説明

被測定物特性測定装置

【課題】被測定物特性測定装置の小型化にするとともに、入力電極の開口長によらずクロストークの発生を防ぐことが可能な被測定物特性測定装置を提供することを目的とする。
【解決手段】被測定物物性測定装置10は、入力電極14と第1出力電極16との間に形成された第1伝搬路20と、入力電極14と第2出力電極18との間に形成された第2伝搬路22とを有する弾性表面波素子12とを備えている。第1伝搬路20と第2伝搬路22に被測定物40を負荷した状態において、入力電極14から信号を入力し、第1出力電極16及び第2出力電極18から出力された各出力信号に基づいて被測定物40の物理的特性を求めることができる。この被測定物物性測定装置10を用いることにより、装置を小型化できるとともに、入力電極の開口長によらずクロストークの発生を防ぐことが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体状の被測定物の物理的特性を測定するための弾性表面波素子を有する被測定物特性測定装置に関するものである。
【背景技術】
【0002】
一般に、弾性表面波素子は、圧電基板と、前記圧電基板上に設けられた櫛歯状電極指からなる入力電極及び出力電極を備えている。弾性表面波素子では、入力電極に電気信号が入力されると、電極指間に電界が発生し、圧電効果により弾性表面波が励振され、圧電基板上を伝搬していく。この弾性表面波のうち、伝搬方向と直交する方向に変位するすべり弾性表面波(SH-SAW:Shear horizontal Surface Acoustic Wave)を利用する弾性表面波素子を用いた各種物質の検出や物性値等の測定を行うための弾性波センサが研究されている(特許文献1)。
【0003】
弾性波センサでは、圧電基板上に負荷された測定対象である液体状の被測定物の領域が電気的に開放されている場合と、短絡されている場合とでは、出力電極から出力される出力信号の特性に差異があることを利用して被測定物の物理的特性として誘電率、導電率を求めることができる。また、弾性表面波素子の入力電極と出力電極の間の伝搬路上に凹凸構造を形成し、その凹部に被測定物を負荷すると、負荷された被測定物は擬似的に膜を形成する。この膜は圧電基板とともに励振し、膜の質量に基づいて共振周波数が変化する質量負荷効果を利用して、被測定物の密度を求めることができる。
【0004】
図12は、上述した被測定物の物理的特性として比誘電率や導電率を測定する被測定物特性測定装置100の説明図である。被測定物特性測定装置100は、圧電基板130に形成された第1弾性表面波素子110と第2弾性表面波素子120とを備える。第1弾性表面波素子110は、入力電極112及び出力電極114を備え、入力電極112と出力電極114の間には、短絡伝搬路116が形成されている。第2弾性表面波素子120は、入力電極122及び出力電極124を備え、入力電極122と出力電極124の間には、開放伝搬路126が形成されている。短絡伝搬路116は、圧電基板130の表面に形成された金属膜118上に設けられ、開放伝搬路126は圧電基板130の表面に形成され、電気的に開放された開放領域を有する金属膜128上に設けられている。
【0005】
被測定物特性測定装置100における被測定物の比誘電率や導電率の測定は、測定対象となる被測定物を、短絡伝搬路116及び開放伝搬路126に負荷した状態で、入力電極112及び122に同一の信号を入力し、出力電極114及び124から出力される信号の振幅比、位相差を振幅比位相差検出器144で測定することにより、被測定物の比誘電率や導電率を求めている。
【0006】
【特許文献1】特許第3488554号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、上記の被測定物特性測定装置100では、短絡伝搬路116及び開放伝搬路126の表面を、弾性表面波の伝搬方向に対して垂直な方向に被測定物を流して測定を行うために、弾性表面波の伝搬方向と平行な方向に第1弾性表面波素子110及び第2弾性表面波素子120を配置する必要があり、装置が大きくなってしまう。
