説明

蒸気システム

【課題】 蒸気エンジンと電動機とを用いて空気圧縮機を駆動するに際し、蒸気エンジンによる駆動を優先することで、省エネルギーを図る。
【解決手段】 蒸気エンジン4と電動機10とを備え、それぞれ空気圧縮機5,11を駆動する。空気圧縮機5,11からの圧縮空気は、共通のエアタンク21を介して、圧縮空気使用装置に供給される。蒸気エンジン4には、給蒸路6を介して蒸気が供給され、蒸気エンジン4にて使用後の蒸気は、排蒸路7を介して蒸気使用装置に供給される。排蒸路7の先の蒸気ヘッダ15に設けた圧力センサ19により、蒸気圧が監視される。エアタンク21に設けた圧力センサ22により、空気圧が監視される。蒸気圧と空気圧とに基づき給蒸弁9が制御され、空気圧に基づき電動機10が制御される。空気圧の目標値をずらすことで、蒸気エンジン4は電動機10よりも優先運転される。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、蒸気を用いて圧縮機などを駆動して、消費電力の削減を図る蒸気システムに関するものである。
【背景技術】
【0002】
下記特許文献1には、スクリュ型膨張機(1)により空気圧縮機(2)を駆動し、空気圧縮機(2)の負荷変動に際してはスクリュ型膨張機(1)に流入する蒸気を加減弁(10)により制御して対応すると共に、スクリュ型膨張機(1)の蒸気流入側と蒸気流出側との間に設けたバイパス弁(9)を制御することにより、前記負荷変動に拘らず蒸気流出側における蒸気の背圧を一定に保持する方法が開示されている。ここで、バイパス弁(9)の制御は、スクリュ型膨張機(1)からの蒸気出口管(5)の背圧を検出器(20)により検出してなされる。また、加減弁(10)の制御は、スクリュ型膨張機(1)の駆動軸の回転数を検出器(23)により検出してなされる。
【0003】
また、下記特許文献2には、ガスタービン(1)と、これにより駆動される発電機(8)と、ガスタービン(1)の排ガスを熱源とする排熱ボイラ(13)と、この排熱ボイラ(13)から供給される蒸気を動力源とするスクリュ式蒸気エンジン(30)と、この蒸気エンジン(30)により駆動されて燃料を圧縮して前記ガスタービン(1)の燃焼器(3)に供給する燃料圧縮機(11)とを備えたガスタービン設備が開示されている。このガスタービン設備においては、燃料圧縮機(11)からガスタービン(1)への燃料供給量は、燃料圧縮機(11)の入口と出口との間に設けたバイパス制御弁(37)により調整されるが、このバイパス制御弁(37)で制御し切れない大きな負荷変動に対しては、蒸気エンジン(30)へ供給される蒸気量が制御弁(32)で調整される。また、排熱ボイラ(13)の起動時や、蒸気エンジン(30)の故障時には、燃料圧縮機(11)がモータ(10)により駆動される。
【0004】
さらに、下記特許文献3には、圧縮機(1)のスクリュロータの入力側に、電動モータ(7)とクラッチ(8)とを介して蒸気タービン(9)を接続し、この蒸気タービン(9)の運転時、蒸気タービン(9)による動力がモータ(7)による動力に加算されて前記スクリュロータが駆動される装置が開示されている。この装置では、蒸気タービン(9)は、蒸気弁(10)の開閉により、駆動と停止が切り替えられる。そして、圧縮機(1)の軸動力が吸入側圧力と吐出側圧力とに支配されることに着目し、圧縮機(1)の吸入側圧力を検出する低圧圧力検出器(18)と、吐出側圧力を検出する高圧圧力検出器(19)とに基づき、圧縮機(1)の軸動力が許容動力範囲内のとき、蒸気弁(10)を開いて蒸気タービン(9)を運転する。一方、圧縮機(1)は、そのスライド弁が容量制御装置(14)により制御されて、容量制御される。
【特許文献1】特開昭63−45403号公報 (特許請求の範囲、図1、公報第2頁左下欄第1−5行)
【特許文献2】特開平9−68006号公報 (請求項1、請求項6、請求項8、段落番号[0019]、[0021]、[0024]、図1)
【特許文献3】特開平4−353201号公報 (段落番号[0022]−[0028]、図1)
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、前記特許文献1に開示される発明の場合、ボイラの起動時など、蒸気がない状態では、圧縮機を駆動できない。一方、前記特許文献2に開示される発明の場合、モータを備えるが、このモータは、排熱ボイラの起動時や、蒸気エンジンの故障時にのみ駆動されるものである。また、前記特許文献3に開示される発明も、モータを備えるが、蒸気エンジンよりもモータによる駆動が優先される制御である。しかも、蒸気エンジンとして蒸気タービンを用いたことに伴い、蒸気弁(10)は開閉のみ可能であり、蒸気エンジンの出力調整はできない。
【0006】
さらに、いずれの特許文献に開示される発明も、蒸気の利用負荷をも考慮して、蒸気エンジンへの給蒸を制御するものではない。すなわち、いずれの特許文献に開示される発明も、蒸気の利用負荷と、圧縮機から吐出される流体の利用負荷との双方に基づき、蒸気エンジンやモータを制御するものではない。
【0007】
この発明が解決しようとする課題は、蒸気エンジンの他、電動機などを備えると共に、蒸気負荷と流体負荷との双方に基づき、蒸気エンジンなどを制御することで、効率的に安定して運転することにある。そして、好ましくは、蒸気エンジンによる駆動を優先することで、省エネルギーを図ることを課題とする。
