説明

表示装置および表示素子の駆動制御方法

【課題】表示素子の実際の静電容量を、ダミー画素など余分な画素を設けること無しに検出して、検出結果に応じて最適な駆動条件を自動調整する表示装置の実現。
【解決手段】駆動された後駆動が解除された後も表示状態を維持するメモリ性を有する表示素子10と、表示素子が呈する静電容量を検出する静電容量検出回路14と、表示素子を所定の駆動条件で駆動して表示状態を設定した後、静電容量検出回路が検出した表示状態を呈する表示素子の静電容量に基づいて、表示素子の駆動条件を自動調整する駆動条件調整回路23,24と、を有する表示装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表示装置および表示素子の駆動制御方法に関する。
【背景技術】
【0002】
表示装置として、コレステリック液晶など、メモリ性を有する材料を用いた表示装置が開発され、電子ペーパー等に応用されている。電子ペーパーは、フィルム基板を用いた難度の高い製造プロセスであること等から、表示素子のコントラスト、明るさ、ガンマ特性などがロット間でバラつきやすい。製造後も、表示素子の長期間の使用により、このような特性の変化が懸念される。このようなバラツキや経年変化があると、同じ駆動条件で表示素子を駆動しても望ましい表示が行えないという問題が発生する。
【0003】
そこで、表示装置のロット間のバラツキや経年変化を検出し、最適な駆動条件になるように自動調整することが提案されている。
【0004】
例えば、表示素子に輝度センサを搭載し、実際の表示の状態を検出して所望の表示状態が得られるように調整することが提案されている。しかし、表示素子に輝度センサを搭載するのは、コスト面や外観面から問題があり、特に電子ペーパーのように持ち運びのしやすさを特徴とする反射型表示素子に輝度センサを搭載することは好ましくない。
【0005】
また、表示中には常時通電を行う表示素子の累積通電時間を測定し、経年変化を予測して補正することも行われる。しかし、電子ペーパーは書き換え時のみ通電し、その通電も不定期に行われるため、累積通電時間を利用した補正は、電子ペーパーに適用できない。
【0006】
液晶表示素子における駆動は、静電容量を有する各画素を駆動することであり、その駆動条件は静電容量値に応じて決定される。そこで、ダミー画素を設け、ダミー画素の静電容量値を検出して駆動電圧を調整することが提案されている。しかし、ダミー画素の静電容量と実際の表示画素の静電容量は、駆動履歴の相違により適合せず、検出精度が十分でないという問題がある。また、提案の方法では、ダミー画素で構成されるCR発振回路の発振周波数を検出して静電容量値を検出している。この検出方法は、TFT液晶表示素子のような比抵抗が高く、容量特性が安定している場合には実用的であるが、電子ペーパーに使用されるメモリ性を有するコレステリック液晶のように、比抵抗が相対的に低く、容量特性が不安定な場合には、発振回路の安定性が不十分で、静電容量を高精度に検出することができない。
【0007】
また、温度に応じて液晶表示素子の静電容量が変化することが知られている。言い換えれば、温度により静電容量が変化し、それに応じて駆動条件も変化する。そこで、液晶表示素子の静電容量を検出して駆動条件を調整することにより、温度にかかわらず常時良好な表示が得られるようにすることが提案されている。しかしながら、これは温度に応じた調整のみで、バラツキや経年変化は考慮されていない。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2008−065058号公報
【特許文献2】特開昭52−140295号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
実施形態によれば、これまでにない方法で、メモリ性を有する表示装置のロット間のバラツキや経年変化を検出し、最適な駆動条件になるように自動調整する表示装置が開示される。
【課題を解決するための手段】
【0010】
発明の一観点によれば、駆動された後、駆動が解除された後も表示状態を維持するメモリ性を有する表示素子と、表示素子が呈する静電容量を検出する静電容量検出回路と、表示素子を所定の駆動条件で駆動して表示状態を設定した後、静電容量検出回路が検出した表示状態を呈する表示素子の静電容量に基づいて、表示素子の駆動条件を調整する駆動条件調整回路と、を備える表示装置が提供される。
【発明の効果】
【0011】
上記の観点によれば、表示素子の実際の静電容量を、ダミー画素など余分な画素を設けること無しに検出でき、検出結果に応じて最適な駆動条件を設定し、常時良好な表示を得ることができる。
【図面の簡単な説明】
【0012】
【図1】図1は、第1実施形態の表示装置の概略構成を示す図である。
【図2】図2は、第1実施形態の表示装置で使用する表示素子の構成を示す図である。
【図3】図3は、1枚のパネルの構成を示す図である。
【図4】図4は、コレステリック液晶の状態を説明する図である。
【図5】図5は、一般的なコレステリック液晶の電圧−反射特性の一例を示している。
【図6】図6は、ダイナミック駆動方式(Dynamic Driving Scheme:DDS)における駆動波形を示す図である。
【図7】図7は、第1実施形態において、コモンドライバおよびセグメントドライバが出力する駆動波形を示す図である。
【図8】図8は、第1実施形態において、各画素に印加される電圧波形を示す図である。
【図9】図9は、表示素子の3個のサンプルについて、コレステリック液晶の明度(反射率)と静電容量の関係を測定した結果を示す図である。
【図10】図10は、表示素子の静電容量の周波数特性を示す図である。
【図11】図11は、電源部における静電容量検出信号を出力する回路部分、電流センスアンプおよび演算部の構成を示す図である。
【図12】図12は、静電容量検出信号の波形を示す図である。
【図13】図13は、コレステリック液晶のテストセルを用いて、静電容量の検出を実験した結果を示す図である。
【図14】図14は、DDS駆動方式で、Selectionパルスのデューティ比を所定の値にして駆動する場合で、Evolution電圧を変化させた時の表示素子の容量変化を示す図である。
【図15】図15は、第1実施形態の表示装置における駆動条件の調整方法を説明する図である。
【図16】図16は、第1実施形態の表示装置における駆動条件の自動調整処理を示すフローチャートである。
【図17】図17は、白表示状態および黒表示状態に設定する駆動波形の例を示す図である。
【図18】図18は、ニュートン法により、測定静電容量値が目標静電容量値になるようにEvolution電圧を調整する方法を説明する図である。
【図19】図19は、10%点および90%点になる静電容量に対して、ニュートン法を行った場合のEvolution電圧の変化を示す図である。
【図20】図20は、二分法により、測定静電容量値が目標静電容量値になるようにEvolution電圧を調整する方法を説明する図である。
【図21】図21は、第3ステップにおける調整を説明する図である。
【図22】図22は、60%点の静電容量を得るデューティ比を決定するため、二分法を行った場合のデューティ比の変化を示す図である。
【図23】図23は、表示画面の複数の領域を異なる表示状態にして、各表示状態の静電容量を測定する方法を説明する図である。
【図24】図24は、多数の異なる表示状態の静電容量を、表示画面の複数の領域を異なる表示状態にして測定する方法を説明する図である。
【図25】図25は、双極性のドライバICを使用する場合のセグメントドライバおよびコモンドライバの出力電圧の対応関係を示す図である。
【図26】図26は、第2実施形態の表示装置における表示状態の変化を示す図である。
【図27】図27は、第2実施形態におけるリセットパルスおよびパルス幅が変化する書込みパルスを示す図である。
【図28】図28は、第2実施形態において、印加数で書込みパルスの印加時間を変化させる場合の複数の書込みパルスの例を示す図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について、図面を参照して具体的に説明する。
【0014】
図1は、第1実施形態の表示装置の概略構成を示す図である。第1実施形態の表示装置は、電子ペーパーである。表示素子10は、表示を書換える時のみ駆動信号が印加され、一旦書換えられた表示は、駆動信号を印加しなくても保持される。
【0015】
図1に示すように、第1実施形態の表示装置は、コレステリック液晶を用いた表示素子10と、セグメントドライバ11と、コモンドライバ12と、電源部13と、電流センスアンプ14と、ホスト制御部21と、フレームメモリ22と、制御部23と、を有する。
【0016】