【0008】
また、被測定物特性測定装置100では、発振器142からの電気信号を分配器143で分配して入力電極112、122に対して入力しているために完全に同一の信号であることが保証されず、その結果、測定精度の低下を招く場合がある。この課題に対しては、図13のように入力電極112と122とを一体にした入力電極132とすることもできるが、金属膜118の開口長が狭い場合には、励振された弾性表面波が回折により矢印で示す方向に伝搬して出力電極114及び出力電極124で受信され、いわゆるクロストークにより測定誤差が生じる場合がある。
【0009】
本発明は、上記の課題を考慮してなされたものであって、装置を小型化にするとともに、入力電極の開口長や入出力電極間の伝搬路長を起因とする回折現象によらずクロストークの発生を防ぐことが可能な被測定物特性測定装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明に係る被測定物特性測定装置は、入力電極と第1出力電極との間に形成された第1伝搬路と、前記入力電極と第2出力電極との間に形成され前記第1伝搬路と異なる振幅・位相特性の第2伝搬路とを有する弾性表面波素子を備え、前記第1伝搬路及び前記第2伝搬路に液体状の被測定物を負荷した状態において、前記入力電極から信号を入力し、前記第1出力電極及び前記第2出力電極から出力された各出力信号に基づいて前記被測定物の物理的特性を求めることを特徴とする。
【0011】
本発明によれば、入力電極と第1出力電極との間に第1伝搬路を形成し、前記入力電極と第2出力電極との間に第2伝搬路形成することにより、被測定物特性測定装置を小型化にするとともに、入力電極の開口長や入出力電極間の伝搬路長を起因とする回折現象によらずクロストークの発生を防ぐことできる。
【0012】
前記第1伝搬路は、電気的に短絡した短絡伝搬路であり、前記第2伝搬路は、電気的に開放した開放伝搬路であってもよい。また、前記第1伝搬路は、電気的に短絡した短絡伝搬路であり、前記第2伝搬路は、格子状の凹凸構造が形成され電気的に短絡した格子状伝搬路であってもよい。さらに、前記第1伝搬路は、電気的に開放した開放伝搬路であり、前記第2伝搬路は、格子状の凹凸構造が形成され電気的に開放した格子状伝搬路であってもよい。
【0013】
前記入力電極及び前記各出力電極の各々は、前記被測定物の付着を防ぐ封止部材によって封止されていることにより被測定物特性測定装置全体を被測定物に浸漬した状態で被測定物の物理的特性を測定することができる。
【発明の効果】
【0014】
本発明によれば、入力電極と第1出力電極との間に第1伝搬路を形成し、前記入力電極と第2出力電極との間に第2伝搬路形成することにより、被測定物特性測定装置を小型化にするとともに、入力電極の開口長や入出力電極間の伝搬路長を起因とする回折現象によらずクロストークの発生を防ぐことできる。また、前記入力電極及び前記各出力電極の各々は、被測定物の付着を防ぐ封止部材によって封止されていることにより被測定物特性測定装置全体を被測定物に浸漬した状態で被測定物の物理的特性を測定することができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の第1実施形態について図面を参照して説明する。図1は、本発明の第1実施形態に係る被測定物物性測定装置10の構成の説明図である。また、図2A、図2Bは、図1のIIA−IIA端面図であって、図2Aは、液体状の被測定物を負荷する前の状態を示す図であり、図2Bは、被測定物を負荷した後の状態を示す図である。
【0016】
図1に示すように、被測定物物性測定装置10は、弾性表面波素子12と、高周波の電気信号を発生する発振器42と、弾性表面波に対応した出力信号の振幅比及び位相差を測定する振幅比位相差検出器44とを備える。
【0017】