【課題を解決するための手段】
【0008】
この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、蒸気を用いて動力を起こす第一原動機と、この第一原動機により駆動され、流体を吐出または吸入する第一被動機と、蒸気以外を用いて動力を起こす第二原動機と、この第二原動機により駆動され、前記第一被動機により流体が吐出または吸入される空間に対し、流体を吐出または吸入する第二被動機と、前記第一原動機にて使用後の蒸気が供給される箇所の蒸気負荷と、前記各被動機により流体が吐出または吸入される前記空間内の流体負荷とに基づき、前記第一原動機および/または前記第二原動機を制御する制御器とを備えることを特徴とする蒸気システムである。
【0009】
請求項1に記載の発明によれば、蒸気を用いて動力を起こす第一原動機の他に、電動機などから構成される第二原動機を備えるので、蒸気の有無や蒸気負荷に拘わらず、安定して流体を吐出または吸入できる。また、流体負荷だけでなく蒸気負荷をも考慮して、各原動機を制御することで、運転効率を高めることができる。
【0010】
請求項2に記載の発明は、前記第一原動機にて使用後の蒸気が供給される箇所の蒸気圧と、前記各被動機により流体が吐出または吸入される前記空間内の圧力とに基づき、前記第一原動機と前記第二原動機との駆動割合が変更されることを特徴とする請求項1に記載の蒸気システムである。
【0011】
請求項2に記載の発明によれば、圧力に基づき各原動機の駆動割合が制御される。従って、簡易な構成および制御で、流体負荷だけでなく蒸気負荷をも考慮して、各原動機を制御して、運転効率を高めることができる。
【0012】
請求項3に記載の発明は、前記第一原動機にて使用後の蒸気が供給される箇所の蒸気圧と、前記各被動機により流体が吐出または吸入される前記空間内の圧力とに基づき、前記第一原動機が制御され、前記各被動機により流体が吐出または吸入される前記空間内の圧力に基づき、前記第二原動機が制御されることを特徴とする請求項1または請求項2に記載の蒸気システムである。
【0013】
請求項3に記載の発明によれば、圧力に基づき各原動機の駆動割合が制御される。しかも、第一原動機は蒸気圧と流体圧に基づき制御され、第二原動機は流体圧に基づき制御される。従って、簡易な構成および制御で、流体負荷だけでなく蒸気負荷をも考慮して、各原動機を制御して、運転効率を高めることができる。
【0014】
請求項4に記載の発明は、前記各被動機により流体が吐出される前記空間内の圧力に基づき、その空間内を第一設定圧力域に維持するように、前記第一原動機への給蒸が制御され、前記各被動機により流体が吐出される前記空間内の圧力に基づき、その空間内を第二設定圧力域に維持するように、前記第二原動機が制御され、前記第一設定圧力域の下限圧力は、前記第二設定圧力域の下限圧力よりも高く設定され、前記第二設定圧力域の上限圧力は、前記第一設定圧力域の上限圧力よりも低く設定されることを特徴とする請求項3に記載の蒸気システムである。
【0015】
請求項4に記載の発明によれば、第一原動機を制御するための第一設定圧力域と、第二原動機を制御するための第二設定圧力域とは、それぞれ上限と下限とが、第一原動機の駆動が優先されるようにずらされている。これにより、蒸気の利用が優先されることになり、省エネルギーを図ることができる。
【0016】
請求項5に記載の発明は、前記第一原動機にて使用後の蒸気が供給される箇所の蒸気圧が所定値未満の場合にのみ、前記第一原動機への給蒸がなされることを特徴とする請求項4に記載の蒸気システムである。
【0017】
請求項5に記載の発明によれば、蒸気負荷がある場合のみ第一原動機が駆動されるので、蒸気を無駄にすることがない。
【0018】
請求項6に記載の発明は、前記第一原動機は、スクリュ式蒸気エンジンとされ、前記第一被動機は、空気圧縮機とされ、前記第二原動機は、電動機とされ、前記第二被動機は、空気圧縮機とされることを特徴とする請求項1〜5のいずれか1項に記載の蒸気システムである。
【0019】
請求項6に記載の発明によれば、スクリュ式蒸気エンジンを用いることで、タービン式に比べて効率がよい。また、スクリュ式蒸気エンジンの場合、給蒸量を調整することで出力調整も容易である。さらに、各種工場、事業所におけるエア駆動機の作動用、ブロー、乾燥など製造プロセス用、その他各分野において広く用いられる空気圧縮機を駆動させるので、汎用性に優れる。
【0020】
請求項7に記載の発明は、前記各被動機からの圧縮空気は、共通の管路および/またはタンクを介して、圧縮空気使用装置へ供給可能とされ、蒸気供給源からの蒸気は、前記第一原動機を介して蒸気ヘッダへ供給可能とされると共に、減圧弁を介して前記蒸気ヘッダへ供給可能とされ、その蒸気ヘッダの蒸気は、蒸気使用装置へ供給可能とされ、前記管路または前記タンクに設けた圧力センサの検出圧力が設定値未満であることにより空気負荷があると判断され、且つ前記蒸気ヘッダに設けた圧力センサの検出圧力が所定値未満であることにより蒸気負荷があると判断される場合には、前記第一原動機への蒸気供給を継続し、前記管路または前記タンクに設けた圧力センサの検出圧力が設定値以上であることにより空気負荷がないと判断され、または前記蒸気ヘッダに設けた圧力センサの検出圧力が所定値以上であることにより蒸気負荷がないと判断される場合には、前記第一原動機への蒸気供給を停止し、前記管路または前記タンクに設けた圧力センサの検出圧力が設定値未満であることにより空気負荷があると判断され、且つ前記蒸気ヘッダに設けた圧力センサの検出圧力が所定値以上であることにより蒸気負荷がないと判断される場合には、前記第二原動機のみを運転することを特徴とする請求項6に記載の蒸気システムである。