ホスト制御部21は、メインCPUなどを有し、外部記憶装置に記憶された画像データや、通信回路などを介して入手した画像データに、この表示装置に表示するのに適した画像にするための各種の処理を行い。例えば、中間調画像データを表示するには、この表示装置で表示可能な階調数に適合するように、誤差拡散法、組織的ディザ法、ブルーノイズマスク法などの公知の階調変換を適用して階調変換を行う。なお、この処理の一部を制御部23で行う場合もある。ホスト制御部21は、生成した画像データを、フレームメモリ22に記憶する。
【0017】
制御部23は、サブCPU、マイクロコントローラ、またはPLDなどを有し、ホスト制御部21を除く各部の制御を行う。制御部23は、フレームメモリ22から読み出した画像データに応じて駆動データを生成し、セグメントドライバ11およびコモンドライバ12に供給する。制御部23は、セグメントドライバ11およびコモンドライバ12への駆動データの供給タイミング調整を容易にするために、生成した駆動データを一時的に格納するバッファ25を有することが望ましい。
【0018】
表示素子10は、コレステリック液晶を用いた表示素子であり、RGBの3層のパネルを積層したカラー表示可能な表示素子である。表示素子10の詳細については後述する。セグメントドライバ11およびコモンドライバ12は、表示素子10を単純マトリクス方式で駆動し、汎用のドライバICで実現される。ここでは、セグメントドライバ11は3個のドライバを含み、各層のパネルを独立に駆動するが、コモンドライバ12は1個のドライバで3層のパネルを共通に駆動することも可能である。
【0019】
電源部13は、表示装置の図示していない共通電源から供給される3〜5Vの電圧から、DC−DCコンバータ等の昇圧レギュレータにより、単極性のドライバICの場合は+50V、双極性のドライバICの場合は負のDC−DCコンバータも併用し、約−25V〜+25Vに昇圧させる。この昇圧レギュレータは、当然ながら表示素子の特性に対して変換効率の高いものが望ましい。リセット電圧および書込み電圧のスイッチングは、アナログスイッチやデジタルポテンショメータなどを使用して行うことが望ましい。このスイッチング回路の後段には、表示素子10の駆動電圧の安定化のため、オペアンプやトランジスタからなるブースター回路、および平滑コンデンサが配置される。
【0020】
以上説明した構成は、一般的なコレステリック液晶を用いた表示装置と同じであり、これまで知られている各種構成が適用可能である。また、表示素子10は、コレステリック液晶を用いた表示装置に限定されず、メモリ性を有する表示素子であればよい。
【0021】
第1実施形態の表示装置では、電源部13は、制御部23からの制御信号に応じて、のこぎり波信号、三角波信号などの静電容量検出信号を発生し、セグメントドライバ11の電源端子に、静電容量検出信号を供給する。この電源端子は、書込みなどに使用しない部分を用いるのが好ましい。また、電源部13は、制御部23からの制御信号に応じて、セグメントドライバ11およびコモンドライバ12に供給する電圧を調整できる。
【0022】
第1実施形態の表示装置では、さらに、電源部13からセグメントドライバ11に静電容量検出信号を供給する信号線の電流を検出するように電流センスアンプ14が配置される。静電容量検出信号を表示素子10に印加した時に検出される電流は、表示素子10の静電容量に関係しており、電流センスアンプ14は検出信号を演算部23に出力する。
【0023】
制御部23は、表示装置の起動時やユーザの指示に応じて駆動条件調整モードを実行する。駆動条件調整モードは、製品の出荷時など、表示装置を初めて使用する時には必ず自動的に実行し、それ以後は定期的に、例えば、一ヶ月に一度ほどの頻度で自動的に実行するようにしてもよい。制御部23は、表示素子10を所定の表示状態に設定した上で、電源部13から静電容量検出信号を表示素子14に印加し、演算部23が電流センスアンプ14の検出信号をデジタル化して検出データとして取り込むように制御する。演算部23は、後述する駆動条件調整シーケンスに従って表示素子10の表示状態を変更しながら、検出データの取得を行い、所望の表示が行える駆動条件を決定する。制御部23は、駆動条件調整モード終了後、決定された駆動条件にしたがって各部の制御を行う。
【0024】
次に、第1実施形態の表示装置で表示素子10として用いるコレステリック液晶を用いた表示装置について説明する。
【0025】
図2は、第1実施形態の表示装置で使用する表示素子10の構成を示す図である。図2に示すように、表示素子10は、見る側から順番に、青(ブルー)用パネル10B、緑(グリーン)用パネル10G、および赤(レッド)用パネル10Rの3枚のパネルが積層されており、レッド用パネル10Rの下側には光吸収層57が設けられている。パネル10B、10Gおよび10Rは、同じ構成を有するが、パネル10Bは反射の中心波長が青色(約480nm)、パネル10Gは反射の中心波長が緑色(約550nm)、パネル10Rは反射の中心波長が緑色(約630nm)になるように、液晶材料およびカイラル材が選択され、カイラル材の含有率が決定されている。パネル10B、10Gおよび10Rのスキャン電極およびデータ電極は、コモンドライバ12およびセグメントドライバ11により駆動される。
【0026】
パネル10B、10Gおよび10Rは、反射の中心波長が異なる以外同じ構成を有する。以下、パネル10B、10Gおよび10Rの代表例を、パネル10Aとして表し、その構成を説明する。
【0027】
図3は、1枚のパネル10Aの基本構成を示す図である。
【0028】
図3に示すように、表示素子10Aは、上側基板51と、上側基板51の表面に設けられた上側電極層54と、下側基板53の表面に設けられた下側電極層55と、シール材56と、を有する。上側基板51と下側基板53は、電極が対向するように配置され、間に液晶材料を封入した後シール材56で封止される。なお、液晶層52内にスペーサが配置されるが図示は省略している。上側電極層54と下側電極層55の電極には、電圧パルス信号が印加され、それにより液晶層52に電圧が印加される。液晶層52に電圧を印加して、液晶層52の液晶分子をプレーナ状態またはフォーカルコニック状態にして表示を行う。複数のスキャン電極および複数のデータ電極は、上側電極層54と下側電極層55に形成される。
【0029】
上側基板51と下側基板53は、いずれも透光性を有しているが、パネル10Rの下側基板53は不透光性でもよい。透光性を有する基板としては、ガラス基板があるが、ガラス基板以外にも、PET(ポリエチレンテレフタレート)やPC(ポリカーボネート)などのフィルム基板を使用してもよい。
【0030】
上側電極層54と下側電極層55の電極の材料としては、例えば、インジウム錫酸化物(ITO: Indium Tin Oxide)が代表的であるが、その他インジウム亜鉛酸化物(IZO: Indium Zic Oxide)などの透明導電膜を使用することが可能である。
【0031】
上側電極層54の透明電極は、上側基板51上に互いに平行な複数の帯状の上側透明電極として形成され、下側電極層55の透明電極は、下側基板53上に互いに平行な複数の帯状の下側透明電極として形成されている。そして、上側基板51と下側基板53は、基板に垂直な方向から見た時に、上側電極と下側電極が交差するように配置され、交差部分に画素が形成される。電極上には絶縁性のある薄膜が形成される。この薄膜が厚いと駆動電圧を高くする必要がある。逆に、薄膜がないとリーク電流が流れ、本発明の自動調整の精度が低下する問題が生じる。ここでは、薄膜は比誘電率が約5であり、液晶よりもかなり低いため、薄膜の厚さは約0.3μm以下とするのが適している。
【0032】
なお、この絶縁性薄膜は、SiO2の薄膜、あるいは配向安定化膜として知られているポリイミド樹脂、アクリル樹脂などの有機膜で実現できる。
【0033】
上記のように、液晶層52内にスペーサが配置され、上側基板51と下側基板53の間隔、すなわち液晶層52の厚さを一定にする。スペーサは、一般に樹脂製または無機酸化物製の球体であるが、基板表面に熱可塑性の樹脂をコーティングした固着スペーサを使用することも可能である。このスペーサによって形成されるセルギャップは4μm〜6μmの範囲が適正である。セルギャップがこの値より小さいと反射率が低下して暗い表示になり、高い閾値急峻性も期待できない。逆にこの値より大きいと、高い閾値急峻性は保持できるが、駆動電圧が上昇して汎用部品による駆動が困難になる。
【0034】
液晶層52を形成する液晶組成物は、ネマティック液晶混合物にカイラル材を10〜40重量%(wt%)添加したコレステリック液晶である。ここで、カイラル材の添加量は、ネマティック液晶成分とカイラル材の合計量を100wt%とした時の値である。
【0035】
ネマティック液晶としては、従来から公知の各種のものを使用可能であるが、誘電率異方性(Δε)が15〜35の範囲の液晶材料であることが望ましい。誘電率異方性が15以下であれば、駆動電圧が全体的に高くなり、駆動回路に汎用部品を使用することが困難になる。
【0036】
一方、誘電率異方性が25以上になると、閾値急峻性が低下し、更には液晶材料自体の信頼性が低下する懸念が出てきる。
