデヒド等のアルデヒド、アセトン、メチルエチルケトン等のケトン、酢酸エチルエステル等のエステルからなる群から選択される一の有機成分であればよい。
【符号の説明】
【0050】
1 脱水装置
2 第1のタンク
3 第2のタンク
4A,4B,4C,4D,4E 水分離膜ユニット
5 第3のタンク
6 膜容器
7A,7B,7C,7D,7E 熱交換器
8 ポンプ
9 膜容器本体
10 ケーシング
11 流路
11A 流路の最上流部分
11B 流路の中間部分
11C 流路の最下流部分
12 ケーシングの下側シェル部
13 ケーシングの上側シェル部
14 流体入口
15 下側折返部
16 流体出口
17 上側折返部



【特許請求の範囲】
【請求項1】
被処理流体が流入する流体入口と、前記被処理流体が流出する流体出口とを有するケーシングと、
前記被処理流体の流れ方向に沿って並列に配置された複数の流路を有する膜容器本体とを備え、
前記被処理流体が前記複数の流路を通過している間に前記被処理流体から水を分離する膜容器において、
前記複数の流路は、前記流体入口に接続された最上流部分と、前記流体出口に接続された最下流部分とを備え、前記最上流部分と前記最下流部分との間には、前記被処理流体の流れ方向を逆向きに折り返すための折返部が設けられ、
前記流体入口に流入した前記被処理流体が、前記最上流部分を流れて前記折返部を経由して前記最下流部分まで流れるようになっていることを特徴とする膜容器。
【請求項2】
前記複数の流路の前記最上流部分と前記最下流部分との間には、前記折返部によって前記被処理流体の流れ方向が少なくとも1回折り返される中間部分が設けられており、前記流体入口に流入した前記被処理流体が、前記最上流部分及び前記中間部分を順次通過して、前記最下流部分まで流れるようになっていることを特徴とする請求項1に記載の膜容器。
【請求項3】
前記最上流部分は、前記膜容器本体の中心軸周りに配置され、前記中間部分は、前記最上流部分の外側周囲に配置され、前記最下流部分は、前記中間部分の外側周囲に配置されていることを特徴とする請求項2に記載の膜容器。
【請求項4】
前記最上流部分における前記被処理流体の流れ方向に対して垂直方向の断面積の総計と、
前記最下流部分における前記断面積の総計と、
前記中間部分において前記被処理流体の流れ方向が同じで且つ前記最上流部分から数えてn番目(nは1以上)に位置する流路の部分における前記断面積の総計とが、
同じになるように設定されていることを特徴とする請求項2又は3に記載の膜容器。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−61442(P2012−61442A)
【公開日】平成24年3月29日(2012.3.29)
【国際特許分類】
【出願番号】特願2010−209228(P2010−209228)
【出願日】平成22年9月17日(2010.9.17)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】