【0021】
請求項7に記載の発明によれば、空気負荷と蒸気負荷とを考慮して制御することで、各原動機を無駄に運転することを防止して、運転効率を高めることができる。
【0022】
さらに、請求項8に記載の発明は、前記第一被動機と前記第二被動機とが、共通の一つの被動機として構成され、この共通の被動機が、前記第一原動機と前記第二原動機とにより駆動可能とされたことを特徴とする請求項1〜7のいずれか1項に記載の蒸気システムである。
【0023】
請求項8に記載の発明によれば、共通の被動機を各原動機により駆動可能とすることで、構成を簡易なものとして、コンパクト化を図ることができる。
【発明の効果】
【0024】
この発明の蒸気システムによれば、蒸気負荷と流体負荷との双方に基づき、蒸気エンジンなどを制御することで、効率的に安定して運転することができる。また、蒸気エンジンによる駆動を優先することで、省エネルギーを図ることができる。
【発明を実施するための最良の形態】
【0025】
つぎに、この発明の実施の形態について説明する。
本発明の蒸気システムは、蒸気エンジンと電動機などとの組合せで用いられる複数の原動機と、これら原動機により駆動される圧縮機または真空ポンプなどの一または複数の被動機とを備える。本実施形態では、蒸気を用いて動力を起こす第一原動機と、この第一原動機により駆動される第一被動機と、蒸気以外を用いて動力を起こす第二原動機と、この第二原動機により駆動される第二被動機とを備える。
【0026】
第一原動機は、蒸気を用いて動力を起こす蒸気エンジンである。蒸気エンジンは、蒸気タービンでもよいが、好適にはスクリュ式蒸気エンジンである。スクリュ式蒸気エンジンは、互いにかみ合うスクリュロータ間に蒸気が導入され、その蒸気によりスクリュロータを回転させつつ蒸気を膨張して減圧し、その際のスクリュロータの回転により動力を得る装置である。
【0027】
蒸気エンジンには、蒸気供給源から蒸気が供給される。蒸気供給源は、典型的には蒸気ボイラである。蒸気ボイラからの蒸気は、蒸気ヘッダに供給され、その蒸気ヘッダの蒸気が、給蒸路を介して蒸気エンジンに供給されてもよい。
【0028】
蒸気エンジンの制御は、蒸気エンジンへの給蒸の有無または量を制御してなされる。具体的には、蒸気エンジンへの給蒸路に給蒸弁を設け、この給蒸弁の開閉または開度を制御する。これにより、蒸気エンジンへの給蒸の有無または量を変更でき、蒸気エンジンの作動の有無または出力を変更できる。
【0029】
たとえば、蒸気エンジンが蒸気タービンの場合、給蒸弁の開閉を制御することで、蒸気タービンへの給蒸の有無を切り替えればよい。これにより、蒸気タービンの作動の有無を変更することができる。一方、蒸気エンジンがスクリュ式蒸気エンジンの場合、蒸気タービンの場合と同様に給蒸弁の開閉を制御してもよいし、給蒸弁の開度を制御してもよい。給蒸弁の開度を制御する場合、スクリュ式蒸気エンジンへの給蒸量を調整して、スクリュ式蒸気エンジンの出力を変更することができる。
【0030】
但し、蒸気エンジンの制御は、以上の構成に限らない。すなわち、蒸気エンジンは、給蒸の有無または量が変更可能であれば足り、給蒸路に給蒸弁を設けて、その給蒸弁により制御する必要は必ずしもない。たとえば、蒸気エンジンへの給蒸路と、蒸気エンジンからの排蒸路とを、バイパス路で接続し、そのバイパス路に設けたバイパス弁の開閉または開度を制御してもよい。また、前記給蒸弁に加えて、このバイパス弁を設けてもよい。その際、バイパス弁は、自力式の減圧弁としてもよい。
【0031】
蒸気エンジンは、蒸気を減圧するものであるから、減圧弁としても機能する。それ故、蒸気エンジンにて使用後の蒸気は、従来の減圧弁通過後の蒸気と同様に利用可能である。すなわち、従来、蒸気ボイラからの蒸気は、減圧弁を介して蒸気使用装置へ供給されるが、それと同様に、蒸気エンジンにて使用後の蒸気も、蒸気使用装置へ供給できる。この際、蒸気エンジンからの蒸気は、排蒸路を介して蒸気ヘッダに供給され、その蒸気ヘッダの蒸気が、蒸気使用装置に供給されてもよい。
【0032】
第一被動機は、第一原動機により駆動され、流体を吐出または吸入する装置である。具体的には、第一被動機は、ポンプ、送風機、圧縮機、または真空ポンプなどである。第一被動機は、ポンプ、送風機または圧縮機の場合、流体を吐出し、真空ポンプの場合、流体を吸入する。
【0033】
第一被動機は、たとえば空気圧縮機とされる。この空気圧縮機は、往復式や回転式など、その種類を特に問わないが、本実施形態ではスクリュ式圧縮機である。スクリュ式圧縮機は、互いにかみ合って回転するスクリュロータ間に気体を吸入して、スクリュロータの回転により圧縮して吐出する装置である。
【0034】
第二原動機は、蒸気以外を用いて動力を起こす装置である。第二原動機は、典型的には電動機(モータ)とされるが、ディーゼルエンジンなどでもよい。第二原動機が電動機の場合、オンオフ制御されてもよいし、インバータ制御されてもよい。周知のとおり、インバータ制御によれば、電動機に印加する電源の周波数を変えることで、電動機の回転数を変えることができる。