【0037】
また、屈折率異方性(Δn)は、0.18〜0.24であることが望ましい。屈折率異方性が、この範囲より小さいと、プレーナ状態の反射率が低くなり、この範囲より大きいと、フォーカルコニック状態での散乱反射が大きくなるのに加えて、粘度も高くなり、応答速度が低下する。
【0038】
次に、コレステリック液晶材料を使用した表示装置における、明暗(白黒)表示について説明する。コレステリック液晶を用いた表示装置は、液晶分子の配向状態で表示の制御を行う。
【0039】
図4の(A)および(B)は、コレステリック液晶の状態を説明する図である。コレステリック液晶には、図4の(A)に示すように入射光を反射するプレーナ状態と、図4の(B)に示すように入射光を反射するフォーカルコニック状態と、があり、これらの状態は、無電界下でも安定してその状態が保持される。他に、強い電界を印加した時に、すべての液晶分子が電界の向きに従うホメオトロピック状態があるが、ホメオトロピック状態は、電界の印加を停止すると、プレーナ状態またはフォーカルコニック状態になる。
【0040】
プレーナ状態の時には、液晶分子のらせんピッチに応じた波長の光を反射する。反射が最大となる波長λは、液晶の平均屈折率n、らせんピッチpから次の式で表される。
【0041】
λ=n・p
一方、反射帯域Δλは、液晶の屈折率異方性Δnに伴って大きくなる。
【0042】
プレーナ状態の時には、入射光が反射するので「明」状態、すなわち白を表示することができる。一方、フォーカルコニック状態の時には、下側基板53の下に光吸収層を設けることにより、液晶層を透過した光が吸収されるので「暗」状態、すなわち黒を表示することができる。プレーナ状態とフォーカルコニック状態の混在した状態では、「明」状態(白表示)と「暗」状態(黒表示)の間の中間調状態になり、プレーナ状態とフォーカルコニック状態の混在比率で中間調レベルが決まる。
【0043】
次に、コレステリック液晶を利用した表示素子の駆動方法を説明する。
【0044】
図5は、一般的なコレステリック液晶の電圧−反射特性の一例を示している。横軸は、コレステリック液晶を挟む電極間に所定のパルス幅で印加されるパルス電圧の電圧値(V)を表し、縦軸はコレステリック液晶の反射率(%)を表している。図2に示す実線の曲線Pは、初期状態がプレーナ状態のコレステリック液晶の電圧−反射率特性を示し、破線の曲線FCは、初期状態がフォーカルコニック状態のコレステリック液晶の電圧−反射率特性を示す。
【0045】
コレステリック液晶に強い電界(VP100以上)を発生させると、電界印加中は、液晶分子のらせん構造は完全にほどけて、すべての分子が電界の方向に従うホメオトロピック状態になる。次に、液晶分子がホメオトロピック状態の時に、印加電圧をVP100から急激にほぼゼロにすると、液晶のらせん軸は電極に垂直になり、らせんピッチに応じた光を選択的に反射するプレーナ状態になる。
【0046】
一方、コレステリック液晶分子のらせん構造が解けない程度の弱い電界(VF100a〜VF100bの範囲)を印加した後の電界除去、あるいは強い電界を印加し、その状態から緩やかに電界を除去した場合は、コレステリック液晶分子のらせん軸は電極に平行になり、入射光を反射するフォーカルコニック状態になる。
【0047】
また、中間的な強さの電界(VF0〜VF100aまたはVF100b〜VP0)を印加し、急激に電界を除去すると、プレーナ状態とフォーカルコニック状態が混在し、中間調画像の表示が可能となる。
【0048】
以上の現象を利用して、表示を行う。
【0049】
コレステリック液晶を用いた単純マトリクス型表示装置では、高速の書換えを行う場合には、ダイナミック駆動方式(Dynamic Driving Scheme:DDS)が使用される。第1実施形態の表示装置も、DDSで中間調画像表示を行う。なお、画像の書換えを行う前に、全画素を同時にプレーナ状態にするリセット動作を行うようにしてもよい。リセット動作は、セグメントドライバ11およびコモンドライバ12の全出力を、それぞれ強制的に所定の電圧値にすることにより行い、出力値を設定するためのデータの転送が不要なので、短時間に実行可能である。ただし、リセット動作は、電力を消費するので、低消費電力の装置では行わなくてもよい。
【0050】
説明を容易にするため、まず白黒の2値画像を表示する場合を説明する。
【0051】
図6は、DDSにおける駆動波形を示す図である。
【0052】
前述のように、DDSは、3つのステージに大別され、先頭から、「準備(Preparation)」期間、選択(Selection)」期間および「展開(Evolution)」期間を含む。これらの期間の前後には、非選択 (Non-Select) 期間が設けられる。Preparation期間は、液晶をホメオトロピック状態に初期化する期間で、高電圧のパルス幅の大きなPreparationパルスが印加される。Selection期間は、プレーナ状態またはフォーカルコニック状態に分岐するきっかけを与える期間である。Selection期間では、プレーナ状態にスイッチングする時には低電圧のパルス幅の小さなSelectionパルスが印加され、フォーカルコニック状態にスイッチングする時にはパルスは印加されない。Evolution期間は、直前のSelection期間での過渡状態に応じてプレーナ状態かフォーカルコニック状態に確定させる期間であり、中間電圧のパルス幅の大きなEvolutionパルスが印加される。Preparationパルス、SelectionパルスおよびEvolutionパルスは、それぞれ1組の正負のパルスである。
【0053】
実際には、Preparation期間およびEvolution期間では、図6のようにパルス幅の長い1組の正負のパルスを印加するのではなく、複数個の正負のPreparationパルスおよびEvolutionパルスを印加する。
【0054】
図7は、第1実施形態において、コモンドライバ12が、Preparation期間、Selection期間、Evolution期間およびNon-Select 期間に出力する駆動波形、セグメントドライバ11が白表示および黒表示に対して出力する駆動波形、および液晶への印加波形を示す。
【0055】
第1実施形態でDDSを実行する場合、コモンドライバ12は、GNDを含め6値を出力し、セグメントドライバ11は、GNDを含めて4値を出力する。現在、単純マトリクス方式用の汎用ドライバICが実用化されており、モードを設定することにより、セグメントドライバ11またはコモンドライバ12として使用可能である。したがって、セグメントドライバ11として利用する汎用ドライバICは、出力する値に余りがある。第1実施形態では、セグメントドライバ11の余っている出力を利用して静電容量検出信号を表示素子10に印加する。
【0056】
コモンドライバ12およびセグメントドライバ11は、Selection期間を4等分した期間を単位として出力を変化させる。セグメントドライバ11は、白表示に対しては、42V、30V、0V、12Vに変化する電圧波形を、黒表示に対しては、30V、42V、12V、0Vに変化する電圧波形を出力する。コモンドライバ12は、Non-Select 期間には36V、36V、6V、6Vに変化する電圧波形を、Selection期間には30V、42V、12V、0Vに変化する電圧波形を、Evolution期間には12V、12V、30V、30Vに変化する電圧波形を、Preparation期間には0V、0V、42V、42Vに変化する電圧波形を出力する。
【0057】
これにより、Preparation期間では、白表示のデータ電極の液晶に対して、42V、30V、−42V、−30Vに変化する電圧波形が、黒表示のデータ電極の液晶に対して、30V、42V、−30V、−42Vに変化する電圧波形が印加される。Evolution期間では、白表示のデータ電極の液晶に対して、30V、18V、−30V、−18Vに変化する電圧波形が、黒表示のデータ電極の液晶に対して、18V、30V、−18V、−30Vに変化する電圧波形が印加される。Selection期間では、白表示のデータ電極の液晶に対して、12V、−12V、−12V、12Vに変化する電圧波形が、黒表示のデータ電極の液晶に対して、0Vの電圧波形が印加される。Non-Select 期間には、白表示のデータ電極の液晶に対して、6V、−6V、−6V、6Vに変化する電圧波形が、黒表示のデータ電極の液晶に対して、−6V、6V、6V、−6Vに変化する電圧波形が印加される。
【0058】
図8は、第1実施形態において、コモンドライバ12およびセグメントドライバ11が図7に示す駆動波形を出力することにより各画素液晶に印加される電圧波形を、より具体的に示す図である。1つのスキャンラインに図8の電圧波形が印加される。コモンドライバ12は、図8の信号を印加するスキャンラインを1ラインずつシフトする。
【0059】