弾性表面波素子12は、入力電極14と、第1出力電極16と、第2出力電極18とを備え、入力電極14と第1出力電極16との間には、第1伝搬路20が形成され、入力電極14と第2出力電極18との間には、第2伝搬路22が形成されている。
【0018】
入力電極14は、発振器42から入力された電気信号によって、弾性表面波を励振させるために櫛形電極で構成されている。また、第1出力電極16及び第2出力電極18は、入力電極14で励振され伝搬してきた弾性表面波を受信するために櫛形電極で構成されている。
【0019】
入力電極14、第1出力電極16及び第2出力電極18は、被測定物40の物理的特性を測定する際に被測定物40が櫛形電極に付着するのを防ぐために、各々が第1封止部材24、第2封止部材26、第3封止部材28によって封止されている。
【0020】
第1封止部材24は、側壁部24aと蓋部24bから構成され、側壁部24aは、入力電極14の周辺を覆い、蓋部24bは、入力電極14の上部を覆うことにより入力電極14の全体を封止し、被測定物40が櫛形電極に付着するのを防止する(図2B参照)。第2封止部材26、第3封止部材28も第1封止部材24と同様に構成され、第2封止部材26は、側壁部26aと蓋部26b、第3封止部材28は、側壁部28aと蓋部28bから構成されている。第1封止部材24、第2封止部材26、第3封止部材28は、被測定物40が櫛形電極に付着するのを防ぐことができれば、特に形状が限定されるものではない。また、材質についても特に限定されるものではなく、例えば、樹脂、ゴム等であってもよい。
【0021】
第1伝搬路20及び第2伝搬路22は、各々圧電基板30上に蒸着された金属膜32、34で形成され、金属膜32、34は電気的に短絡されている(図1参照)。特に、第1伝搬路20は、全面が金属膜32で形成されているために、電気的に短絡した短絡伝搬路を構成している。また、金属膜32、34は、被測定物40の物理的特性の測定精度を向上させるために接地されている。金属膜32、34の材料は特に限られないが、被測定物40に対して、化学的に安定している金で形成することが好ましい。
【0022】
第2伝搬路22には、金属膜34の一部が剥離され、圧電基板30が露出するように開放領域36が形成されている。従って、圧電基板30が露出している開放領域36は電気的に開放状態となっていることから、第2伝搬路22は開放伝搬路を形成している。なお、金属膜32が残る部分については、第1伝搬路20と同様に電気的に短絡状態となっている。
【0023】
圧電基板30は、すべり弾性表面波を伝搬することができれば、特に限られないが、36度回転Y板X伝搬LiTaO3であることが好ましい。
【0024】
次に、被測定物物性測定装置10を用いた被測定物40の比誘電率、導電率の測定について説明する。
【0025】
まず、測定の対象である被測定物40に弾性表面波素子12を浸漬した状態で発振器42から電気信号を入力電極14へ入力する(図2B参照)。入力電極14では、入力された信号に基づいて入力電極14の両側から同一の弾性表面波が励振され、第1伝搬路20上を伝搬し第1出力電極16で受信されるとともに、第2伝搬路22上を伝搬し第2出力電極18で受信される。
【0026】
第1出力電極16と第2出力電極18で受信した弾性表面波から取り出された両出力信号を振幅比位相差検出器44で比較し振幅比及び位相差を検出する。
【0027】
第1伝搬路20と第2伝搬路22は、構成が異なることにより、第1出力電極16、第2出力電極18からの出力信号は異なる振幅、位相を有する信号である。すなわち、第1出力電極16からの出力信号には、力学的相互作用を示す信号成分が含まれ、第2出力電極18からの出力信号には、電気的相互作用及び力学的相互作用を示す信号成分が含まれている。従って、この両出力信号から検出した差分の信号は、力学的相互作用が相殺され、電気的相互作用にのみ対応する信号であり、この信号から検出した振幅比及び位相差に基づいて、被測定物40の物理的特性として比誘電率、導電率を算出することができる。
【0028】