【0035】
第二被動機は、第二原動機により駆動され、流体を吐出または吸入する装置である。具体的には、第二被動機は、ポンプ、送風機、圧縮機、または真空ポンプなどである。第二被動機は、ポンプ、送風機または圧縮機の場合、流体を吐出し、真空ポンプの場合、流体を吸入する。
【0036】
第二被動機は、第一被動機により流体が吐出または吸入される空間に対し、第一被動機と同様に、流体を吐出または吸入する装置である。そのため、第二被動機は、第一被動機と同一機能のものとされる。たとえば、第一被動機が空気圧縮機の場合には、第二被動機も空気圧縮機とされる。但し、第二被動機は、第一被動機と機能が同一であれば、機構まで同一である必要はない。たとえば、第一被動機がスクリュ式の空気圧縮機である場合、第二被動機は、空気圧縮機である限り、スクリュ式に限らず、往復式(レシプロ圧縮機)などでもよい。
【0037】
第一原動機と第二原動機とは、共通の制御器により制御されてもよいし、個別の制御器により独立に制御されてもよい。前者の場合、後述する流体負荷と蒸気負荷とに基づき、第一原動機と第二原動機とが制御される。後者の場合、流体負荷と蒸気負荷とに基づき第一原動機が制御される一方、流体負荷に基づき第二原動機が制御されるのがよい。
【0038】
ここで、流体負荷とは、前記各被動機により流体が吐出または吸入される空間内の流体の負荷である。具体的には、前記各被動機がポンプ、送風機または圧縮機の場合、これが吐出する空間内の流体の使用量である。また、前記各被動機が真空ポンプの場合、これが吸入する空間内の流体の存在量である。つまり、前記各被動機が真空ポンプの場合、真空度が低くなれば、流体負荷があることになる。
【0039】
いずれの流体負荷も、前記各被動機により流体が吐出または吸入される空間内の圧力により検出できる。たとえば、前記各被動機が空気圧縮機の場合、その圧縮空気を一または複数の圧縮空気使用装置へ送る共通の管内またはタンク内の圧力に基づき、圧縮空気の使用負荷(空気負荷という)を検出できる。すなわち、圧縮空気使用装置にて圧縮空気が使用される場合には、前記管内またはタンク内の空気圧が下がるので、空気負荷を検出できる。
【0040】
一方、蒸気負荷とは、第一原動機(蒸気エンジン)にて使用後の蒸気が供給される箇所の蒸気の使用量である。この蒸気負荷は、第一原動機にて使用後の蒸気が供給される箇所の蒸気圧により検出できる。たとえば、第一原動機からの排蒸路またはその先に設けられる蒸気ヘッダ内の蒸気圧に基づき、蒸気の使用負荷(蒸気負荷)を検出できる。すなわち、蒸気使用装置にて蒸気が使用される場合には、排蒸路内または蒸気ヘッダ内の蒸気圧が下がるので、蒸気負荷を検出できる。
【0041】
このように、流体負荷も蒸気負荷も、圧力にて検出するのが簡易である。従って、前記各被動機により流体が吐出または吸入される空間内の圧力と、第一原動機にて使用後の蒸気が供給される箇所の蒸気圧とに基づき、第一原動機および/または第二原動機を制御できる。たとえば、流体圧と蒸気圧とに基づき第一原動機を制御する一方、流体圧に基づき第二原動機を制御できる。
【0042】
第一原動機と第二原動機とは、それぞれの駆動の有無または量が変更されて、制御される。これにより、第一原動機と第二原動機との駆動割合を変更することができる。この際、次のように制御するのが簡易であり、また省エネルギーを図ることができる。すなわち、流体負荷および蒸気負荷がある場合には、第一原動機への蒸気供給を継続するが、流体負荷または蒸気負荷がない場合には、第一原動機への蒸気供給を停止する。そして、流体負荷があるが蒸気負荷がない場合には、第二原動機のみを運転する。但し、この場合(流体負荷があるが蒸気負荷がない場合)にも、所望により、第一原動機への蒸気供給を実行してもよい。ところで、流体負荷がないが蒸気負荷がある場合には、バイパス路などを介して、蒸気ヘッダや蒸気使用装置へ蒸気が供給される。
【0043】
前記各被動機が空気圧縮機であり、流体負荷が空気負荷である場合、空気負荷があるか否かは、圧縮空気を圧縮空気使用装置へ送る管またはタンクに設けた圧力センサの検出圧力が設定値未満であるか否かにより検知できる。つまり、設定値未満であれば空気負荷があると判断でき、設定値以上であれば空気負荷がないと判断できる。また、蒸気負荷があるか否かは、第一原動機にて使用後の蒸気が供給される蒸気ヘッダなどに設けた圧力センサの検出圧力が所定値未満であるか否かにより検知できる。つまり、所定値未満であれば蒸気負荷があると判断でき、所定値以上であれば蒸気負荷がないと判断できる。前記各被動機が、圧縮機ではなく、ポンプまたは送風機の場合も同様である。逆に、前記各被動機が真空ポンプの場合には、流体負荷があるか否かは、真空ポンプが真空引きする空間に設けた圧力センサの検出圧力が設定値以上であるか否かにより検知できる。
【0044】
いずれにしても、省エネルギーを図るためには、蒸気負荷がある際には、第一原動機(蒸気エンジン)の駆動を優先し、この第一原動機だけでは賄いきれない場合に、第二原動機にて補助駆動するのが好ましい。その際、第一原動機と第二原動機とを個別に制御する場合、次のように制御するのが簡易である。
【0045】