図8に示すように、Preparation期間、Selection期間およびEvolution期間の順に配置され、前後に非選択(Non-Select)期間が配置される。Selection期間は、約0.5ms〜1ms程度の印加時間である。図8は、プレーナ状態にして白表示(明表示)を行う場合の±12VのSelectionパルスを示しており、フォーカルコニック状態にして黒表示(暗表示)を行う場合には、この期間中0Vが印加される。
【0060】
Preparation期間およびEvolution期間は、Selection期間の数倍から十数倍の長さであり、図7のPreparationパルスおよびEvolutionパルスが、複数個印加される。Non-Select期間は、描画に関与しない画素に常時印加されるパルスであり、低電圧であるため、画像を変化させない。
【0061】
図8のPreparationパルス、SelectionパルスおよびEvolutionパルスの組が、スキャンラインの位置を変えながら順次印加される。これにより、SelectionパルスがPreparationパルスとEvolutionパルスを伴い、1ライン当たりのSelectionパルスの印加時間で、パイプライン的にスキャン・書換えを行うことになる。そのため、XGA仕様の高精細サイズの表示素子であっても、1ms×768=0.77秒前後の速度で書換えを行うことができる。
【0062】
中間調画像を表示する場合には、Selection期間をさらに複数のサブ期間に分割し、各サブ期間において、図7に示す駆動波形を印加できるように構成する。複数のサブ期間のうち、白表示を行うサブ期間と黒表示を行うサブ期間の比率を変化させる。例えば、8個のサブ期間を設け、8個のサブ期間がすべて白表示を行う場合がデューティ比100%で、8個のサブ期間がすべて黒表示を行う場合がデューティ比0%で、2個のサブ期間が白表示を行う場合がデューティ比25%である。第1実施形態では、Selection期間は約700μsで、20〜30μsのサブ期間に分けられる。したがって、サブ期間は23〜35個も設けられる。Selection期間において、白表示のサブ期間を中央に配置すると、Selection期間における白表示のSelectionパルスの幅がデューティ比に応じて変化することになる。以下、説明を簡単にするため、図6に示すDDS駆動波形を用いて、Selection期間におけるSelectionパルスの幅がデューティ比に応じて変化するものとして説明する。
【0063】
前述のように、メモリ性を有する液晶を用いた表示装置は、表示素子のコントラスト、明るさ、ガンマ特性などがロット間でバラツキやすく、表示素子の長期間の使用により、このような特性の変化が懸念される。このような表示素子のバラツキや経年変化があると、同じ駆動条件で表示素子を駆動しても望ましい表示が行えない。特に、第1実施形態の表示装置で使用するDDSは、駆動条件の最適範囲が狭く、表示素子のバラツキおよび経年変化の影響を大きく受けて、固定の駆動条件では良好な表示が行えない。
【0064】
駆動条件を調整するには、表示(明度)と関係する表示素子の特性を検出して、検出した特性の表示(明度)との関係に基づいて調整する。前述のように、これまでも静電容量値に応じて駆動条件を決定することが提案されてきたが、第1実施形態の表示装置も、表示素子10の静電容量を検出して、望ましい駆動条件を実現するように駆動条件を調整する。ただし、第1実施形態の表示装置では、ダミーセルを使用せずに、表示素子10の静電容量を直接検出するとともに、表示素子10を所定の表示状態(白、黒または中間調レベル)に設定して静電容量の検出および駆動条件の調整を行う。
【0065】
図9は、表示素子10のRGB各層について、明度(反射率)と静電容量の関係を測定した結果を示す図である。静電容量は、1kHzで測定し、完全なプレーナ状態の明度を1に、完全なフォーカルコニック状態の明度を0に規格化した相対値である。容量値が0と1の間は、プレーナ状態とフォーカルコニック状態が混在した状態で、中間調が表示される。
【0066】
図9から明らかなように、フォーカルコニック状態(明度0)の時が最大の静電容量を示し、プレーナ状態(明度1)に近づくにつれて静電容量が単調に小さくなっていく。このことから、ロット間のバラツキや経年変化で所望の表示が得られない場合は、静電容量の相対関係を元に、バラツキや経年変化による明度の変化を推定することができることが分かる。そこで、第1実施形態の表示装置では、表示素子10の静電容量を測定し、測定した静電容量に基づいて駆動条件を調整する。
【0067】
図10は、表示素子10の静電容量の周波数特性を示す図である。図10において、プレーナ状態よりもフォーカルコニック状態の静電容量のほうが大きい現象は、10kHz程度までに見られる。また、100Hz以下の低周波になると、静電容量の絶対値が大きくなる。これは、液晶材料に含まれる極性基やイオン成分による分極が生じ出すためで考えられる。プレーナ状態とフォーカルコニック状態の静電容量の比率や、検出する電流量を考慮すると、静電容量の検出には1kHz前後の周波数を使用するのが好適であると考えられる。
【0068】
図11は、電源部13における静電容量検出信号を出力する回路部分、電流センスアンプ14および演算部24の構成を示す図である。電流センスアンプ14は、入出の容易な汎用のものが使用できる。電源部13は、図示していないDA変換器などを使用して、のこぎり波や三角波を発生し、可変抵抗VRに一端に原検出信号を印加する。オペアンプAmp、抵抗R1、トランジスタTr1およびTr2を有するブースター回路および抵抗R2は、原検出信号を増幅して静電容量検出信号を出力する増幅回路を形成し、出力電圧の安定化を行う。増幅回路の増幅率は可変抵抗VRの抵抗値を調整することにより調整可能である。可変抵抗VRは、例えば、スイッチで接続する抵抗の個数を調整することにより抵抗値が調整可能で、制御部23からの制御信号などにより調整される。静電容量検出信号の波高を調整する必要がなければ、可変抵抗VRは固定抵抗でよい。ブースター回路の後段には、電流を制限するダンピング抵抗R3を配置する。図11では、このダンピング抵抗R3は、電流センスアンプ14のセンシング抵抗としても使用される。前述のように、ダンピング抵抗R3の一端は、セグメントドライバ11の不使用の電源端子に接続される。
【0069】
電流センスアンプ14は,検出した電流値を電圧値としてアナログ出力するものを使用する。電流センスアンプ14の出力する電圧信号の電圧は、演算部24内のAD変換器(ADC)によってデジタル化され、容量値の演算に使用される。電流センスアンプ14の出力とAD変換器の間に、適切なカットオフ周波数を有するローパスフィルタを設けると、検出精度はより向上する。
【0070】
なお、電源部13は、分圧回路により、セグメントドライバ11およびコモンドライバ12に供給する電圧を生成する。DDS駆動方式は、瞬時の消費電流が大きいため、電源部13の分圧回路により形成された各電圧は、図11に示したオペアンプAmp、およびトランジスタTr1とTr2を有するブースター回路を介して出力されるにようにすることが望ましい。
【0071】
さらに、電源部13のセグメントドライバ11およびコモンドライバ12に供給する電圧を出力する端子部では、ダンピング抵抗の後段に数μF程度の平滑コンデンサを用いる場合が多い。しかし、図11に示した静電容量検出信号を出力する端子では、このような平滑コンデンサを設けないことが望ましい。これは、平滑コンデンサを設けた場合、表示素子の静電容量と平滑コンデンサの容量の合成容量を検出してしまうことになり、白表示と黒表示と中間調表示の静電容量の検出値の差が小さくなり、S/N比が低下してしまい、検出精度が低下するためである。
【0072】
図12は、ブースター回路からダンピング抵抗R3を介して、セグメントドライバ11の不使用の電源端子に供給される静電容量検出信号の波形を示す図である。第1実施形態では、電圧が±5Vの間で変化するのこぎり波状の静電容量検出信号が使用される。表示素子に静電容量検出信号を印加する場合には、コモンドライバ12は全端子にGNDレベルを出力し、セグメントドライバ11は、全端子に、静電容量検出信号が印加される端子の電圧を出力するように設定される。この状態で、静電容量検出信号を図12に示すように変化すると、のこぎり波状に変化する電圧が表示素子10の全画素に印加される。こののこぎり波状の静電容量検出信号は、DA変換器により生成されるのが一般的であるため、適切なカットオフ周波数を有するローパスフィルタを設け、それを滑らかにすることが望ましい。
【0073】
静電容量の検出は、表示素子10への静電容量検出信号の印加に伴う充電/放電時の電流値を電流センスアンプ14が検出することにより行う。
【0074】
TFT液晶よりも容量特性が劣るコレステリック液晶であっても、のこぎり波状の静電容量検出信号を用いることで、充電/放電時の電流を安定して検出できることが分かった。
【0075】