以上説明したように、この実施態様に係る被測定物物性測定装置10は、入力電極14と第1出力電極16との間に形成された第1伝搬路20と、入力電極14と第2出力電極18との間に形成された第2伝搬路22とを有する弾性表面波素子12を備えている。第1伝搬路20と第2伝搬路22に被測定物40を負荷した状態において、入力電極14から信号を入力し、第1出力電極16及び第2出力電極18から出力された各出力信号に基づいて被測定物40の物理的特性を求めることができる。
【0029】
従来の被測定物特性測定装置100では、入力電極112、118と2つの入力電極が必要であったが、被測定物物性測定装置10によれば、第1伝搬路20と第2伝搬路22との間に入力電極14を形成することにより、入力電極を1つにすることが可能となり、また、分配器143も不要となり、装置の小型化を図ることができる。さらに、分配器143を用いずに、発振器42から電気信号を入力することから同一の信号を確実に入力電極14に入力することが可能となり、測定精度の低下を防ぐことができる。さらにまた、入力電極14の開口長や入出力電極間の伝搬路長を起因とする回折現象によらず第1出力電極16、第2出力電極18におけるクロストークの発生を防ぐことができる。
【0030】
また、被測定物物性測定装置10を用いて被測定物40の比誘電率、導電率を測定する場合には、第1伝搬路20は、電気的に短絡した短絡伝搬路であり、第2伝搬路22は、電気的に開放した開放伝搬路である。さらに、被測定物40の付着を防ぐ第1封止部材24、第2封止部材26、第3封止部材28によって、入力電極14、第1出力電極16及び第2出力電極18を封止することにより、弾性表面波素子12を被測定物40に浸漬した状態で被測定物40の物理的特性を測定することができる。
【0031】
なお、図1に示す第2伝搬路22は、開放伝搬路を形成しているが、第2出力電極18からの出力信号から、電気的相互作用及び力学的相互作用を示す信号成分が得られれば、この伝搬路に限定されるものではなく、図3Aに示すように格子状伝搬路でもよい。この格子状伝搬路は、弾性表面波の伝搬方向(矢印X方向)に対して垂直な方向に金属膜34の一部を剥離し、圧電基板30が露出するように形成された凹部50AがX方向に等間隔で設けられ、隣接する凹部50Aの間に形成され金属膜34の一部である凸部52Aとから構成される凹凸構造54Aを備えている。
【0032】
また、図3Bに示すように、第2伝搬路22としてX方向に対して斜めの方向に金属膜34の一部を剥離した凹部50Bと、隣接する凹部50Bの間に形成され金属膜34の一部である凸部52Bとから構成される凹凸構造54Bが形成された格子状伝搬路としてもよい。
【0033】
さらに、図3Cに示すように、第2伝搬路22として市松格子状伝搬路を形成してもよい。この市松格子状伝搬路には、金属膜34の一部を剥離した凹部50Cと、隣接する凹部50Cの間に形成され金属膜34の一部である凸部52Cとから構成される凹凸構造54Cによって市松格子が形成されている。
【0034】
次に、本発明の第2実施形態について図面を参照して説明する。図4は、本発明の第2実施形態に係る被測定物物性測定装置10Aの構成の説明図である。図5A、図5Bは、図4のVA−VA端面図であって、図5Aは、被測定物を負荷する前の状態を示す図であり、図5Bは、被測定物を負荷した後の状態を示す図である。なお、被測定物物性測定装置10と同一の構成要素には同一の参照符号を付し、その詳細な説明を省略する。
【0035】
被測定物物性測定装置10Aでは、被測定物物性測定装置10の第2伝搬路22として格子状伝搬路22Aが設けられている。格子状伝搬路22Aは、金属膜34A上にX方向に凸部56及び凹部58から構成される凹凸構造60が形成されている。凹凸構造60を形成し、凹部58に被測定物40を負荷して閉じこめることにより質量負荷効果に基づく出力信号を得ることが可能となる。なお、第1伝搬路20は、被測定物物性測定装置10と同様に金属膜32Aで形成された短絡伝搬路である。
【0036】