すなわち、前記各被動機により流体が吐出または吸入される空間内の圧力に基づき、その空間内を第一設定圧力域に維持するように、第一原動機への給蒸を制御する。また、前記各被動機により流体が吐出または吸入される空間内の圧力に基づき、その空間内を第二設定圧力域に維持するように、第二原動機を制御する。そして、前記各被動機がポンプ、送風機または圧縮機の場合、第一設定圧力域の下限圧力は、第二設定圧力域の下限圧力よりも高く設定され、第二設定圧力域の上限圧力は、第一設定圧力域の上限圧力よりも低く設定される。一方、前記各被動機が真空ポンプの場合、第一設定圧力域の上限圧力は、第二設定圧力域の上限圧力よりも低く設定され、第二設定圧力域の下限圧力は、第一設定圧力域の下限圧力よりも高く設定される。そして、いずれの場合も、第一原動機にて使用後の蒸気が供給される箇所の蒸気圧が所定値未満の場合にのみ、第一原動機への給蒸がなされるのがよい。このような制御の際、第一原動機は、給蒸の有無が制御され、第二原動機(電動機)は、オンオフ制御されるだけでもよい。
【0046】
ところで、以上の説明では、第一被動機と第二被動機とは、別体に構成したが、これらは共通の一つの被動機として構成してもよい。その場合、共通の被動機が、第一原動機と第二原動機とにより駆動可能とされる。たとえば、蒸気エンジンと同軸に電動機を取り付けることで、蒸気駆動と電気駆動とを一ユニットで構成してもよい。
【0047】
また、以上の説明では、第一原動機および第一被動機と、第二原動機および第二被動機とは、それぞれ一台ずつ設置した例を示したが、これらは複数台設置してもよい。たとえば、上述の蒸気システムにおいて、第二原動機および第二被動機を二台並列に設置することもできる。その場合も、各第二原動機は、上述したのと同様の制御をすればよい。
【実施例】
【0048】
以下、この発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の蒸気システムの一実施例を示す概略図である。本実施例の蒸気システム1は、蒸気駆動式圧縮機ユニット2と、電気駆動式圧縮機ユニット3とを備える。
【0049】
蒸気駆動式圧縮機ユニット2は、蒸気を受けて動力を起こす蒸気エンジン(第一原動機)4と、この蒸気エンジン4により駆動される空気圧縮機(第一被動機)5とを備える。蒸気エンジン4は、蒸気タービンでもよいが、好適にはスクリュ式蒸気エンジンである。スクリュ式蒸気エンジンは、互いにかみ合うスクリュロータ間に蒸気が導入され、その蒸気によりスクリュロータを回転させつつ蒸気を膨張して減圧し、その際のスクリュロータの回転により動力を得る装置である。
【0050】
蒸気エンジン4に対しては、給蒸路6を介して蒸気が供給され、排蒸路7を介して蒸気が排出される。蒸気駆動式圧縮機ユニット2の制御器(第一制御器)8は、給蒸路6に設けた給蒸弁9を制御することで、蒸気エンジン4を制御する。本実施例では、給蒸弁9の開閉を制御することで、蒸気エンジン4の作動の有無を切り替える。但し、給蒸弁9の開度を調整して、蒸気エンジン4の出力を調整可能としてもよい。
【0051】
空気圧縮機5は、その種類を特に問わないが、好適にはスクリュ式圧縮機である。スクリュ式圧縮機は、互いにかみ合って回転するスクリュロータ間に気体を吸入して、スクリュロータの回転により圧縮して吐出する装置である。空気圧縮機5は、発電機を介することなく、直接に蒸気エンジン4にて駆動される。
【0052】
電気駆動式圧縮機ユニット3は、電力を受けて動力を起こす電動機(第一被動機)10と、この電動機10により駆動される空気圧縮機(第二被動機)11とを備える。この空気圧縮機11も、蒸気駆動式圧縮機ユニット2の場合と同様に、その種類を特に問わないが、好適にはスクリュ式圧縮機である。
【0053】
電気駆動式圧縮機ユニット3の制御器(第二制御器)12は、電動機10を制御する。本実施例では、電動機10への電力供給の有無を制御することで、電動機10の作動の有無を切り替える。但し、電動機10をインバータ制御して、電動機10の出力を調整可能としてもよい。つまり、インバータにおいて電動機10に印加する電源の周波数を変えることで、電動機10の回転数を変えてもよい。
【0054】
前述したとおり、蒸気エンジン4は、蒸気が供給されて駆動される。図示例では、蒸気ボイラ13からの蒸気は、第一蒸気ヘッダ14および給蒸路6を介して、蒸気エンジン4に供給される。そして、蒸気エンジン4にて使用後の蒸気は、第二蒸気ヘッダ15を介して、各種の蒸気使用装置(図示省略)に供給可能とされる。
【0055】
また、第一蒸気ヘッダ14と第二蒸気ヘッダ15とは、バイパス路16を介しても接続される。図示例では、第一蒸気ヘッダ14から蒸気エンジン4への給蒸路6の内、給蒸弁9よりも上流部と、蒸気エンジン4から第二蒸気ヘッダ15への排蒸路7の中途部とが、バイパス路16で接続される。そして、このバイパス路16の中途部には、バイパス弁17が設けられる。このバイパス弁17は、制御器により開閉制御される電磁弁または電動弁であってもよいが、本実施例では自力式の減圧弁とされる。具体的には、バイパス弁17は、第二蒸気ヘッダ15内の蒸気圧を所定に維持するように、機械的に自力で開度調整する減圧弁とされる。
【0056】