図13は、コレステリック液晶のテストセルを用いて、図11の回路構成で静電容量の検出を実験した結果を示す。図13の(A)は、全画素が白表示状態(プレーナ状態)である時の、のこぎり波状の静電容量検出信号Sと、それに伴う充電/放電時の電流Iを示す。また、図13の(B)は、全画素が黒表示状態(フォーカルコニック状態)である時の、のこぎり波状の静電容量検出信号Sと、それに伴う充電/放電時の電流Iを示す。図13において、電流Iは信号Sの増加に伴って急激に増加し、ほぼ一定になる。この一定になった時に、フォーカルコニック状態の電流値とプレーナ状態の電流値の比率は約1.4倍であり、図10に示した白/黒表示の静電容量の比率とほぼ一致したことを確認した。
【0076】
なお、テストセルをコンデンサとして置き換えたCR発振回路を試作し、その発振周波数を測定した。その結果、発振周波数は、プレーナ状態がフォーカルコニック状態の約1.4倍となったが、発振周波数が大きく変動して不安定な場合が頻繁に発生した。このことから、コレステリック液晶の場合には、のこぎり波状の静電容量検出信号印加による充電/放電時の電流による静電容量の検出の方が、発振周波数の検出による静電容量の検出より、安定的に検出が行えた。
【0077】
なお、上記の静電容量の検出では、白/黒表示時の表示素子10の静電容量を検出したが、表示素子10を中間調表示状態にすれば、中間調表示状態での静電容量検出が可能である。また、上記の静電容量の検出では、のこぎり波状の静電容量検出信号を用いたが、三角波状の静電容量検出信号を用いても同様の測定が可能であった。
【0078】
次に、第1実施形態の表示装置における駆動条件の調整方法を説明する。
【0079】
DDS駆動方式の駆動条件を調整する場合、調整可能な条件は、PreparationパルスおよびEvolutionパルスの電圧、Selectionパルスの白表示の電圧およびSelectionパルスのパルス幅(デューティ比)などである。第1実施形態では、Evolutionパルスの電圧(Evolution電圧)とSelectionパルスのデューティ比を調整する。Evolution電圧を調整する理由は、表示のコントラストを強く支配する要因であるためである。また、Selectionパルスのデューティ比は、階調変化を発生する要因のうちで、比較的容易に調整可能で、精密な調整が可能であるためである。
【0080】
図14は、DDS駆動方式で、図6から図8を参照して説明した駆動条件およびSelectionパルスのデューティ比を所定の値(例えば50%)にして駆動する場合で、Evolution電圧を変化させた時の表示素子の容量変化を示す図である。
【0081】
図14において、実線は、1つの表示素子における変化例を模式的に示す。ある値より低いEvolution電圧で駆動した場合には、駆動後の表示素子10の静電容量は高く、一定の値である。Evolution電圧を高くするにしたがって、駆動後の表示素子10の静電容量は低下し、ある値より高いEvolution電圧になると、駆動後の表示素子10の静電容量は低い一定の値になる。このような容量変化が、バラツキや経年変化により変動する。例えば、高い側および低い側で一定になる静電容量の値が上下に変動し、中間部分における変化がEvolution電圧に対して(図では横方向に)変化し、中間部分における変化の傾きも変化する。
【0082】
図15は、第1実施形態の表示装置における駆動条件の調整方法を説明する図であり、図15の(A)は第1段階および第2段階の調整を、図15の(B)は第3段階の調整を説明する。
【0083】
図15の(A)において、Rは、図14で説明したEvolution電圧を変化させた時の表示素子の容量変化の代表的な例を示し、基準例としてあらかじめ記憶されており、その場合の駆動条件も基準駆動条件として記憶されている。例えば、静電容量が高い側で一定になる値C100、静電容量が低い側で一定になる値C0などが記憶されている。また、静電容量が中間の値、例えば、C100とC0の間の25%、50%、90%などになる時のEvolution電圧なども記憶されている。
【0084】
Pは、駆動条件の調整の対象となる表示素子のEvolution電圧に対する容量変化を示す。容量変化Pは、基準例のRに対して、C100とC0が増加してC100’とC0’となり、中間部分の傾きが増加し、C100とC0の間の25%、50%、90%などになる静電容量値およびその時のEvolution電圧なども増加している。
【0085】
第1実施形態の駆動条件調整方法では、第1段階で、C100’およびC0’を検出する。
【0086】
第2段階では、C100’とC0’の間の所定の静電容量値(例えば、25%、50%、90%など)が、Selectionパルスのデューティ比を変化して得られるように、Evolution電圧を決定する。言い換えれば、最大に近いコントラスト・明るさが得られるように、Evolution電圧を決定する。
【0087】
上記のように、第1実施形態では、Evolution電圧を変化させるが、Evolution電圧を変化させるだけでは、C100’およびC0’を変化させることはできない。図14に示すように、Evolution電圧を大きくしすぎると、例えば、Selectionパルスのデューティ比が50%以下であっても静電容量がC0’になる場合もあり、これでは中間調表示は行えない。さらにEvolution電圧を大きくすると、Selectionパルスのデューティ比が0%近くであっても静電容量がC0’になる場合もあり、これでは表示自体が行えない。
【0088】
そこで、第1実施形態では、C100’およびC0’を表示の輝度0と100(相対値)に対応させ、中間調部分がSelectionパルスのデューティ比の変化に応じて変化するようにEvolution電圧を設定する。
【0089】
第3段階では、中間調部分における変化が線形になるように、Selectionパルスのデューティ比の変化を決定する。
【0090】
図16は、第1実施形態の表示装置における駆動条件の自動調整処理を示すフローチャートである。処理は、第1ステップS1と、第2ステップS2と、第3ステップS3と、最終ステップS4と、を含む。第1ステップS1では、上記のC0’およびC100’を検出し、輝度0と100(相対値)に対応させる。第2ステップS2では、C0’およびC100’から決定した中間調部分の所定の静電容量値が得られるようにEvolution電圧を設定する。第3ステップS3では、決定したEvolution電圧で、中間調部分の静電容量値とSelectionパルスのデューティ比の関係を設定する。最終ステップS4では、決定したEvolution電圧およびSelectionパルスのデューティ比にしたがって駆動条件を更新する。
【0091】
第1ステップS1のステップS11では、表示素子10の全画素を、DDS方式で白表示状態(プレーナ状態)にする描画を行う。ステップS11では、全画素を確実に白表示状態にするため、図17の(A)に示すように、Selectionパルスのデューティ比を100%とし、さらにEvolution電圧を通常より高めに設定する。
【0092】
ステップS12では、ステップS11で設定した白表示状態の表示素子10の静電容量を測定し、その値を0%点として設定する。したがって、C0’が0%点になる。
【0093】
ステップS13では、表示素子10の全画素を、DDS方式で黒表示状態(フォーカルコニック状態)にする描画を行う。ステップS13では、全画素を確実に黒表示状態にするため、図17の(B)に示すように、Selectionパルスのデューティ比を0%(Selectionパルス無し)とし、さらにEvolution電圧を通常より低めに設定する。
【0094】
ステップS14では、ステップS13で設定した黒表示状態の表示素子10の静電容量を測定し、その値を100%点として設定する。したがって、C100’が100%点になる。
【0095】
第2ステップS2は、ステップS21からS23を含み、ステップ2Rに示すように、これらのステップS21からS23を3〜5回繰り返す。
【0096】
ステップS21では、表示素子10の全画素を、中間調表示状態(プレーナ状態+フォーカルコニック状態)にする描画を行う。設定する中間調は、90%、50%、25%など、任意の階調でよい。例えば、25%に設定する場合には、あらかじめ記憶されている駆動条件で、あらかじめ記憶されている駆動条件で、Selectionパルスのデューティ比を25%として、表示素子10の全画素をDDS方式で中間調表示状態にする。なお、設定する中間調が90%の場合、最大に近い表示コントラストが得られるようにEvolution電圧を設定することになるので、表示コントラストの観点からは好ましい。
【0097】
ステップS22では、ステップS21で設定した中間調表示状態の表示素子10の静電容量を測定する。
【0098】