上述した被測定物40の比誘電率、導電率の測定と同様に発振器42から電気信号を入力電極14へ入力し、第1出力電極16と第2出力電極18で受信した弾性表面波から取り出された両出力信号を振幅比位相差検出器44で比較し位相差を検出する。
【0037】
第1出力電極16からの出力信号には、密度粘度積に基づく信号成分が含まれ、第2出力電極18からの出力信号には、密度粘度積及び質量負荷効果に基づく信号成分が含まれている。従って、この両出力信号から検出した差分の信号は、質量負荷効果に基づく信号であり、この信号から検出した位相差に基づいて、被測定物40の物理的特性として密度を算出することができる。
【0038】
また、被測定物40の密度の測定では、格子状伝搬路22Aは、X方向に凹凸構造60が形成された格子状伝搬路であるが、第2出力電極18からの出力信号から、密度粘度積及び質量負荷効果に基づく信号成分が得られれば、この伝搬路に限定されるものではなく、図6Aに示すような格子状伝搬路でもよい。この格子状伝搬路は、X方向に対して垂直な方向に凸部56A及び凹部58Aから構成される凹凸構造60Aを備えている。
【0039】
さらに、格子状伝搬路22Aとしては、図6Aに対して、図6B〜図6Dに示すようにX方向に凹凸構造を追加した市松格子状伝搬路としてもよい。図6Bに示すように格子状伝搬路22Aの金属膜34Aに平行な断面を四角形状にし、凸部56Bと凹部58Bから構成される凹凸構造60Bとしてもよい。また、図6Cに示すように金属膜34Aに平行な断面を円形状にし、凸部56Cと凹部58Cから構成される凹凸構造60Cとしてもよく、図6Dに示すように金属膜34Aに平行な断面を菱形状にし、凸部56Dと凹部58Dから構成される凹凸構造60Dとしてもよい。なお、金属膜34Aに平行な凹部の断面の形状は、市松格子状伝搬路を形成することができれば、これらの形状に限定されるものではない。
【0040】
また、第1出力電極16、第2出力電極18の各出力信号から検出した差分の信号が、質量負荷効果に基づく信号であれば、第1伝搬路20と格子状伝搬路22Aの構成は特に限定されるものではない。上記の第2実施形態では、第1伝搬路20としての電気的に短絡した短絡伝搬路と、電気的に短絡した格子状伝搬路22Aを備えるが、第1伝搬路20を電気的に開放した開放伝搬路20Bとし、格子状伝搬路22Aを電気的に開放した格子状伝搬路22Bとしてもよい。
【0041】
図7は、本発明の第2実施形態の変形例である被測定物物性測定装置10Bの構成の説明図である。また、図8Aは、図7のVIIIA−VIIIA端面図である。
【0042】
被測定物物性測定装置10Bは、開放伝搬路20B(第1伝搬路)と、格子状伝搬路22B(第2伝搬路)とを備える。なお、被測定物物性測定装置10Aと同一の構成要素には同一の符号を付している。
【0043】
開放伝搬路20Bは、開放領域70と凸部72を備え、開放領域70は金属膜32Bを剥離した領域であり、凸部72は金属膜32Bで剥離せずに残存する部分である。
【0044】
格子状伝搬路22Bには、X方向に対して垂直な方向に金属膜34Bの一部を剥離して圧電基板30が露出するように形成された凹部74がX方向に等間隔に設けられ、隣接する凹部74の間に凸部76が形成されている。つまり、格子状伝搬路22Bには、X方向に凹部74及び凸部76から構成される凹凸構造78が形成されて、金属膜34Bが露出している凹部74は電気的に開放状態となっている。
【0045】
開放領域70を構成する領域70aと領域70bとの面積の和は、凸部76中のすべての凹部74の底面積の総和に等しくなるように形成されている。
【0046】
凸部76は、金属膜34Bの一部として形成されているが、金属に限定されるものではなく、SiO2のような樹脂であってもよい。
【0047】
また、第2出力電極18からの出力信号から、密度粘度積及び質量負荷効果に基づく信号成分が得られれば、この伝搬路に限定されるものではなく、また、格子状伝搬路22Bは、図9Aに示すような格子状伝搬路でもよい。この格子状伝搬路は、X方向に対して垂直な方向に凹部74A及び凸部76Aから構成される凹凸構造78Aを備えている。