このようにして、本実施例の蒸気システム1は、圧力および温度が異なる二つの蒸気ヘッダ14,15を備える。そして、各蒸気ヘッダ14,15内の蒸気は、それぞれ所望の蒸気使用装置(図示省略)へ供給可能とされる。各蒸気ヘッダ14,15内の蒸気は、温度が異なるので、用途に応じた蒸気の使用が可能となる。すなわち、比較的高温の蒸気が必要とされる場合には、第一蒸気ヘッダ14から蒸気を供給すればよいし、それよりも低温の蒸気が必要とされる場合には、第二蒸気ヘッダ15から蒸気を供給すればよい。
【0057】
いずれの蒸気ヘッダ14,15からの蒸気も、所望により減圧弁18(第一蒸気ヘッダ14側のみ図示)を介して、蒸気使用装置に供給可能である。蒸気エンジン4は、減圧弁としても機能するので、第二蒸気ヘッダ15内の蒸気は、減圧弁通過後の蒸気として、そのまま利用することもできる。ところで、本実施例の蒸気ボイラ13は、第一蒸気ヘッダ14内の蒸気圧に基づき、運転状態を制御される。具体的には、第一蒸気ヘッダ14内の蒸気圧に基づき、バーナの燃焼量を制御される。
【0058】
第二蒸気ヘッダ15には、その蒸気の使用負荷を把握するために、第一圧力センサ19が設けられる。この第一圧力センサ19により、第二蒸気ヘッダ15内の蒸気圧が監視される。従って、その蒸気圧が所定値未満であるか否かにより、蒸気負荷があるか否かが判断可能である。すなわち、蒸気が使用される場合には、第二蒸気ヘッダ15内の蒸気圧が下がるので、それが所定値未満であるか否かにより、蒸気の使用負荷を検知できる。
【0059】
ところで、各空気圧縮機5,11からの圧縮空気は、圧縮空気路20を介して中空のエアタンク21内へ供給され、そのエアタンク21から一または複数の圧縮空気使用装置(図示省略)へ供給可能とされる。エアタンク21には、圧縮空気の使用負荷を把握するために、第二圧力センサ22が設けられる。この第二圧力センサ22により、エアタンク21内の空気圧が監視される。従って、その空気圧が設定値未満であるか否かにより、空気負荷があるか否かが判断可能である。すなわち、圧縮空気が使用される場合には、エアタンク21内の空気圧が下がるので、それが設定値未満であるか否かにより、圧縮空気の使用負荷を検知できる。
【0060】
本実施例の蒸気システム1では、省エネルギーを図るために、蒸気負荷がある際には、電動機10よりも蒸気エンジン4による圧縮機の駆動を優先し、この蒸気エンジン4だけでは賄いきれない場合に、電動機10が補助駆動される。この際、蒸気駆動式圧縮機ユニット2も電気駆動式圧縮機ユニット3も、第二圧力センサ22によるエアタンク21内の空気圧を監視して、蒸気エンジン4または電動機10の起動と停止が切り替えられる。
【0061】
そして、第二圧力センサ22の空気圧が設定値(後述のP1U)未満であることにより空気負荷があると判断され、且つ第一圧力センサ19の蒸気圧が所定値未満であることにより蒸気負荷があると判断される場合には、給蒸弁9を開いて蒸気エンジン4を運転し続ける。逆に、第二圧力センサ22の空気圧が設定値以上であることにより空気負荷がないと判断され、または第一圧力センサ19の蒸気圧が所定値以上であることにより蒸気負荷がないと判断される場合には、給蒸弁9を閉じて蒸気エンジン4を停止する。さらに、第二圧力センサ22の空気圧が設定値未満であることにより空気負荷があると判断され、且つ第一圧力センサ19の蒸気圧が所定値以上であることにより蒸気負荷がないと判断される場合には、電動機10を単独運転する。このようにして、蒸気負荷がある限り、蒸気駆動式圧縮機ユニット2を優先的に運転させる。
【0062】
また、蒸気駆動式圧縮機ユニット2の設定圧を、電気駆動式圧縮機ユニット3の設定圧よりも高めに設定するのがよい。具体的には、各圧縮機ユニット2,3では、エアタンク21内の空気圧を設定圧力域に維持するように、各制御器8,12により原動機(蒸気エンジン4,電動機10)が個別に制御される。図2は、各圧縮機ユニット2,3における設定圧力域の一例と、各圧力域における給蒸弁9と電動機10の作動状態を示す図である。同図において、右側の表は、左側のグラフの各圧力域における給蒸弁9の開閉と、電動機10の作動の有無を示している。給蒸弁9については、「○」が開放状態、「×」が閉鎖状態を示しており、電動機10については、「○」が作動状態、「×」が停止状態を示している。
【0063】
そして、第一制御器8は、第二圧力センサ22の検出圧力に基づき、エアタンク21内を第一設定圧力域P1に維持するように、給蒸弁9の開閉を制御する。具体的には、圧縮空気の使用に伴い、第一設定圧力域P1の下限圧力P1Lになると、給蒸弁9を開ける一方、第一設定圧力域P1の上限圧力P1Uになると、給蒸弁9を閉じる。一方、第二制御器12は、第二圧力センサ22の検出圧力に基づき、エアタンク21内を第二設定圧力域P2に維持するように、電動機10の作動を制御する。具体的には、第二設定圧力域P2の下限圧力P2Lになると、電動機10を作動させる一方、第二設定圧力域P2の上限圧力P2Uになると、電動機10を停止させる。
【0064】
そして、蒸気要求(蒸気負荷)がある限り、蒸気駆動式圧縮機ユニット2が電気駆動式圧縮機ユニット3よりも優先的に運転されるように、第一設定圧力域P1と第二設定圧力域P2とが設定される。具体的には、第一設定圧力域P1の下限圧力P1Lは、第二設定圧力域P2の下限圧力P2Lよりも高く設定され、第二設定圧力域P2の上限圧力P2Uは、第一設定圧力域P1の上限圧力P1Uよりも低く設定される。
【0065】