ステップS23では、ステップS12およびS14で決定した0%点と100%点に対応する静電容量C0’およびC100’から、設定する中間調に対応する目標静電容量値を算出し、ステップS22での測定静電容量値を目標静電容量値と比較する。そして、比較結果に基づいて、測定静電容量値が目標静電容量値になるようにEvolution電圧を調整する。
【0099】
ステップS21からS23を繰り返して、ステップS22で得られる測定静電容量値が目標静電容量値に近づいたらステップS2を終了してステップS3に進む。
【0100】
Evolution電圧を調整する方法は、測定静電容量値が目標静電容量値になるように調整する方法であれば、どのような方法でもよい。このような方法は、求根アルゴリズムとして知られており、代表的な方法として、ニュートン法や二分法が知られている。これらを適用した例を説明する。
【0101】
図18は、ニュートン法により、測定静電容量値が目標静電容量値になるようにEvolution電圧を調整する方法を説明する図であり、設定する中間調が25%の場合の例である。
【0102】
ニュートン法では、図14および図15の(A)に示すようなEvolution電圧に対する標準容量変化特性があらかじめ記憶されている。この特性は、簡易的に一次関数の傾きと切片を記憶していればよい。図18では、R’が標準容量変化特性を表し、P’が調整対象の容量変化特性を示す。
【0103】
図18の(A)に示すように、標準容量変化特性R’で、静電容量値が、C0’から25%(C0’とC100’間を100%とする)になる標準25%Evolution電圧を記憶した特性から求め、その標準25%Evolution電圧で、デューティ比を25%として、表示素子10の全画素をDDS方式で中間調表示状態にする。この状態の静電容量を測定結果がC0’から50%であったとする。
【0104】
図18の(B)に示すように、記憶されている傾きから、静電容量を50%から25%にするEvolution電圧の変化量を求め、標準25%Evolution電圧を変化量分だけ変化させる。そして、変化させたEvolution電圧で、再度同様の処理を行うと、測定された静電容量はよりC0’から25%の値に近づく。このような処理を数回繰り返せば、静電容量がC0’から25%の値に近似した状態になるEvolution電圧を決定することができる。なお、ここではC0’から25%になる静電容量を例として説明したが、前述のように、50%でも、90%でもよい。
【0105】
図19は、C0’から10%および90%になる静電容量に対して、ニュートン法を行った場合のEvolution電圧の変化を示す。2〜3回以上繰り返せば、ほぼ一定値に収束することが分かる。
【0106】
ニュートン法は、解を求める対象があまりに急峻に変化する特性を有したり、凹凸に変化する特性を有したりする場合、収束せず発散するという問題があることが知られている。しかし、Evolution電圧を調整する場合のEvolution電圧-静電容量特性は、Evolution電圧に対して非常に単調に変化する特性であるため、ニュートン法を適用してほぼ確実に収束させることができる。
【0107】
図20は、二分法により、測定静電容量値が目標静電容量値になるようにEvolution電圧を調整する方法を説明する図であり、設定する中間調が25%の場合の例である。
【0108】
二分法では、Evolution電圧に対する標準容量変化特性を記憶しておく必要はない。
【0109】
図20の(A)に示すように、Evolution電圧の可変範囲の電圧上限と電圧下限の中間に第1電圧中央を設定する。そして、Evolution電圧を第1電圧中央とし、デューティ比を25%として、表示素子10の全画素をDDS方式で中間調表示状態にする。この状態で測定した静電容量がC0’から25%より大きい容量値であったとする。したがって、第1電圧中央は小さく、増加させる必要があると判定される。
【0110】
図20の(B)に示すように、第1電圧中央と電圧上限の中間に第2電圧中央を設定する。そして、Evolution電圧を第2電圧中央とし、デューティ比を25%として、表示素子10の全画素をDDS方式で中間調表示状態にする。この状態で測定した静電容量がC0’から25%より依然大きい容量値であったとする。したがって、第2電圧中央は小さく、増加させる必要があると判定される。
【0111】
図20の(C)に示すように、第2電圧中央と電圧上限の中間に第3電圧中央を設定する。そして、Evolution電圧を第3電圧中央とし、デューティ比を25%として、表示素子10の全画素をDDS方式で中間調表示状態にする。この状態で測定した静電容量がC0’から25%の容量値であったとすると、第3電圧中央が適切なEvolution電圧であることになる。
【0112】
一般的に、二分法はニュートン法に比べて、発散しにくいが収束に時間がかかるという特徴がある。しかし、上記のように、Evolution電圧-静電容量特性は、Evolution電圧に対して非常に単調に変化する特性であるため、5回のステップを繰り返すことにより、概ね一定値に収束した。
【0113】
図16に戻り、第3ステップS3では、ステップS2で決定したEvolution電圧を使用して、中間調部分の静電容量値とSelectionパルスのデューティ比の関係を設定する。
【0114】
ステップS31では、表示素子10の全画素を、表示する中間調のいずれかを表示する目標中間調表示状態にする。この処理は、ステップS21と同じである。
【0115】
ステップS32では、ステップS31で設定した目標中間調表示状態の表示素子10の静電容量を測定する。
【0116】
ステップS33では、目標中間調表示状態に対応する目標静電容量値を算出し、ステップS32での測定静電容量値を目標静電容量値と比較する。そして、比較結果に基づいて、測定静電容量値が目標静電容量値になるようにSelectionパルスのデューティ比を決定する。
【0117】
ステップS31からS33を繰り返して、ステップS32で得られる測定静電容量値が目標静電容量値に近づいたらステップS3を終了する。
【0118】
DDS駆動方式の場合、液晶の応答がかなり急峻なため、中間調は元々形成しにくい。そのため、表示できる中間調は、3〜7階調程度である。これらの各中間調について第3ステップを繰り返し、表示する中間調のすべてについてSelectionパルスのデューティ比を決定したら、ステップS4に進む。
【0119】
図21は、第3ステップS3における調整を説明する図であり、Selectionパルスのデューティ比に対する静電容量の変化を示す。図21で、R’’が標準的なデューティ比容量変化特性を表し、P’’が調整対象のデューティ比容量変化特性を示す。この例は、第2ステップS2で、25%の中間調に設定した上でEvolution電圧を決定した場合である。この場合、Selectionパルスのデューティ比を25%にして、ステップS2で決定したEvolution電圧で、DDS方式で駆動すれば所望の静電容量値、すなわち中間調になる。しかし、図21では、想定した特性R’’に対して調整対象の表示素子の特性は傾きが急峻になっているため、想定したSelectionパルスのデューティ比で駆動しても想定した静電容量値(中間調)にはならない。例えば、想定した特性R’’によれば、60%点の静電容量値(中間調)は、デューティ比を40%に設定すれば得られるが、調整対象の表示素子の特性P’’では、デューティ比を50%に設定する必要がある。
【0120】
中間調部分の静電容量に対して、そのような静電容量(中間調)が得られるSelectionパルスのデューティ比を決定し、駆動条件をそのように決定したSelectionパルスのデューティ比に更新する。中間調部分の静電容量のそれぞれについて、ニュートン法または二分法などを適用して、Selectionパルスのデューティ比を決定する。DDS駆動方式の場合、液晶の応答がかなり急峻なため、中間調は元々形成しにくい。そのため、Selectionパルスのデューティ比の決定においては、ニュートン法を使うこともできるが、発散するリスクが低い二分法のほうがより好適に最適値を突き止めることができる。
【0121】
図22は、60%点の静電容量を得るデューティ比を決定するため、二分法を行った場合のデューティ比の変化を示す。5回以上繰り返せば、ほぼ一定値に収束することが分かる。
【0122】
以上のようにして、第1実施形態の表示装置では、表示素子10の特性が、ロット間のバラツキや経年変化により変動した場合でも、駆動条件を自動的に最適化して、常時良好な表示を行うことができる。
【0123】
第1実施形態の表示装置では、表示素子10の静電容量を検出する場合、表示素子10をDDS駆動方式で駆動して全画素を同じ表示状態にした。表示素子10をDDS駆動方式で駆動する場合、印加位置をシフトしながら全スキャンラインに図8に示すような駆動波形を印加する必要があり、ある程度の時間を要する。そのため、図16のステップS31は、表示する中間調のすべてについて行うことが望ましく、8階調表示の場合には7種の中間調について5回程度表示状態を設定する必要があり、表示画面の設定に長時間を要する。
【0124】
そこで、図23の(A)に示すように、表示素子10の表示画面を、セグメントドライバ11の端子に対応させて複数の領域(図23の(A)では8領域)に分割し、異なる階調レベルの領域を同時に表示画面に表示する。なお、図23の(A)では、2領域を同じ階調を表示する状態にしており、G0からG3の4種の階調を表示する。そして、図23の(B)に示すように、階調G0を表示する状態の静電容量を測定する時には、セグメントドライバ11は、階調G0を表示する領域にのみ静電容量検出信号を印加するように制御する。以下、階調G1〜G3について、同様の方法で、静電容量の測定を行う。これにより、表示素子10の表示状態を変更するのに要する時間を、第1実施形態の1/4程度に短縮できる。
【0125】
図24の(A)から(D)は、G0からG15の16種の階調の静電容量を測定する場合の表示画面の例を示す図である。1回目には、G0からG3の4種の階調を表示し、図16の第3ステップS3を5回繰り返す。2回目には、G4からG7の4種の階調を表示し、図16の第3ステップS3を5回繰り返す。以下、G8からG11およびG12からG15の階調について同様の動作を行う。
【0126】
図23および図24で、画面内に同じ階調を表示する領域を2箇所設けるのは、画面ムラの影響を除去するためである。
【0127】
第1実施形態の表示装置では、第1ステップS1で、輝度0と100(相対値)に対応させる静電容量を決定し、第2ステップS2で、第1ステップS1で決定した静電容量から所定の中間調部分の所定の静電容量値が得られるようにEvolution電圧を設定した。そして、第3ステップS3で、第2ステップS2で決定したEvolution電圧を使用して、中間調部分の静電容量値とSelectionパルスのデューティ比の関係を設定した。もし、表示素子の特性上、輝度0と100(相対値)およびそれに対応させる静電容量のバラツキが小さい場合には、第1ステップS1を省略できる。この場合でも、図14のEvolution電圧に対する静電容量変化特性が横方向にシフトするバラツキがある場合には、ステップS2およびS3を行う必要がある。もし、図14のEvolution電圧に対する静電容量変化特性が横方向にシフトするバラツキが小さければ、さらにステップS2を省略してステップS3のみを行えばよい。
【0128】
逆に、図21に示したSelectionパルスのデューティ比に対する静電容量値(中間調)の変化のバラツキが小さい場合には、第3ステップS3を省略することができる。
【0129】
また、第1実施形態の表示装置では、Evolution電圧およびSelectionパルスのデューティ比を調整して所望の表示特性が得られるようにした。しかし、前述のように表示特性を変化させる駆動条件の要因は他にもあり、それらを調整する場合にも、表示素子の静電容量を異なる表示状態で検出して、検出した静電容量に基づいて駆動条件を調整する上記の手法を適用できる。
【0130】
さらに、第1実施形態の表示装置では、単極性のドライバICを使用したが、双極性のドライバICを使用することも可能である。
【0131】
図25は、双極性のドライバICを使用する場合のセグメントドライバ11およびコモンドライバ12の出力電圧の対応関係を示す図である。
【0132】
ここで,+側から−側に向けて、電圧が高い順にVP3,VP2,VP1,0,VN1,VN2,VN3と定義する。正極フェーズの時、白表示の描画では、SEG-VP3とCOM-VP1の電圧差分がSelection期間に印加され、黒表示の描画では、SEG-VP1とCOM-VP1の電圧差分がSelection期間に印加される。Preparation期間とEvolution期間は,平均電圧がそれぞれ図20の関係で印加される。負極フェーズの時は、上記のVPとVNの対応関係が反転する。
【0133】
ここで,Evolution電圧から,SEG側とCOM側の各VP3,VP2,VP1,0,VN1,VN2,VN3へ展開するための計算式を以下に記す。非選択電圧は,Preparation/Selection/Evolution期間のいずれでもなく、描画済みあるいは未描画の全ての画素に印加される電圧である。
【0134】
SEG_VP3 =((Evolution電圧)+ 3 * 非選択電圧) / 2
SEG_VP2 =(((Evolution電圧)+ 3 * 非選択電圧)- 非選択電圧)- SEG_VP3
SEG_VP1 = SEG_VP3 -非選択電圧 * 2
SEG_VN3 = -(SEG_VP3)
SEG_VN2 = -(SEG_VP2)
SEG_VN1 = -(SEG_VP1)
COM_VP3 = SEG_VP3
COM_VP2 = SEG_VP2
COM_VP1 = SEG_VP1
COM_VN3 = -(COM_VP3)
COM_VN2 = -(COM_VP2)
COM_VN1 = -(COM_VP1)
第1実施形態の表示装置では、DDS駆動方式を使用したが、前述のコンベンショナル駆動方式を使用する場合にも、表示素子の静電容量を異なる表示状態で検出して、検出した静電容量に基づいて駆動条件を調整する上記の手法を適用できる。以下、コンベンショナル駆動方式を使用する第2実施形態の表示装置を説明する。
【0135】
図26は、第2実施形態の表示装置における表示状態の変化を示す図である。
【0136】
コレステリック液晶は、強い電界(リセット電圧)を印加した時に、すべての液晶分子が電界の向きに従うホメオトロピック状態になり、ホメオトロピック状態で電界の印加を急激に解除すると、プレーナ状態になる。プレーナ状態において中間の電界(書込み電圧)を印加すると、プレーナ状態からフォーカルコニック状態に変化するが、印加時間によりフォーカルコニック状態に変化する液晶分子の割合が異なる。具体的には、印加時間が短いとフォーカルコニック状態の割合が小さく、印加時間が長いとフォーカルコニック状態の割合が大きい。
【0137】
コンベンショナル駆動方式は、DDS駆動方式では難しい中間調の高い均一性で表示することが可能であり、フルカラーに近い表示を行いたい場合に有用である。
【0138】
第2実施形態の表示装置は、図1に示したのと同様の構成を有し、単純マトリクス方式用のセグメントドライバ11およびコモンドライバ12を使用し、駆動方式がコンベンショナル方式であることが第1実施形態と異なる。コンベンショナル駆動方式のコレステリック液晶を用いた表示装置は、広く知られているので、詳しい説明は省略するが、関連する事項について簡単に説明する。
【0139】
コンベンショナル駆動方式では、書換え対象の全画素にリセット電圧を印加してホメオトロピック状態にした後、リセット電圧の印加を解除してプレーナ状態にするリセット処理と、各画素に書込みパルスを印加し、その印加時間を調整して画像を表示する書込み処理と、を行う。
【0140】
図27の(A)は、リセット処理時に全画素に印加されるリセットパルスを示し、例えば±36Vの数十ms幅のパルスである。
【0141】
上記のように、書込み電圧の印加時間に応じてフォーカルコニック状態の混在率が変化する。書込み電圧の印加時間を変化させる方法は、大きく二通りに大別できる。第1の方法は、パルスの幅によって印加時間を変化させる方法であり、第2の方法は、短いパルスを累積させ、その累積数によって印加時間を変化させる方法である。
【0142】
図27の(B)は、第1の方法を実行する場合の書込みパルスを示す。書込みパルスは、±20Vのパルスでパルス幅が異なる。具体的には、コモンドライバ12が各スキャンラインにスキャンパルスを印加し、スキャンパルスを印加するスキャンラインの位置を1ラインずつシフトする。1ラインに印加されるスキャンパルスの期間が、書込みパルスの最大パルス幅である。セグメントドライバ12は、スキャンパルスの印加に同期して、書込みパルスのオン・オフを制御する信号を出力する。これにより、スキャンパルスの印加される1スキャンライン中の全画素の書込みが行われる。プレーナ状態(白表示)を維持する画素にはスキャンパルスは印加されず、フォーカルコニック状態(黒表示)にする画素にはスキャンパルスの期間に対応する幅のスキャンパルスが印加され、中間調表示する画素には階調に応じたパルス幅のスキャンパルスが印加される。
【0143】
図28は、第1の方法を実行する場合の書込みパルスを示し、4個のフレームで、(A)から(D)のパルスが印加される。図28の(A)から(D)の書込みパルスの幅は、順に1/2に減少する。第1フレームでは、コモンドライバ12が各スキャンラインに図27の(A)の書込みパルスに対応するスキャンパルスを印加し、スキャンパルスを印加するスキャンラインの位置を1ラインずつシフトする。セグメントドライバ12は、スキャンパルスの印加に同期して、書込みパルスのオン・オフを制御する信号を出力する。以下同様に、図28の(B)から(D)の書込みパルスの印加が行われる。図28の(A)の書込みパルスのみがオンの画素には幅8の書込みパルスが印加され、図28の(B)の書込みパルスのみがオンの画素には幅4の書込みパルスが印加され、以下同様である。したがって、図28の(A)から(D)の書込みパルスがすべてオンの画素には最大の幅15の書込みパルスが印加され、いずれもオフの画素には書込みパルスが印加されない。
【0144】
第2実施形態の表示装置では、駆動条件で調整するパラメータは、例えば、書込み処理における書込みパルスの電圧、書込みパルスの最大累積時間、パルス幅などである。これらのパラメータを、表示状態を設定した表示素子の静電容量を測定しながら、ニュートン法あるいは二分法などを適用して、最適化する。
【0145】
以上、実施形態を説明したが、ここに記載したすべての例や条件は、発明および技術に適用する発明の概念の理解を助ける目的で記載されたものであり、特に記載された例や条件は発明の範囲を制限することを意図するものではなく、明細書のそのような例の構成は発明の利点および欠点を示すものではない。発明の実施形態を詳細に記載したが、各種の変更、置き換え、変形が発明の精神および範囲を逸脱することなく行えることが理解されるべきである。
【0146】
以下、実施形態に関し、更に以下の付記を開示する。
(付記1)
駆動された後、前記駆動が解除された後も表示状態を維持するメモリ性を有する表示素子と、
前記表示素子が呈する静電容量を検出する静電容量検出回路と、
前記表示素子を所定の駆動条件で駆動して表示状態を設定した後、前記静電容量検出回路が検出した前記表示状態を呈する前記表示素子の前記静電容量に基づいて、前記表示素子の駆動条件を調整する駆動条件調整回路と、を備えることを特徴とする表示装置。
(付記2)
前記駆動条件調整回路は、少なくとも2つ以上の異なる表示状態において検出した前記静電容量に基づいて、前記表示素子の駆動条件を自動調整する付記1記載の表示装置。
(付記3)
前記静電容量検出回路は、電流検出波形を有する信号を生成して前記表示素子に印加する電流検出波形印加回路と、
前記電流検出波形を有する信号を印加した時の前記表示素子への電流値を検出する電流検出回路と、を備える付記1または2記載の表示装置。
(付記4)
前記電流検出波形は、のこぎり波あるいは三角波である付記3記載の表示装置。
(付記5)
前記電流検出回路は、前記表示素子を単純マトリクス方式で駆動するセグメントドライバへの供給電流を測定するように配置される付記3または4記載の表示装置。
(付記6)
前記静電容量検出回路による静電容量の検出は、
前記表示素子の全面を所定の表示状態に設定した上で、電流検出波形を有する信号を前記表示素子に印加して行う、付記1から5のいずれか記載の表示装置。
(付記7)
前記静電容量検出回路による静電容量の検出は、
前記表示素子の表示面を、前記セグメントドライバの出力端子に対応して領域に分け、前記表示素子の表示面を前記領域ごとに所定の表示状態に設定した上で、電流検出波形を有する信号を前記領域ごとに印加して行う、付記5記載の表示装置。
(付記8)
前記駆動条件調整回路は、
前記電流検出回路の検出した電流値をデジタル値に変換するA/D変換器と、
前記A/D変換器の出力するデジタル値に基づいて駆動条件を演算する演算回路と、を備える付記1から7のいずれか記載の表示装置。
(付記9)
前記駆動条件調整回路は、前記表示素子が所定の表示状態を呈する時に前記静電容量検出回路が検出した静電容量が、目標静電容量に近づくように駆動条件の変化パラメータを調整する付記1から8のいずれか記載の表示装置。
(付記10)
前記駆動条件調整回路は、ニュートン法あるいは二分法を適用して前記検出した静電容量が目標静電容量に近づくように前記駆動条件の変化パラメータを調整する付記9記載の表示装置。
(付記11)
前記表示素子は、コレステリック液晶を用いている付記1から10のいずれか記載の表示装置。
(付記12)
前記表示素子は、異なる反射光を呈する複数の液晶層の積層構造を備え、
前記駆動条件調整回路は、各層別に駆動条件を自動調整する付記1から11のいずれか記載の表示装置。
(付記13)
前記表示素子は、ダイナミック駆動方式(Dynamic Driving Scheme:DDS)で駆動される付記1から12のいずれか記載の表示装置。
(付記14)
前記駆動条件調整回路は、Evolution期間の電圧値とSelection期間のデューティ比をパラメータとして駆動条件を自動調整する付記13記載の表示装置。
(付記15)
駆動された後、前記駆動が解除された後も表示状態を維持するメモリ性を有する表示素子の駆動制御方法であって、
前記表示素子を所定の駆動条件で駆動して表示状態を設定した後、設定した表示状態において、前記表示素子が呈する静電容量を検出し、
検出した前記静電容量に基づいて、前記表示素子の駆動条件を自動調整することを特徴とする表示装置の駆動制御方法。
(付記16)
前記静電容量の検出は、少なくとも2つ以上の異なる表示状態において行い、
検出した少なくとも2つ以上の異なる表示状態の前記静電容量に基づいて、前記表示素子の駆動条件を自動調整する付記15記載の表示素子の駆動制御方法。
(付記17)
前記静電容量の検出は、電流検出波形を有する信号を生成して前記表示素子に印加し、 前記電流検出波形を有する信号を印加した時の前記表示素子への電流値を検出し、
検出した電流値から静電容量を算出する付記15または16記載の表示素子の駆動制御方法。
(付記18)
前記駆動条件を自動調整は、前記表示素子が所定の表示状態を呈する時に検出した静電容量が、目標静電容量に近づくように駆動条件の変化パラメータを調整する付記15から17のいずれか記載の表示素子の駆動制御方法。
【符号の説明】
【0147】
10 表示素子
11 コモンドライバ
12 セグメントドライバ
13 電源部
14 電流センスアンプ
21 ホスト制御部
22 フレームメモリ
23 制御部
24 演算部
25 バッファ

【特許請求の範囲】
【請求項1】
駆動された後、前記駆動が解除された後も表示状態を維持するメモリ性を有する表示素子と、
前記表示素子が呈する静電容量を検出する静電容量検出回路と、
前記表示素子を所定の駆動条件で駆動して表示状態を設定した後、前記静電容量検出回路が検出した前記表示状態を呈する前記表示素子の前記静電容量に基づいて、前記表示素子の駆動条件を調整する駆動条件調整回路と、を備えることを特徴とする表示装置。
【請求項2】
前記駆動条件調整回路は、少なくとも2つ以上の異なる表示状態において検出した前記静電容量に基づいて、前記表示素子の駆動条件を自動調整する請求項1記載の表示装置。
【請求項3】
前記静電容量検出回路は、電流検出波形を有する信号を生成して前記表示素子に印加する電流検出波形印加回路と、
前記電流検出波形を有する信号を印加した時の前記表示素子への電流値を検出する電流検出回路と、を備える請求項1または2記載の表示装置。
【請求項4】
前記電流検出回路は、前記表示素子を単純マトリクス方式で駆動するセグメントドライバへの供給電流を測定するように配置される請求項3記載の表示装置。
【請求項5】
前記駆動条件調整回路は、前記表示素子が所定の表示状態を呈する時に前記静電容量検出回路が検出した静電容量が、目標静電容量に近づくように駆動条件の変化パラメータを調整する請求項1から4のいずれか記載の表示装置。
【請求項6】
前記表示素子は、コレステリック液晶を用いている請求項1から5のいずれか記載の表示装置。
【請求項7】
前記表示素子は、ダイナミック駆動方式(Dynamic Driving Scheme:DDS)で駆動される請求項1から6のいずれか記載の表示装置。
【請求項8】
前記駆動条件調整回路は、Evolution期間の電圧値とSelection期間のデューティ比をパラメータとして駆動条件を自動調整する請求項7記載の表示装置。
【請求項9】
駆動された後、前記駆動が解除された後も表示状態を維持するメモリ性を有する表示素子の駆動制御方法であって、
前記表示素子を所定の駆動条件で駆動して表示状態を設定した後、設定した表示状態において、前記表示素子が呈する静電容量を検出し、
検出した前記静電容量に基づいて、前記表示素子の駆動条件を自動調整することを特徴とする表示装置の駆動制御方法。
【請求項10】
前記静電容量の検出は、電流検出波形を有する信号を生成して前記表示素子に印加し、 前記電流検出波形を有する信号を印加した時の前記表示素子への電流値を検出し、
検出した電流値から静電容量を算出する請求項9記載の表示素子の駆動制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate


【公開番号】特開2012−53210(P2012−53210A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2010−194777(P2010−194777)
【出願日】平成22年8月31日(2010.8.31)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】