【0048】
さらに、格子状伝搬路22Bとしては、図9Aに対して、図9B〜図9Dに示すようにX方向に凹凸構造を追加した市松格子状伝搬路としてもよい。図9Bに示すように格子状伝搬路22Bの圧電基板30に平行な断面を四角形状にし、凹部74Bと凸部76Bから構成される凹凸構造78Bとしてもよい。また、図9Cに示すように圧電基板30に平行な断面を円形状にし、凹部74Cと凸部76Cから構成される凹凸構造78Cとしてもよく、図9Dに示すように圧電基板30に平行な断面を菱形状にし、凹部74Dと凸部76Dから構成される凹凸構造78Dとしてもよい。なお、圧電基板30に平行な凹部の断面の形状は、市松格子状伝搬路を形成することができれば、これらの形状に限定されるものではない。
【0049】
さらにまた、図9Aに示すように、金属膜34Bの一部を剥離して凹凸構造78Aを形成する場合に限定されるものではない。図10は、本発明の第2実施形態に係る被測定物物性測定装置10Bの変形例の構成の説明図である。また、図11A、図11Bは、図10のXIA−XIA端面図であって、図11Aは、被測定物を負荷する前の状態を示す図であり、図11Bは、被測定物を負荷した後の状態を示す図である。
【0050】
図10に示すように、開放伝搬路20Cは、圧電基板30が露出した平坦な開放領域80を備える。また、格子状伝搬路22Cは、図10に示すように、X方向に対して垂直な方向に形成された凹部82をX方向に等間隔に設け、隣接する凹部82の間に凸部84を形成し、凹部82と凸部84から構成される凹凸構造86を備える。
【0051】
なお、上記第1、第2実施態様では、弾性表面波素子12を被測定物40に浸漬して第1伝搬路20、第2伝搬路22に被測定物40を負荷しているが、被測定物40の物理的特性を測定することができれば、被測定物40が第1伝搬路20、第2伝搬路22に負荷される状態は特に限定されるものではない。例えば、第1伝搬路20、第2伝搬路22に被測定物40を滴下することによる負荷や、第1伝搬路20、第2伝搬路22上で被測定物40を流すことによる負荷であってもよい。
【0052】
また、被測定物物性測定装置10を用いて測定できる被測定物の物理的特性としては、上述した比誘電率、導電率、密度に限られるものではない。例えば、被測定物の粘性を測定することも可能である。
【0053】
さらに、測定対象の液体状の被測定物としては、特に限定されるものではなく、純液、混合液のいずれであってもよく、メタノール、エタノール等のアルコールの物理的特性を測定する場合に特に有効である。さらにまた、被測定物に抗原、抗体、バクテリア等が含まれる状態においても、物理的特性を測定できることは言うまでもない。
【0054】
この場合、例えば、被測定物の中に帯電しているバクテリアが含まれている場合には、被測定物の導電率を測定することにより、バクテリアの含有率を測定することができる。また、異なる極性で帯電しているバクテリアが含まれている場合には、被測定物の導電率を測定することにより、被測定物に最も多く含まれるバクテリアの種類を特定することもできる。さらに、被測定物が負荷された伝搬路にバクテリアが付着している場合には、質量負荷効果により変化した被測定物の密度、粘性を測定することにより、バクテリアの付着量や付着した伝搬路の特定をすることができる。
【0055】
なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
【図面の簡単な説明】
【0056】
【図1】本発明の第1実施形態に係る被測定物特性測定装置の構成の説明図である。
【図2】図2A、図2Bは、図1のIIA−IIA端面図であって、図2Aは、被測定物を負荷する前の状態を示す図であり、図2Bは、被測定物を負荷した後の状態を示す図である。
【図3】図3A〜図3Cは、第1実施形態に係る被測定物特性測定装置における第2伝搬路の他の構成の説明図である。