このような構成の場合、図2の右側の表に示すように、第一設定圧力域P1の上限圧力P1Uを超える圧力では、給蒸弁9は閉鎖され、電動機10は停止される。その状態から圧力が低下しても、表中一番左の列に示すように、第一設定圧力域P1の下限圧力P1Lになるまで、給蒸弁9は閉鎖状態とされる。そして、第一設定圧力域P1の下限圧力P1Lを下回る領域では、給蒸弁9は開放状態とされる。この状態から圧力が上昇すれば、表中左から二番目の列に示すように、第一設定圧力域P1の上限圧力P1Uになるまで、給蒸弁9は開放状態とされる。そして、第一設定圧力域P1の上限圧力P1Uを上回る領域では、給蒸弁9は閉鎖状態とされる。
【0066】
一方、前述したように、第一設定圧力域P1の上限圧力P1Uを超える圧力において、電動機10は停止している。その状態から圧力が低下しても、表中右から二番目の列に示すように、第二設定圧力域P2の下限圧力P2Lになるまで、電動機10は停止状態とされる。この間、給蒸弁9は、前述したように、第一設定圧力域P1の下限圧力P1Lにおいて開放される。そして、第二設定圧力域P2の下限圧力P2Lを下回る領域では、電動機10は作動状態とされる。この状態から圧力が上昇すれば、表中一番右側の列に示すように、第二設定圧力域P2の上限圧力P2Uになるまで、電動機10は作動状態とされる。この間、給蒸弁9も開放状態とされる。そして、第二設定圧力域P2の上限圧力P2Uを上回る領域では、電動機10は停止状態とされる。また、給蒸弁9は、前述したように、第一設定圧力域P1の上限圧力P1Uになると閉鎖される。
【0067】
このような構成の場合、電動機10のバックアップにより、蒸気負荷がない場合でも、安定して圧縮空気を得ることができる。また、蒸気ボイラ13の起動時、すなわち起蒸までは、電動機10により圧縮空気を得ることができる。そして、起蒸後には、蒸気負荷がある限り、すなわち第二蒸気ヘッダ15内の蒸気が使用される限り、蒸気駆動式圧縮機ユニット2を優先的に運転しつつ、圧縮空気を得ることができる。なお、蒸気負荷があるが空気負荷がない場合、蒸気エンジン4を介しては第二蒸気ヘッダ15に蒸気は供給されないが、バイパス路16を介して第二蒸気ヘッダ15に蒸気が供給される。
【0068】
ところで、夏場の電力ピーク時で、電気の使用を極力抑えたい場合には、蒸気負荷がない場合でも、消費電力の大きい電動機10を使わずに、圧縮機5を駆動するために、蒸気エンジン4へ蒸気を供給してもよい。これにより、電力削減を図ることができる。
【0069】
本発明の蒸気システムは、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、蒸気エンジン4は、スクリュ式としたが、場合によりタービン式としてもよい。
【0070】
また、前記実施例では、各圧縮機5,11は、オンオフ制御されたが、場合により容量制御されてもよい。その場合、蒸気駆動式圧縮機ユニット2では、給蒸弁9の開度を調整するのが簡易であり、電気駆動式圧縮機ユニット3では、電動機10をインバータ制御するのが簡易である。
【0071】
また、前記実施例では、圧縮空気の使用負荷は、エアタンク21に設けた第二圧力センサ22により検出したが、第二圧力センサ22はエアタンク21ではなく、各圧縮機5,11から圧縮空気が吐出される圧縮空気路20に設けてもよい。その場合、エアタンク21は、その設置を省略することもできる。
【0072】
また、前記実施例では、蒸気の使用負荷は、第二蒸気ヘッダ15に設けた第一圧力センサ19により検出したが、第一圧力センサ19は第二蒸気ヘッダ15ではなく、蒸気エンジン4からの排蒸路7とバイパス路16との合流後の管路に設けてもよい。その場合、第二蒸気ヘッダ15は、その設置を省略することもできる。
【0073】
また、前記実施例では、各ユニット2,3にそれぞれに制御器8,12を設けたが、これらを統一して共通の制御器としてもよい。さらに、前記実施例において、各ユニット2,3の各圧縮機5,11を共通化して、共通の一つの圧縮機を、蒸気エンジン4や電動機10で制御してもよい。
【0074】
また、前記実施例では、各ユニット2,3に圧縮機を設けたが、圧縮機に代えて、ポンプまたは送風機を設置してもよい。その場合も、前記実施例と同様に制御すればよい。
【0075】
また、圧縮機に代えて、真空ポンプを設置してもよい。その場合、蒸気エンジン4や電動機10により駆動される各真空ポンプが吸引する空間内の圧力に基づき、蒸気エンジン4または電動機10を制御すればよい。そして、その場合も、電動機10よりも蒸気エンジン4が優先されるように、各ユニット2,3を制御するのがよい。この場合、前記各設定圧力域P1,P2は、たとえば図3に示すように設定される。そして、真空度が低下して、上限圧力(P1U,P2U)になると、原動機(蒸気エンジン4,電動機10)を作動させる一方、下限圧力(P1L,P2L)になると、原動機を停止させる。
【0076】
さらに、前記実施例では、原動機として、蒸気エンジン4と電動機10とを用いたが、電動機10は、蒸気以外を用いて動力を起こすその他の原動機としてもよい。たとえば、電気駆動式圧縮機ユニット3を、ディーゼルエンジンによるレシプロ式圧縮機としてもよい。
【図面の簡単な説明】
【0077】
【図1】本発明の蒸気システムの一実施例を示す概略図である。
【図2】図1の蒸気システムにおいて、各被動機が圧縮機の場合の各ユニットにおける設定圧力域の一例を示す図である。
【図3】図1の蒸気システムにおいて、各被動機が真空ポンプの場合の各ユニットにおける設定圧力域の一例を示す図である。
【符号の説明】
【0078】
1 蒸気システム
2 蒸気駆動式圧縮機ユニット
3 電気駆動式圧縮機ユニット
4 蒸気エンジン(第一原動機)
5 空気圧縮機(第一被動機)
6 給蒸路
7 排蒸路
8 第一制御器
9 給蒸弁
10 電動機(第二原動機)
11 空気圧縮機(第二被動機)
12 第二制御器
13 蒸気ボイラ(蒸気供給源)
15 第二蒸気ヘッダ
16 バイパス路
17 バイパス弁(減圧弁)
19 第一圧力センサ
20 圧縮空気路
21 エアタンク
22 第二圧力センサ
P1 第一設定圧力域
P1U 第一設定圧力域の上限圧力
P1L 第一設定圧力域の下限圧力
P2 第二設定圧力域
P2U 第二設定圧力域の上限圧力
P2L 第二設定圧力域の下限圧力

【特許請求の範囲】
【請求項1】
蒸気を用いて動力を起こす第一原動機と、
この第一原動機により駆動され、流体を吐出または吸入する第一被動機と、
蒸気以外を用いて動力を起こす第二原動機と、
この第二原動機により駆動され、前記第一被動機により流体が吐出または吸入される空間に対し、流体を吐出または吸入する第二被動機と、
前記第一原動機にて使用後の蒸気が供給される箇所の蒸気負荷と、前記各被動機により流体が吐出または吸入される前記空間内の流体負荷とに基づき、前記第一原動機および/または前記第二原動機を制御する制御器と
を備えることを特徴とする蒸気システム。
【請求項2】
前記第一原動機にて使用後の蒸気が供給される箇所の蒸気圧と、前記各被動機により流体が吐出または吸入される前記空間内の圧力とに基づき、前記第一原動機と前記第二原動機との駆動割合が変更される
ことを特徴とする請求項1に記載の蒸気システム。
【請求項3】
前記第一原動機にて使用後の蒸気が供給される箇所の蒸気圧と、前記各被動機により流体が吐出または吸入される前記空間内の圧力とに基づき、前記第一原動機が制御され、
前記各被動機により流体が吐出または吸入される前記空間内の圧力に基づき、前記第二原動機が制御される
ことを特徴とする請求項1または請求項2に記載の蒸気システム。
【請求項4】
前記各被動機により流体が吐出される前記空間内の圧力に基づき、その空間内を第一設定圧力域に維持するように、前記第一原動機への給蒸が制御され、
前記各被動機により流体が吐出される前記空間内の圧力に基づき、その空間内を第二設定圧力域に維持するように、前記第二原動機が制御され、
前記第一設定圧力域の下限圧力は、前記第二設定圧力域の下限圧力よりも高く設定され、前記第二設定圧力域の上限圧力は、前記第一設定圧力域の上限圧力よりも低く設定される
ことを特徴とする請求項3に記載の蒸気システム。
【請求項5】
前記第一原動機にて使用後の蒸気が供給される箇所の蒸気圧が所定値未満の場合にのみ、前記第一原動機への給蒸がなされる
ことを特徴とする請求項4に記載の蒸気システム。
【請求項6】
前記第一原動機は、スクリュ式蒸気エンジンとされ、
前記第一被動機は、空気圧縮機とされ、
前記第二原動機は、電動機とされ、
前記第二被動機は、空気圧縮機とされる
ことを特徴とする請求項1〜5のいずれか1項に記載の蒸気システム。
【請求項7】
前記各被動機からの圧縮空気は、共通の管路および/またはタンクを介して、圧縮空気使用装置へ供給可能とされ、
蒸気供給源からの蒸気は、前記第一原動機を介して蒸気ヘッダへ供給可能とされると共に、減圧弁を介して前記蒸気ヘッダへ供給可能とされ、
その蒸気ヘッダの蒸気は、蒸気使用装置へ供給可能とされ、
前記管路または前記タンクに設けた圧力センサの検出圧力が設定値未満であることにより空気負荷があると判断され、且つ前記蒸気ヘッダに設けた圧力センサの検出圧力が所定値未満であることにより蒸気負荷があると判断される場合には、前記第一原動機への蒸気供給を継続し、
前記管路または前記タンクに設けた圧力センサの検出圧力が設定値以上であることにより空気負荷がないと判断され、または前記蒸気ヘッダに設けた圧力センサの検出圧力が所定値以上であることにより蒸気負荷がないと判断される場合には、前記第一原動機への蒸気供給を停止し、
前記管路または前記タンクに設けた圧力センサの検出圧力が設定値未満であることにより空気負荷があると判断され、且つ前記蒸気ヘッダに設けた圧力センサの検出圧力が所定値以上であることにより蒸気負荷がないと判断される場合には、前記第二原動機のみを運転する
ことを特徴とする請求項6に記載の蒸気システム。
【請求項8】
前記第一被動機と前記第二被動機とが、共通の一つの被動機として構成され、
この共通の被動機が、前記第一原動機と前記第二原動機とにより駆動可能とされた
ことを特徴とする請求項1〜7のいずれか1項に記載の蒸気システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2009−209864(P2009−209864A)
【公開日】平成21年9月17日(2009.9.17)
【国際特許分類】
【出願番号】特願2008−55685(P2008−55685)
【出願日】平成20年3月6日(2008.3.6)
【特許番号】特許第4196307号(P4196307)
【特許公報発行日】平成20年12月17日(2008.12.17)
【出願人】(000175272)三浦工業株式会社 (1,055)
【Fターム(参考)】