【図4】本発明の第2実施形態に係る被測定物特性測定装置の構成の説明図である。
【図5】図5A、図5Bは、図4のVA−VA端面図であって、図5Aは、被測定物を負荷する前の状態を示す図であり、図5Bは、被測定物を負荷した後の状態を示す図である。
【図6】図6A〜図6Dは、第2実施形態に係る被測定物特性測定装置における格子状伝搬路の他の構成の説明図である。
【図7】図7は、本発明の第2実施形態に係る被測定物特性測定装置の変形例の構成の説明図である。
【図8】図8A、図8Bは、図7のVIIIA−VIIIA端面図であって、図8Aは、被測定物を負荷する前の状態を示す図であり、図8Bは、被測定物を負荷した後の状態を示す図である。
【図9】図9A〜図9Dは、第2実施形態に係る変形例における格子状伝搬路の他の構成の説明図である。
【図10】図10は、本発明の第2実施形態に係る被測定物特性測定装置の変形例の構成の説明図である。
【図11】図11A、図11Bは、図10のXIA−XIA端面図であって、図11Aは、被測定物を負荷する前の状態を示す図であり、図11Bは、被測定物を負荷した後の状態を示す図である。
【図12】従来の被測定物特性測定装置の説明図である。
【図13】従来の被測定物特性測定装置において、入力電極を1つにした場合の説明図である。
【符号の説明】
【0057】
10、10A、10B、100…被測定物特性測定装置
12…弾性表面波素子
14、112、122、132…入力電極 16…第1出力電極
18…第2出力電極 20…第1伝搬路
20B、20C…開放伝搬路 22…第2伝搬路
22A、22B、22C…格子状伝搬路 24…第1封止部材
24a、26a、28a…側壁部 24b、26b、28b…蓋部
26…第2封止部材 28…第3封止部材
30、130…圧電基板
32、32A、32B、34、34A、34B、118、128、…金属膜
36、70、80…開放領域 40…被測定物
42、142…発振器 44、144…振幅比位相差検出器
50A〜50C、58、58A〜58D、74、74A〜74D、82…凹部
52A〜52C、56、56A〜56D、72、76、76A〜76D、84…凸部
54A〜54C、60、60A〜60D、78、78A〜78D、86…凹凸構造
110…第1弾性表面波素子 114、124…出力電極
116…短絡伝搬路 120…第2弾性表面波素子
126…開放伝搬路 143…分配器

【特許請求の範囲】
【請求項1】
入力電極と第1出力電極との間に形成された第1伝搬路と、前記入力電極と第2出力電極との間に形成され前記第1伝搬路と異なる振幅・位相特性の第2伝搬路とを有する弾性表面波素子を備え、
前記第1伝搬路及び前記第2伝搬路に液体状の被測定物を負荷した状態において、
前記入力電極から信号を入力し、前記第1出力電極及び前記第2出力電極から出力された各出力信号に基づいて前記被測定物の物理的特性を求める
ことを特徴とする被測定物特性測定装置。
【請求項2】
請求項1記載の被測定物特性測定装置において、
前記第1伝搬路は、電気的に短絡した短絡伝搬路であり、
前記第2伝搬路は、電気的に開放した開放伝搬路であることを特徴とする被測定物特性測定装置。
【請求項3】
請求項1記載の被測定物特性測定装置において、
前記第1伝搬路は、電気的に短絡した短絡伝搬路であり、
前記第2伝搬路は、格子状の凹凸構造が形成され電気的に短絡した格子状伝搬路であることを特徴とする被測定物特性測定装置。
【請求項4】
請求項1記載の被測定物特性測定装置において、
前記第1伝搬路は、電気的に開放した開放伝搬路であり、
前記第2伝搬路は、格子状の凹凸構造が形成され電気的に開放した格子状伝搬路であることを特徴とする被測定物特性測定装置。
【請求項5】
請求項1〜4のいずれか1項に記載の被測定物特性測定装置において、
前記入力電極及び前記各出力電極の各々は、前記被測定物の付着を防ぐ封止部材によって封止されていることを特徴とする被測定物特性測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate