説明

補助燃料システムのための多段硫黄除去システムおよび工程

【課題】補助燃料システムのための多段硫黄除去システムおよび工程の提供。
【解決手段】主燃料流れから低濃度の硫黄化合物を含有する補助燃料流れを生成するためのシステムは、主燃料流れの一部から第1の蒸気透過流れおよび第1段の未透過流れを分離する第1の分離段と、第1の蒸気透過流れの一部を第1の液体段流れおよび第1の蒸気段流れに凝縮する第1の蒸気透過流れに連結される第1の分離段の部分凝縮器と、第1の蒸気流れの一部を第2の液体段に凝縮する第2の分離段の部分凝縮器とを含む。第1の蒸気透過流れは、燃料流れから容易に分離されることができる種にある任意の硫黄化合物を調整するように、気相反応性脱硫触媒反応装置を介して送り込まれることが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は一般に、燃料システムに関し、さらに詳細には、より高濃度の硫黄化合物を有
する主燃料の流れから低濃度の硫黄化合物を有する補助燃料流れの抽出のためのシステム
および工程に関する。
【背景技術】
【0002】
燃料電池システムの性能、コストおよび耐久性における継続的な改善により、たとえば
、ハイブリッド式または燃料電池式の自動車などの車両において、補助電源装置(APU
)としての使用に関心が高まり続けている。実用化に対する燃料電池システムの1つの制
限は、用いられる軍用燃料または従来の燃料、たとえば、ディーゼルおよびケロシンのカ
ット(削減)にある。これらの燃料は、30〜3,000ppmの範囲の硫黄含有量を有
し、これらの燃料の水素への変換または合成気体流れに影響を及ぼすか、または燃料電池
下流の性能に影響を及ぼすかのいずれかである。1つの別法は、「硫黄を含まない」タイ
プの合成液体燃料、たとえば、APU用のフィッシャ・トロプシュ液体または気体と液体
の生成物を必要とすることであるが、この実施には、同一の自動車に2つの別個の燃料流
れを提供することが必要である。
【0003】
たとえば、米国の一部の政府機関は、30〜300ppmを最近では推進するなど、燃
料においてより低レベルの硫黄を指示している。最低の限界付近のレベルであっても、硫
黄含有量は、下流工程における触媒の性能に影響を及ぼし、したがって、燃料電池システ
ムの効果的な使用を妨げる。膜に基づく技術をはじめとする技術は、これらのより低い硫
黄の規格を達成するために、精製所規模の用途向けに開発されている最中である。膜技術
、具体的に言えば、浸透気化膜技術は、商用化技術であり、液流の混合物からより高い蒸
気圧成分の分離のために、多数の業界で実用化されている。
【発明の概要】
【発明が解決しようとする課題】
【0004】
コンパクトで廉価なシステムにおいて実装されることが可能であり、ガソリン、ケロシ
ン、ジェット燃料およびディーゼルに基づく広範囲の主燃料に関して動作する必要な分離
選択性を提供する簡単な工程を有することが望ましい。本開示が向けられるのは、これら
の需要に対してである。
【課題を解決するための手段】
【0005】
例示的な実装例によれば、主燃料流れから低濃度の硫黄化合物を含有する補助燃料流れ
を生成するためのシステムおよび工程(方法)の実施例が、開示される。このシステムは
、主燃料流れの一部から第1段の透過流れおよび第1段の未透過流れを分離する第1の分
離段を含む。第2の分離段は、第1段の透過流れから第2段の透過流れおよび第2段の未
透過流れを分離し、第2段の未透過流れは、低濃度の硫黄化合物を含有する補助燃料流れ
を含む。第1段の未透過流れおよび第2段の透過流れは、混合されて、主燃料流れに戻さ
れる。その結果、主燃料流れに加えて、低濃度の硫黄化合物を含有する補助燃料流れを生
じる。
【0006】
さらなる例示的な実装例によれば、主燃料流れから低硫黄化合物を含有する補助燃料流
れを分離する工程は、主燃料流れから第1段の透過流れおよび第1段の未透過流れを分離
することと、真空圧で第1段の透過流れを気化することと、第1段の透過流れから第2段
の透過流れおよび第2段の未透過流れを分離することとを含み、第2段の未透過流れは、
低濃度の硫黄化合物を含有する燃料流れを備え、真空圧で第2段の透過流れを気化して、
主燃料流れに第2段の透過流れを戻すことを含む。したがって、第2段の未透過流れは、
低硫黄化合物を含有する補助燃料流れである。
【0007】
別の例示的な実装例によれば、主燃料流れから低濃度の硫黄化合物を含有する燃料流れ
を分離するシステムは、燃料供給部と、第1段の分離器と、第2段の分離器と、燃料供給
部を第1段の分離器に連結する第1の供給管路と、第1段の分離器および第2段の分離器
を連結する第2の供給管路とを含む。第1の供給管路は、燃料供給部から第1段の分離器
に燃料流れを運搬する。第1段の分離器は、第1段の燃料供給部流れから第1段の透過流
れおよび第1段の未透過流れを生成する。第2の供給管路は、第1段の分離器から第2段
の分離器に第1段の透過流れを運搬する。第2段の分離器は、第2段の透過流れおよび第
2段の未透過流れを生成する。生成された第2段の未透過流れは、低濃度の硫黄化合物を
含有する燃料流れである。このシステムにおいて、第1段の未透過流れおよび第2段の透
過(流れ)は次に、混合されて、主燃料流れに戻される。
【0008】
さらに別の例示的な実装例によれば、主燃料流れから低濃度の硫黄化合物を含有する燃
料流れを分離するシステムは、主燃料流れから気体の第1段の透過流れおよび第1段の未
透過流れを供給する第1段の分離器と、第1段の分離器に関連する第1の放出器であって
、真空圧および冷却エネルギを提供し、第1の放出器用の推進流体として冷却された第1
段の透過液体を用い、第1段の透過蒸気を凝縮する放出器と、凝縮された第1段の透過流
れから第2段の未透過流れおよび気体の第2段の透過流れを提供する第2段の分離器とを
含み、第2段の未透過流れは、低濃度の硫黄化合物を含有する燃料流れを備え、第2段の
分離器に関連する第2の放出器であって、推進流体として冷却された第1段の未透過(流
れ)を用い、第2段の透過蒸気用の真空圧を提供し、第2段の透過蒸気を凝縮して、第1
段の未透過(流れ)と混合する放出器を含むことが開示される。生成された真空圧は、推
進流体としての処理(プロセス)液体と共に放出器を用いることによって生成されるだけ
ではない。空気または窒素を豊富に含む空気などの圧縮気体が、推進流体として用いられ
てもよい。あるいは、電動式真空ポンプが真空圧を生成するために利用されてもよい。
【0009】
別の例示的な実装例によれば、主燃料流れから低濃度の硫黄化合物を含有する燃料流れ
を分離するシステムは、燃料供給部と、第1段の分離器と、反応性脱硫触媒と、触媒の下
流の収着剤床と、燃料供給部を第1段の分離器に連結する第1の供給管路と、第1段の分
離器を反応性脱硫触媒に連結する第1の気相供給管路と、第1の収着剤床供給管路と、第
1の凝縮供給管路と、第1の反応供給管路とを含む。第1の供給管路は、燃料供給部から
第1段の分離器に燃料流れを運搬する。第1段の分離器は、第1段の燃料供給部流れから
第1段の透過流れおよび第1段の未透過流れを生成する。第1の気相供給管路は、第1段
の分離器から反応性脱硫触媒に第1段の透過流れを運搬する。反応物供給管路は、反応物
を反応性脱硫触媒に供給する。触媒は、反応物と第1段の透過における硫黄種の化学反応
を支援し、硫黄種を改質する。第1の収着剤床供給管路は、反応物触媒を収着剤床に連結
する。改質された硫黄種は、収着剤に吸着または吸収して、残りの第1段の透過(流れ)
が後の用途または処理のために凝縮される。
【0010】
本開示の特徴および態様は、添付図面と共に以下の詳細な説明からよりよく理解される
。添付図面はすべて、説明のために過ぎず、本開示を限定するものではない。
【0011】
定義
【0012】
以下の説明において、用いられる語は、当業者によって意図されるものとして平明な意
味に基づいて用いられている。以下に記載される実施形態において、以下の語は、以下の
ように用いられることを意図している。
【0013】
「炭化水素」という語は、種々の長さおよび構造の水素原子および炭素原子から主に構
成される有機化合物を記載するために一般に用いられるが、非炭素原子(酸素、硫黄また
は窒素など)を含んでもよい。
【0014】
「直鎖炭化水素(straightchain hydrocarbon)」という語は、その化合物が環状構造を
含まないパラフィン型炭化水素またはイソパラフィン型炭化水素であることを示唆してい
る。
【0015】
「浸透気化(pervaporation)」という語は、非多孔性の膜を通じた部分気化による液体
混合物の分離を意味する。
【0016】
「ナフテンまたはナフテン系化合物」という語は、単結合による1つ以上の環の炭素原
子を有する炭化水素である。
【0017】
「芳香族化合物」という語は、これらの環の中に二重結合による1つ以上の環の炭素を
含有する炭化水素である。
【0018】
「複素環(heterocyclics)」という語は、炭素および水素に加えて、硫黄、窒素または
酸素などの原子を含有する芳香族化合物またはナフテン系化合物である。複素環は通常、
本質的に極性を有する。
【0019】
「極性」または「イオン性」という語は、膜に関して言及するとき、イオン結合を含有
する膜を表す。同様に、「非極性」または「非イオン性」という語は、イオン結合を含有
しない膜である。膜が本質的に極性であるか、または分枝状のスルホン酸基を有するフッ
化ポリマー、たとえば、Nafion(登録商標)などの極性材料でコーティングされて
いる場合には、極性種を有する化合物は、膜を介して選択的に移動される傾向がある。非
極性の膜、たとえば、三酢酸セルロースなどは、非極性の化合物に対して選択的であり、
イオン性化合物の移動速度を選択的に減少する傾向がある。
例えば、本願発明は以下の項目を提供する。
(項目1)
主燃料流れから低濃度の硫黄化合物を含有する補助燃料流れを生成するための工程であ
って、前記工程は、
第1の膜分離段を介して前記主燃料流れの一部を通過させることによって、前記主燃料
流れから第1の蒸気透過流れおよび第1の未透過流れを分離することと、
第1の分離段の部分凝縮器において前記第1の蒸気透過流れの一部を第1の液体段流れ
および第1の蒸気段流れに凝縮することと、
脱硫反応装置を介して前記第1の蒸気段流れを通過させることとを含む、工程。
(項目2)
前記第1の蒸気段流れを研磨フィルタに送ることをさらに含む、項目1に記載の工程

(項目3)
前記研磨フィルタは、前記硫黄化合物を水素硫化物または硫黄酸化物に変換する触媒を
含有する、項目2に記載の工程。
(項目4)
第2の第1段の部分凝縮器における前記第1の蒸気段流れの一部を第2の液体段流れに
凝縮することをさらに含む、項目1に記載の工程。
(項目5)
前記第2の液体段流れは研磨フィルタに送られ、前記研磨フィルタからの排出液体が清
浄な燃料となる、項目4に記載の工程。
(項目6)
前記第1の分離段は、所定の浸透気化温度範囲および所定の浸透気化真空圧範囲内で維
持される高流束の非硫黄選択膜を含む、項目1に記載の工程。
(項目7)
前記第1の分離段は、所定の浸透気化温度範囲および所定の浸透気化真空圧範囲内で維
持される高流束の非硫黄選択膜を含む、項目4に記載の工程。
(項目8)
前記第1の蒸気透過流れの一部を凝縮する動作は、前記第1の部分凝縮器の前記温度を
制御することによって管理される項目1に記載の工程。
(項目9)
前記第1の蒸気透過流れの一部を凝縮する動作は、前記第1の部分凝縮器の前記温度を
制御することによって管理される、項目6に記載の工程。
(項目10)
第2の分離段を介して前記第2の液体段流れを通過させることによって、前記第2の液
体段流れから第2の蒸気透過流れおよび第2の未透過流れを分離させることと、
前記第1の未透過流れおよび前記第2の蒸気透過流れを混合して、前記混合物を前記主
燃料流れに戻すこととをさらに含む、項目4に記載の工程。
(項目11)
第2の分離段を介して前記第2の液体段流れを通過させることによって、前記第2の液
体段流れから第2の蒸気透過流れおよび第2段の未透過流れを分離させることをさらに含
む、項目4に記載の工程。
(項目12)
第2の未透過流れは、研磨フィルタに送られ、前記研磨フィルタからの前記排出液体は
補助電源装置用の清浄な燃料となる、項目10に記載の工程。
(項目13)
前記第2の蒸気透過流れおよび第2段の未透過流れを分離することは、所定の浸透気化
温度範囲および所定の浸透気化真空圧範囲内で維持される硫黄選択膜を介して前記第2の
液体段流れを通過させることを含む、項目11に記載の工程。
(項目14)
研磨フィルタを介して前記第2段の未透過流れを送ることをさらに含む、項目11に
記載の工程。
(項目15)
主燃料流れから低濃度の硫黄化合物を含有する補助燃料流れを生成するシステムであっ
て、前記システムは、
主燃料流れの一部を第1の蒸気透過流れおよび第1の未透過流れに分離するための第1
の分離段と、
前記第1の蒸気透過流れの一部を第1の液体段流れおよび第1の蒸気段流れに凝縮する
前記第1の蒸気透過流れに連結される第1の分離段の部分凝縮器と、
前記第1の蒸気段流れの一部を第2の液体段に凝縮する第2の分離段の部分凝縮器とを
備える、システム。
(項目16)
前記第2の液体段流れに連結される研磨フィルタをさらに備え、前記研磨フィルタから
の排出液体が、清浄な燃料となる、項目15に記載のシステム。
(項目17)
前記第1の分離段は、前記主燃料流れを前記第1の蒸気透過流れおよび前記第1の未透
過流れに分離するように動作可能な所定の浸透気化温度範囲および所定の浸透気化真空圧
範囲内に維持される高流束の非硫黄選択膜を備える、項目15に記載のシステム。
(項目18)
前記第1の部分凝縮器の前記温度は、前記第1の蒸気透過流れの一部の凝縮を管理する
ように制御される、項目15に記載のシステム。
(項目19)
前記第1の部分凝縮器の前記温度は、前記第1の蒸気透過流れの一部の凝縮を管理する
ように制御される、項目17に記載のシステム。
(項目20)
前記第2の液体段流れを第2の蒸気透過流れおよび第2の未透過流れに分離するための
第2の分離段と、
前記第1の未透過流れおよび前記第2の蒸気透過流れを混合して、前記混合物を前記主
燃料流れに戻す混合器とをさらに備える、項目15に記載のシステム。
(項目21)
前記第2の液体段流れを第2の蒸気透過流れおよび第2の未透過流れに分離するための
第2の分離段をさらに備える、項目15に記載のシステム。
(項目22)
前記第2の未透過流れに連結される研磨フィルタをさらに備える、項目21に記載の
システム。
(項目23)
前記第2の分離段は、前記第2の液体段流れを前記第2の蒸気透過流れおよび前記第2
の未透過流れに通過させるように動作可能な所定の浸透気化温度範囲および所定の浸透気
化真空圧範囲内に維持される硫黄選択膜を備える、項目21に記載のシステム。
(項目24)
前記第2段の未透過流れを受け入れ、そこから前記補助燃料流れを生成する研磨フィル
タをさらに備える、項目21に記載のシステム。
(項目25)
前記第1の分離段と、前記第1段の透過蒸気を受け入れる第1の分離段の部分凝縮器と
の間に連結される研磨フィルタをさらに備える、項目15に記載のシステム。
(項目26)
前記研磨フィルタは、前記硫黄を水素硫化物または硫黄酸化物に変換して、前記研磨フィルタの選択性および吸収性能を増大させる触媒を含有する、項目25に記載のシステム。
(項目27)
主燃料流れから低濃度の硫黄化合物を含有する補助燃料流れを生成する工程であって、
前記工程は、
第1の膜分離段を介して前記主燃料流れの一部を通過させることによって、前記主燃料
流れから第1の蒸気透過流れおよび第1の未透過流れを分離することと、
第1の分離段の部分凝縮器において前記第1の蒸気透過流れの一部を第1の液体段流れ
および第1の蒸気段流れに凝縮することと、
触媒反応装置において反応物質と前記蒸気段流れを反応させて、分離可能な硫黄化合物
を形成することと、
二次分離構成要素において前記硫黄化合物を分離することとを含む、工程。
(項目28)
前記反応物質は酸化剤である、項目27に記載の工程。
(項目29)
前記反応物質は還元反応物質である、項目27に記載の工程。
(項目30)
前記二次分離構成要素は収着剤床である、項目27に記載の工程。
(項目31)
前記第1の蒸気段流れを研磨フィルタに送ることをさらに含む、項目27に記載の工程。
(項目32)
前記研磨フィルタは、前記硫黄化合物を水素硫化物または硫黄酸化物に変換する触媒を
含有する、項目31に記載の工程。
(項目33)
第2の第1段の部分凝縮における前記第1の蒸気段流れの一部を第2の液体段流れに凝
縮することをさらに含む、項目27に記載の工程。
(項目34)
前記第2の液体段流れを研磨フィルタに送る、項目33に記載の工程。
(項目35)
前記第1の分離段は、所定の浸透気化温度範囲および所定の浸透気化真空圧範囲内で維
持される高流束の非硫黄選択膜を含む、項目27に記載の工程。
(項目36)
第2の分離段を介して前記第2の液体段流れを通過させることによって、前記第2の液
体段流れから第2の蒸気透過流れおよび第2の未透過流れを分離することをさらに含む、
項目33に記載の工程。
(項目37)
前記第2の未透過流れは、研磨フィルタに送られる、項目36に記載の工程。
(項目38)
前記第2の蒸気透過流れおよび第2段の未透過流れを分離することは、所定の浸透気化
温度範囲および所定の浸透気化真空圧範囲内で維持される硫黄選択膜を介して前記第2の
液体段流れを通過させることを含む、項目36に記載の工程。
(項目39)
前記第2段の未透過流れを研磨フィルタを通して送ることをさらに含む、項目38に
記載の工程。
(項目40)
主燃料流れから低濃度の硫黄化合物を含有する補助燃料流れを生成するシステムであっ
て、前記システムは、
主燃料流れの一部を第1の蒸気透過流れおよび第1の未透過流れに分離するための第1
の分離段と、
前記第1の蒸気透過流れの一部を第1の液体段流れおよび第1の蒸気段流れに凝縮する
前記第1の蒸気透過流れに連結される第1の分離段の部分凝縮器と、
前記第1の蒸気段流れを受け入れる反応性脱硫触媒反応装置と、
前記触媒反応装置からの前記第1の蒸気透過流れの一部を第2の液体段に凝縮する第2
の分離段の部分凝縮器とを備える、システム。
(項目41)
前記第2の液体段流れに連結される研磨フィルタをさらに備え、前記研磨フィルタから
の排出液体が、清浄な燃料となる、項目40に記載のシステム。
(項目42)
前記第1の分離段は、前記主燃料流れを前記第1の蒸気透過流れおよび前記第1の未透
過流れに分離するように動作可能な所定の浸透気化温度範囲および所定の浸透気化真空圧
範囲内に維持される高流束の非硫黄選択膜を備える、項目40に記載のシステム。
(項目43)
前記第1の部分凝縮器の前記温度は、前記第1の蒸気透過流れの一部の凝縮を管理する
ように制御される、項目40に記載のシステム。
(項目44)
前記第1の部分凝縮器の前記温度は、前記第1の蒸気透過流れの一部の凝縮を管理する
ように制御される、項目42に記載のシステム。
(項目45)
前記第2の液体段流れを第2の蒸気透過流れおよび第2の未透過流れに分離するための
第2の分離段と、
前記第1の未透過流れおよび前記第2の蒸気透過流れを混合して、前記混合物を前記主
燃料流れに戻す混合器とをさらに備える、項目40に記載のシステム。
【図面の簡単な説明】
【0020】
【図1】本開示による工程の例示的な実施形態の概念図である。
【図2】本開示によるシステムの実施形態の簡略化した概略流れ図である。
【図3】図1および図2に示されたシステムおよび工程の性能モデルに関する実験の結果を示す図である。
【図4】本開示によるシステムの別の実施形態の簡略化した概略流れ図である。
【図5】システムの別の実施形態の第1段の部分の部分概略流れ図であり、2つのステップからなる凝縮機能が、第1段の透過において用いられる。
【図6】透過(流れ)1の凝縮物の蒸留プロファイルを示すチャートである。
【図7】種々の凝縮物の硫黄濃度を示すチャートである。
【図8】本開示によるシステムの別の実施形態の概略流れ図である。
【図9】本開示によるシステムの別の実施形態の簡略化した概略流れ図である。
【図10】図9に示されるシステムの例示的なシステムを説明する概略流れ図である。
【図11】図9に示される代替システムの例示的なシステムを説明する概略流れ図である。
【図12】図9のような代替のシステムの別の例示的なシステムを説明する概略流れ図である。
【図13】図9のような代替のシステムの別の例示的なシステムを説明する概略流れ図である。
【図14】図9のような代替のシステムの別の例示的なシステムを説明する概略流れ図である。
【発明を実施するための形態】
【0021】
本開示は、主燃料流れ(主燃料流)れから後流れ(後流)(slip stream)または補助燃
料流れ(補助燃料流)を分離するための浸透気化膜工程およびシステムに関する。
【0022】
簡単にするため、および説明を分かりやすくするために、図に示され、以下に説明され
る要素は、必ずしも比例尺である必要はないことは認識すべきである。たとえば、要素の
一部の寸法は、明確にするため、互いに対して誇張されている。さらに、適切であると考
えられる場合には、参照符号は、対応する要素を示すために、図の中で繰り返されている

【0023】
図1は、本開示による全体的な工程の簡略化した概略図を示しており、燃料供給混合物
の種々の要素のための2つの分離段および選択性を示している。工程1は、第1段の分離
器11を介して主燃料流れ2の一部を流し、次に、第2段の分離器16を介して分離した
部分を流すことを含む。主燃料2は、任意の市販の輸送燃料または軍用燃料(改質ガソリ
ン、ケロシンおよびディーゼル(州間燃料補給ステーション、ジェット燃料、航空用ケロ
シン(A−1)またはJP−8、NATO F−76などの軍仕様の燃料などが挙げられ
るがこれらに限定されるわけではない)であってもよい。これらの燃料は、広範囲の炭化
水素成分からなり、通常は、精製中、バルク燃料供給源から蒸気分留工程を介して分離さ
れている。その結果、各混合物は、所定の温度帯にわたってそれぞれ気化する様々な化合
物を有する。一般に、ガソリンは、ケロシンより軽い成分を含有し、したがって、ディー
ゼル燃料より軽い。特定のタイプの燃料の各容量内に、種々の蒸気圧ならびに極性または
非極性の特性を有する様々な化合物が存在する。
【0024】
主燃料供給2は特に、5つの主要群に再分離されることができる炭化水素の混合物から
なることができる成分の混合物から特に構成される。第1の群は、比較的高い沸点を有す
る多重環および多分枝状の炭化水素である重い硫黄化合物(H硫黄)22である。たとえ
ば、これらは、300℃を超える沸点を有するジベンゾチオフェンを含む。ジベンゾチオ
フェンは、少なくとも3つの環構造を含有し、芳香族化合物である。第2の群は、軽い硫
黄化合物(L硫黄)24であり、比較的低い沸点および3つ未満の環構造を有する硫黄を
含有するより簡素な化合物である。たとえば、これらは、300℃未満の沸点、さらに好
ましくは、225℃未満の沸点を有するメルカプタン、チオフェンおよびベンゾチオフェ
ンとして種々の化合物を含む。第3の群は、重い炭化水素(H HC)21であり、第4
の群は、軽い炭化水素(L HC)25であり、いずれも硫黄原子を含有していない(硫
黄原子は、最初の2つの群に含まれていた)。第5の群は、添加物(剤)23であり、製
造、製造業者および他の基準に応じて、各タイプの燃料に対して特定される。たとえば、
軍用JP−8燃料は、3つの添加物が仕様において必要とされる点を除き、市販の航空燃
料に類似している。JP−8の場合には、これらは、燃料システム凍結防止剤(MIL−
DTL−85470)、ジエチレングリコールモノメチルエーテル(di−EGME)、
腐食防止剤/潤滑性向上剤(MIL−PRF−25017およびパラダイン655)およ
び導電性/静電気除去剤(Stadis(登録商標)450およびMIL−S−5302
1)を含む。これらの仕様は、「GUIDE FOR FIELD BLENDING
OF ADDITIVES OR FOR WINTERIZING GROUND F
UELS」、AMSTA−TR−D/210、米国陸軍戦闘車両研究開発技術センター(
U.S.Army Tank−Automotive Research、Develo
pment and Engineering Center:TARDEC)、War
ren、MI 48397−5000、1999年10月に記載され、その全体は参照に
より本明細書に組み込まれる。
【0025】
図1に示される工程1において、主燃料供給2は、第1段の分離工程11および第2段
の分離工程16からなる多段工程1において、補助燃料流れ3および戻り主燃料流れ4に
分離される。第1段の分離工程11は、軽い硫黄24および軽い炭化水素25からなる軽
い方の化合物の膜12を介した移動を支援し、第1段の透過(流れ)13として出る。他
の化合物21、22および23は、これも第1段の分離工程11から生じる未透過流れ1
4に保持される。第1段の透過(流れ)13は、第2段の分離工程16に進められる。第
2段の分離工程において、軽い硫黄化合物24は、第2段の透過(流れ)19としての軽
い化合物26の一部と共に、膜17を介して選択的に移動されるのに対し、より軽い炭化
水素28の大部分は、第2段の未透過流れ18に保持される。第2段の透過(流れ)19
は、第1段の未透過(流れ)14と混合され、戻り主燃料流れ4として、主用途またはタ
ンクに戻される。第2段の未透過(流れ)18は、補助燃料供給部3になる。
【0026】
第1段工程11および第2段工程16は、選択的工程であるが、それらの選択性は、必
ずしも絶対ではない。供給流れ2および13の温度および透過流れ13および19の真空
圧を制御することによって、膜12および17を介して実際に移動される化合物の量を制
御することができる。
【0027】
透過のための原動力は、各段において膜を通過する化合物の部分圧力差(PPD)であ
る。温度が上昇すると、透過率が高められる。膜材料の温度制限は、より低い動作点を示
唆しうるが、透過側に真空圧を印加することは、より低い温度を補償するために、より高
いPPD原動力を与えることになる。供給流れの温度が上昇すると、化合物の移動性が増
大し、膜の透過性が増大する。両方の変数は、膜を通した化合物の移動速度を増大させる
。膜の温度はまた、膜の透過側に曝される化合物の蒸気圧も増大させる。
【0028】
浸透気化膜を用いた工程1において、1〜500トールの範囲、さらに好ましくは10
0〜約200トールの真空圧が、透過側に印加されてもよく、最も高い蒸気圧を有する化
合物が、膜の表面から蒸気として気化される。最適な温度範囲は、真空圧のレベル、主燃
料のタイプ、用いられる膜材料に左右される。たとえば、主燃料が、航空用ケロシンであ
り、第1段の工程11から除去される軽い炭化水素が、ガソリン沸点範囲にあり、真空圧
が、膜にわたって印加される場合には、温度範囲は、約100℃〜約200℃である必要
があり、100〜200トールの真空圧が印加される場合には、好ましい範囲は、約12
0℃〜135℃である。他方、主燃料がディーゼルカット(削減)である場合には、温度
は、150℃〜300℃の範囲であってもよい。最も高い蒸気圧を有する化合物の気化は
、膜にわたる濃度勾配を形成し、供給流れからこれらの化合物の移動の増大を促進する。
低い蒸気圧を有する化合物は気化せず、したがって、濃度勾配は、これらの化合物に関し
て確立されておらず、さらなる移動は生じない。膜の表面積、膜厚および膜の未透過側に
おいて内部流体相混合(internal fluid phase mixing)などの他の変数はまた、移動され
る化合物の量に寄与する。膜の表面積における増大は、移動のためのより大きな面積およ
び透過側においてより大きな気化移動面積を有するために、移動の増大を提供する。より
薄い膜は、移動に関してより小さな抵抗を有し、確立される濃度勾配がより短い距離にわ
たって機能するために、より高い移動速度を支援する。
【0029】
透過流束は、膜厚に反比例し、したがって、動作圧力および温度で存続し続けることが
できる場合には、より薄い膜が好ましい。内部流体相混合は、供給流れにおける種々の化
合物の混合を確保し、膜の供給面で可能な高い蒸気圧の化合物の最も高い濃度を維持する
ことによって、移動速度を増大させる。未透過側におけるバルク流れにおける質量移動抵
抗は、膜表面における有効部分圧力を低減する可能性がある。乱流または高速の流速は、
混合を改善し、流束を増大することができる。第1段の分離器および第2段の分離器にお
ける膜の特性を調整することにより、第1段11において移動される軽い硫黄化合物24
のすべてが、再び第2段16において移動されることを確実にする。より高い沸点の化合
物が気化されないほど十分に低い温度で動作することによって、重い芳香族またはまたは
多重環硫黄化合物、たとえば、通過して透過するジベンゾチオフェンなどの量を低減し、
削減および最小限に抑えることができる。
【0030】
本開示による第1段の分離工程11および第2段の分離工程16は、フラッシュ気化分
離(FVS)から、逆浸透膜(ROM)、ナノろ過膜(NFM)および超ろ過膜(UFM
)などのろ過膜の使用、非極性浸透気化膜(NPVM)および極性浸透気化膜(PPVM
)などの浸透気化膜に至る範囲の複数の技術を利用して実行されることができる。各段に
関して特定の分離技術の適切な選択は、特定の主燃料および混合物内の硫黄化合物の分布
に左右される。主燃料供給2における特定の添加物23および硫黄化合物はまた、どの分
離技術が最適であるかを選択することに影響を及ぼしうる。
【0031】
本明細書に開示される分離工程に適した分離技術、およびこの工程のすべての実施形態
において対象となる化合物に対するそれらの選択性は、3つの特性の考慮によって識別さ
れることができる。第1の特性は、孔の物理的サイズであり、第2の特性は、硫黄化合物
などの化合物の極性またはイオン特性による選択性であり、第3の特性は、沸点または蒸
気圧による選択性である。本開示の1つの例示的な実施形態は、第2のステップにおける
硫黄選択膜による処理のために、低沸点の留分の透過(low boiling fraction permeable)
を分離し、補助燃料源などの下流工程のための清浄生成物として軽い未透過物を収集する
第1のステップを含む。第1のステップからの高沸点の留分の未透過(流れ・物)および
第2のステップからの透過(流れ)が、結合され、残留燃料として送り返される。
【0032】
ROM、NFMおよびUFMなどの簡単なろ過工程は、主に物理サイズおよび構造によ
って分離を行う。ROM分離デバイスは、0.0014μm未満の有効孔サイズを有し、
NFMデバイスは、0.0008〜0.005μmの孔を有し、UFMデバイスは、0.
0025〜0.1μmの孔を有する。これらは、ある程度まで分子量による化合物の選択
性に関連している。たとえば、ROMは、300グラム/モル未満の化合物に関して良好
であり、NFMは、160〜10,000グラム/モルに関して良好であり、UFMは2
,000〜200,000グラム/モルに関して良好である。質量に加えて、分子の3次
元の形状もまた、線状の長鎖化合物より、大きな立体障害を有する複雑な多重環構造に関
する選択性に影響を与える。
【0033】
フラッシュ気化器および浸透気化膜などの分離技術は、化合物の沸点または蒸気圧に対
して選択的である。たとえば、フラッシュ気化器において、供給液体は、加圧および加熱
される。この加熱および加圧流体は次には、オリフィスを通過して、急速な圧力低下を生
じ、混合物内の低沸点化合物の一部の気化が起こる。より高い沸点を有するより重い化合
物は、液体として残る。したがって、燃料供給は次に、2相混合物である。この2相(気
体と液体)混合物は次に、気体流れおよび液体流れに分離される。気体流れは次に、分離
工程を終了するために凝縮される。浸透気化膜の使用は、膜および気化による分離工程を
組み合わせた点以外は、類似している。
【0034】
本開示によるシステムの一実施形態において、分留ユニットを備えたフラッシュ気化器
は、第1の段として用いられ、極性浸透気化膜が、第2の分離段において用いられる。別
の実施形態において、極性浸透気化膜は、第1段の分離および第2段の分離の両方を行う
ために用いられる。これらのPPVMは、物理的ろ過および極性選択性を組み合わせて、
小さなサイズの極性化合物を好ましくは分離し、次に、膜の透過側から気化される移動化
合物のために、さらなる選択性を加える。化合物が、膜を通して物理的に移動することが
できるが、その蒸気圧は動作温度では低すぎて、気化することができない場合には、透過
相まで継続されない。したがって、所定の温度で動作するPPVM分離器は、軽い炭化水
素および軽い硫黄化合物の両方に対して選択性を実証することができる。
【0035】
本開示によるシステムの別の実施形態において、第2段の分離器は、第1段の分離器よ
り極性分子に対してより大きな選択性を有する。この特性は、第1の膜を介して移動する
すべての極性硫黄化合物および他のイオン性化合物が、第2段の透過流れによって主燃料
に確実に戻されるのを助ける。
【0036】
工程の例示的な実施形態は、エンジンまたは主発電機を駆動するためなどの主要な用途
に送られる燃料の留分を抽出することによって、車両搭載補助電源装置(APU)におい
て使用可能な低硫黄で清浄な燃料流れを提供するように設計される。工程の効率の評価に
おいて重要な変数は、戻り主燃料流れにおける燃料の性能添加物および硫黄化合物の実質
的にすべてを残すと同時に、燃料混合物の低硫黄留分を抽出する能力である。
【0037】
図2は、システム60において実装される図1の工程1の実施形態を示している。シス
テム60において、タンク61からの主燃料は、ポンプ63によって主燃料供給流れ32
において加圧される。主燃料供給流れ32は次に、工程の再熱式熱交換器53によって主
燃料の第1の高温供給流れ321に加熱される。主燃料の第1の高温供給流れ321は次
に、熱交換器52における高温エンジン流体50によって主燃料の第2の高温供給流れ3
22まで加熱される。この第2の高温供給流れ322は次に、第1段の分離器31に供給
され、第1段の未透過流れ37および第1段の透過流れ34に分離される。第1段の透過
流れ34は次に、放出器35に搬送され、放出器の推進流体38によって駆動される。真
空圧が放出器の推進流体38の供給流れに起因する場合には、放出器35において、第1
段の透過蒸気流れ34は、真空圧状態に置かれる。第1段の透過流れ34および放出器の
推進流体38の混合物である結合液体流れ36が放出器35から出る。この結合液体流れ
36は、冷却される場合には、冷却熱交換器57へと流れる。第1段の透過蒸気34に対
する冷却推進液体38の重量比は、凝縮熱が結合液体流れ36の温度をわずかだけ上昇さ
せるように適切に高く維持される。液体への気体の凝縮することで、より小さい容量とな
り、したがって、真空圧が上流に形成される。高速推進流体と共に放出器を用いることも
また、真空圧を形成する。
【0038】
高温液体流れ36は、熱交換器57において冷却されて、冷却液体流れ360となり、
ポンプ137によって圧力を増大させ、放出器35に送られる推進流れ38および第2段
の供給流れ42に分離する。冷却ユニット55は、空気冷却放熱器または液体冷却放熱器
あるいは車両の空調システムなどの他の適切な機構からなる熱排出要素であり、これを介
して、過剰な熱がシステムから除去されることができる。冷却流体流れ362および36
3は、これらの冷却熱交換器56、57および58から冷却ユニット55に熱を移動する
ように概念的に示された冷却ループである。一連の流れ構成は、本開示に示されているが
、この図に限定されるわけではなく、一連の流れまたは並列の流れと統合された冷却ユニ
ットまたは専用の冷却ユニットとの任意の組み合わせが可能であり、本開示に包含される
。再熱式熱交換器53は、戻り燃料流れ46から供給流れ32に熱を移動する。戻り流れ
46における蒸気のすべてが凝縮されることを保証するために、冷却熱交換器56が含ま
れる。
【0039】
液体流れ361の一部は、第2段の供給流れ42として第2段の分離器41に進められ
る。図2に示される実施形態において、液体流れ361のごく一部のみが第2段の分離器
41に進められ、大部分は放出器推進流体38として放出器へ流れ込む。放出器推進流体
38として液体流れ361を用いることにより、その気体−液体分離器および二重下流冷
却熱交換器に関して別個の作動流体を用いる必要性を排除する。安定状態の動作において
、気体−液体流れ36の組成は、以下にさらに詳細に説明するように、主に軽い炭化水素
および軽い硫黄化合物である。安定状態の動作において、流体34、36、38および3
61の組成は、同一であり、気体−液体流れ36の直接的な凝縮を支援し、凝縮後、放出
器35から出るようになっている。
【0040】
第2段の供給42は、再熱式熱交換器51に進められ、第2段の分離器41に入る高温
の第2段の供給421になる。高温の第2段の供給421の供給流れは、第2段の透過流
れ44および第2段の未透過流れ47に分離される。第2段の供給42は、代替の実施形
態において、再熱式熱交換器51に入る前に第2段からの出口流れ、第2段の透過(流れ
)44または第2段の未透過(流れ)47のいずれかと連動(インターフェイス)される
再熱式熱交換器(図示せず)を介して最初に加熱されてもよい。第2段の分離器41にお
ける膜の硫黄選択性は、第2段の透過流れ44における硫黄化合物の大部分の移動を支援
すると同時に、冷却され、補助燃料供給部としてタンク62に格納される第2段の未透過
流れ47としての軽い炭化水素化合物の一部を維持する。第2段の膜の選択性がよくなれ
ばなるほど、より多くの軽い炭化水素が、未透過流れ47に保持される。第2段の透過流
れ44は、放出器45に搬送される推進流体の作用に起因して、真空に置かれる。この実
施形態において、放出器45用の推進流体は、第1段の未透過流れ37である。別法にお
いて、第2段の供給42は、第1段の未透過流れ37と連動する1つ以上の再熱式熱交換
器で加熱されることができる。
【0041】
放出器45を駆動するために第1段の未透過流れ37を用いることは、工程の複雑さを
最小限に抑える。工程の熱効率を改善するために、再熱式熱交換器53を通過する戻り流
体46は、放出器45から出る。流体は最後に、戻り流体が周囲温度または周囲温度付近
であることを保証するために、タンク61に戻る前に冷却熱交換器56を通過する。
【0042】
透過流れの一方または両方はまた、真空圧形成を強化するために、1つ以上の別個の冷
却熱交換器において冷却されてもよい。他の実施形態において、第1段の未透過流れ37
は、放出器45用の推進流体として機能する前に冷却される。たとえば、未透過流れ37
は、推進流体として放出器45に入る前に熱交換器53を通って流れるように、放出器4
5は、再熱式熱交換器53の下流に位置決めされることができる。この実施形態において
、放出器45用の推進流体は、第1段の冷却された未透過流れ37である。別の実施形態
において、透過流れの一方または両方はまた、真空圧形成を強化するために、1つ以上の
別個の冷却熱交換器において冷却されてもよい。
【0043】
他の実施形態において、放出器45から出ると、第2段の分離器において透過(流れ)
として移動される硫黄化合物は、第1段からの未透過(流れ)と混合されて、主エンジン
または主燃料タンク61に戻されることができる。
【0044】
上記で開示されたシステムは、補助電源装置用に用いられることができる燃料化合物の
第2段の未透過(流れ)47において低硫黄の後流れを抽出するために、車両搭載の多段
の分離工程を行うために用いられることができると同時に、主燃料32における性能向上
添加物が第1段の未透過(流れ)37に保持されるか、または第2段の透過(流れ)44
によって第1段の未透過に戻されるように分離段が設計される。先行技術および従来の手
法において、主燃料の後流れは、補助燃料流れとして除去され、次に、硫黄化合物を完全
に破壊、吸着または吸収するように処理される。
【0045】
この手法は、使い捨てフィルタまたは固体床(bed of solid)への硫黄化
合物の吸着または吸収、ならびに再生サイクルにおける硫黄化合物の破壊の代わりに、主
燃料に残留物の硫黄化合物を戻す多段工程によって低硫黄の清浄な燃料流れの抽出を可能
にする。この手法はまた、燃料における他の極性化合物はまた、最初の2段によって濃度
が減少されるために、第3の段の吸着剤または吸収剤の性能を強化する。最も一般的に用
いられる燃料に関して吸着剤格納性能(storage capacity)は、特定の
硫黄化合物でドープされた代用燃料に比べて10分の1の性能であることが分かっている
。この性能における低下は、吸着用の活性位置を本質的に占める極性でもある、添加物ま
たは重い芳香族などの他の化合物に起因する。
【0046】
システムの一実施形態は、第2段の放出器45用の推進流体として第1段からの未透過
(流れ)37を用いて、第2段の透過側に真空圧を提供することに焦点を置いている。こ
の未透過流れは、放出器の性能を強化して、第2段の透過側により大きな真空圧を形成す
るために冷却されることができる。同様に、気化される透過流れ44はまた、性能をさら
に強化するために、放出器45に入る前に冷却および凝縮されることができる。また、第
1段の未透過(流れ)37は、真空圧性能をさらに強化するために、放出器45に入る前
に冷却されることができる。放出器の周囲におけるこれらの流体の冷却は、第1段の膜工
程または第2段の膜工程への供給流れの予熱と組み合わせて、直接的な冷却または再熱式
冷却によって行われることができる。
【0047】
システムの一実施形態は、第1段の放出器35用の推進流体38として凝縮および加圧
後に第1段の透過流れ34を用いることに焦点を置いている。
【0048】
システムの一実施形態は、工程の熱効率を改善するために、再熱式熱交換器53を通過
する戻り流体46に焦点を置いている。続いて、流体は最後に、戻り流体が周囲温度また
は周囲温度付近であることを保証するために、タンク61に戻る前に冷却熱交換器56を
通過する。
【0049】
システムの一実施形態は、主エンジン用途からの熱エネルギを用いて、第1段の分離器
モジュールおよび第2段の分離器モジュールの有効動作のために必要なピーク熱エネルギ
を提供することを含む。これは、エンジン50および熱交換器52および53に関して、
図2において示される。
【0050】
システム工程の別の実施形態は、主要車両とのさらなる統合を含む。この実施形態にお
いて、冷却ループ源55は、構成要素の冗長性を最小限に抑えるために、車内の空調シス
テムと統合される。主燃料タイプ(JP−8、ディーゼルまたはガソリンなど)、流れ3
4における軽い化合物の蒸気圧および混合流れ36の圧力に応じて、混合流れ36から液
体流れ361への完全な凝縮のために必要な温度は、周囲温度未満であってもよい。この
状況において、冷却ループ要素55は、車内の空気を冷却するように設計されている車両
の空調ループに統合されてもよい。あるいは、周囲温度以下の温度を可能にする専用冷却
ユニットが、冷却要素55として用いられてもよい。
【0051】
図1および図2に示されるシステムおよび工程は、清浄な低硫黄補助燃料供給部を効果
的に提供するための能力を評価するためにモデル化されている。図3は、そのようなモデ
ルの性能の結果を記録する図を示している。モデルは、重量で硫黄500ppmのJP−
8軍用燃料に類似の供給燃料流れを仮定して開発された。通常のJP−8燃料は、約14
0℃〜300℃の範囲の沸点を有し、複数の化合物、パラフィン57%、シクロパラフィ
ン20%、芳香族20%、その他3%から構成される。
【0052】
モデルからのデータは、燃料の硫黄含有量をy軸に示すグラフに描かれた。x軸は、総
供給より軽い留分の相対硫黄濃度によって表される、供給における硫黄化合物のタイプの
尺度である。したがって、100%の値は、硫黄濃度が燃料の沸点範囲にわたって均一で
あることを示している。1500ppm〜3000ppmの範囲のバルク硫黄濃度を有す
るJet−A燃料の複数のサンプルの詳細な硫黄分析は、大部分の硫黄化合物が比較的重
く、ジベンゾチオフェン型化合物からなることを示している。30%の軽い留分が得られ
る場合には、硫黄濃度における約70%削減が達成され、このことは、1500ppmの
硫黄を有するバルク燃料が450〜500ppmの硫黄を有する軽い留分を生成すること
を示している。このことは、「軽い留分における相対的な硫黄」が2005においてカリ
フォルニア州ロングビーチにおける市販の供給源から得られた通常のJet−A燃料の場
合には約30〜35%であることを示している。上流の精製工程における改質は、この特
性を変化させる場合がある。
【0053】
燃料の供給濃度は、灰色の線70として表され、図2の流れ32の濃度である。第1段
の分離器は、非選択的分離としてモデル化され、バルク燃料の30%が図2の第1段の透
過(流れ)34において抽出された。分離が選択的でなかったため、白丸を有する線71
は、軽い留分における相対的な硫黄を表しており、この場合にはバルク燃料の30%であ
る。
【0054】
第2段の分離は、供給流れ42の40%を透過(流れ)44として抽出し、供給におけ
る硫黄の98%を除去する選択性を達成した。このデータは、中間カットナフサ燃料流れ
におけるベンゾチオフェンおよびより軽い硫黄化合物に関するW.R.Grace’s
PPVMモジュールから発表された性能データと一致しており(Zhao X.、Kri
shnaiah G.、およびCartwright T.;Membrane Sep
aration for Clean Fuels;PTQ Summer 2004)
、その内容は、全体において参照により本明細書に組み込まれる。
【0055】
第2段の分離の性能が、白抜きの四角の線72として表されており、軽い留分における
相対的な硫黄が60%未満である場合には、10ppm未満の硫黄レベルが達成可能であ
ることを示している。補助燃料において必要な硫黄レベルが、10ppm未満または相対
硫黄濃度が60%を超える場合には、第3の段が必要とされる可能性がある。この実施例
において、第2段の未透過(流れ)47は、液相硫黄吸着剤または第3の段の吸着剤モジ
ュールまたは吸収剤モジュールにおける吸収剤によってさらに処理され、95%の除去性
能を達成した。生成物の流れにおいて、結果として生じる硫黄の濃度は、白抜きの三角の
線73によって表され、軽い留分における相対的な硫黄レベルの全範囲にわたって2pp
m未満の濃度レベルを示している。
【0056】
工程およびシステムのさらなる実施形態は、最終的な補助燃料流れを研磨(polis
h)するために、この第3の段の吸着剤モジュールまたは吸収剤モジュールの添加を含む
ことができる。図4は、そのような実施形態の例示的な実装例を示している。図4を参照
すると、システムは、吸着型研磨フィルタ床(polishing filter be
d)147が第2段の未透過流れ47における工程システムに追加される点を除き、図2
のシステムと同一である。後流れのための下流の適用が、きわめて低い硫黄濃度を必要と
する場合には、研磨フィルタ床147が追加される。第2段の未透過(流れ)における硫
黄化合物は、吸着型床に捕捉され、その結果、床147に残る流れ148は、図3の線7
3として提示されたモデルの結果に類似のきわめて低い硫黄濃度を有する。
【0057】
研磨フィルタ床147は、広い表面積の炭素または極性硫黄化合物を吸着するように調
整された特定の表面改質を備えた炭素に類似の吸着剤であってもよい。床147は、床に
捕捉される非溶解硫黄無機塩に結果としてなる化合物における硫黄原子と反応するように
作成された吸収剤または試薬であってもよい。
【0058】
概略的に言えば、本開示は、主多成分燃料流れから低硫黄濃度の燃料の後流れの分離の
ための多段工程に関する。主多成分燃料は、第1の段に供給され、未透過流れに保持され
るより軽い成分およびより重い成分を含有する後流れが分離される。より軽い成分の後流
れは、第2段の膜によってさらに処理され、後流れの硫黄成分が第2段の透過(流れ)と
しての供給から選択的に除去され、第2段の未透過(流れ)が低硫黄補助燃料供給部とし
て回復される。
【0059】
別の態様において、本開示は、1つ以上の段が選択的な膜であり、さらに具体的に言え
ば、より軽い硫黄化合物に対し選択性を有するように作成されている極性またはイオン性
の浸透気化膜である多段工程に関する。Nafion(DuPont)などのポリマー膜
、S−Brane(W.R.Grace)などの特別に処理されたポリイミドは、硫黄選
択的極性浸透気化膜の例である。
【0060】
別の態様において、本開示は、1つ以上の段が非選択的な高流束膜である多段工程に関
する。他の好ましい実施形態と同様に、第1段の透過(流れ)34は凝縮され、第2段の
膜工程41に供給される。一部のJet−A型燃料に関して妥当性が確認されたように、
軽い留分における相対的な硫黄が100%未満である場合に、高流束膜が選択される。
【0061】
任意の気化工程、蒸留工程または浸透気化工程と同様に、バルク流体から気化する種は
、膜内に確立される液相と気相との界面で個別の種の蒸気圧によって駆動される。個別の
種の蒸気圧は、温度に著しく左右されるが、すべての種は、何らかの有限の蒸気圧を有し
、したがって、軽い留分が気化するときに、ごく微量のより重い種もまた、気化する。バ
ルク燃料における特定の硫黄化合物種および第1段の透過(流れ)34におけるこれらの
種のごく微量のレベルに応じて、全体的に有効なシステムを達成するために、第1段の工
程に対するさらなる精製が、必要とされる場合がある。システムの別の好ましい実施形態
は、第1段の工程を第1A段工程および第1B段工程に分離する。第1A段および第1B
段はいずれも、浸透気化型工程、流束膜型工程、蒸留型工程および/または気化型工程で
ある。第1A段に関する透過流れ34は、凝縮されて再加熱され、供給流れとして第1B
段工程に送られる。第1B段に関する透過流れは、前述のように、凝縮されて第2段の工
程に送られる。この二次的な第1段の工程は、ごく微量の種の二重ろ過によって選択性を
強化するのを助ける。第1A段および第1B段の両方からの未透過流れは、主燃料タンク
に戻される。
【0062】
本開示によるシステムの別の例示的な実施形態は、第1段の透過(流れ)34における
ごく微量のより重い種の問題を扱う。この実施形態において、2ステップ凝縮機能は、第
1段の透過流れ34が作成される工程の後に統合される。図5は、図2および図4に示さ
れるシステムに適用されるこの凝縮機能構成の1つの好ましい実施形態を示している。こ
こで、類似の符号は、図2および図4に関して前掲の類似の要素を表すために用いられる

【0063】
第1段の透過(流れ)34は、最も重い種が2相流381を形成する液体に変換される
部分凝縮器370を通過する。2相流381は、気体−液体分離器372に送られ、液体
流れ384および蒸気流れ382を形成する。液体流れ384は、ポンプ373および戻
り連結部385を用いて主タンク61に戻される。蒸気流れ382は、熱交換器371に
おいて凝縮され、連結部383によって放出器35に送られる。放出器35の工程の下流
は、図2に関して上述したシステムの他の実施形態に類似している。
【0064】
本開示による多段工程は、第1の段のための加圧未透過流れを放出器の推進側を通って
流れさせ、第2段の透過側に真空圧を形成するように構成されてもよい。この構成におい
て、すべての透過化合物は、主燃料流れに戻り、工程は、蒸気液体分離ハードウェアに関
する要件を排除することによってさらに簡素化される。この工程およびシステムの強化は
、第2段の透過流れ44に関してより低い圧力を生じる真空圧性能を改善するために、放
出器45への供給流れの冷却および/または凝縮を含むことができる。この冷却機能は、
冷却システム55に連結される熱交換器の統合によって直接的であってもよく、または熱
交換器51による加熱前に、第2段の供給流れ42などの他の流れと連動される再熱式熱
交換器によって、または熱交換器52による加熱前に、第1段の供給流れ321などの他
の流れと連動される再熱式熱交換器によって達成されてもよい。他の再熱態様および流れ
構成は、工程のエネルギ効率を向上するために実行可能であり、この工程の実施形態は、
簡単にするために示された構成によって制限されているわけではない。
【0065】
本開示による多段工程は、第1段の凝縮された透過(流れ)を放出器の推進側を通って
流れさせ、第1段の透過側に真空圧を形成するように構成されてもよい。この構成におい
て、工程は、蒸気液体分離ハードウェアに関する要件を排除することによってさらに簡素
化される。さらに別の態様において、本開示は、熱エネルギ要件を最小限に抑えるために
、第1段の未透過(流れ)および第2段の透過(流れ)の混合における熱エネルギが回復
され、第1段の供給(流れ)に移動される多段工程に関する。
【0066】
本開示による多段工程は、ピーク熱エネルギが、車両の主エンジンからの放熱との統合
によって、段に提供されるように構成されてもよい。熱冷却エネルギは、車内の空気を調
整するために通常用いられる車両の蒸気圧縮システムとの統合によって段に提供されるよ
うに構成されてもよい。
【0067】
さらに別の態様において、多段工程は、膜システムが燃料電池または水素発生システム
に後で用いられる低硫黄後流れを抽出するために用いられるように構成されてもよい。た
とえば、初期の段の膜システムはまた、10ppm濃度未満のレベルまで硫黄化合物を抽
出するように作成された吸収剤材料または吸着剤材料からなる最後の研磨段と統合されて
もよい。
【0068】
以下のモデル化された実施例1〜4は、さらに詳細に本開示を説明するために提供され
る。これらのモデル化された実施例は、本開示を実行するために現在考えられる好ましい
方法を記載しており、その意図は、説明のためであって、本開示を限定するためではない

【実施例1】
【0069】
2〜10kWのAPUに関する補助清浄燃料流れ
【0070】
トラックおよびハンビー型車両は、速度、実行される負荷および他の変数に応じて、可
変量のディーゼルまたは軍用燃料(JP−8)を用いる。通常、主エンジンは、加熱また
はA/Cまたは通信の電力需要を供給するために非駆動時間中であっても、動作すること
が必要である。全体的な燃料効率を改善し、主エンジンが動作される必要がある時間を削
減するために、加熱および空調および夜警通信の電力が、主燃料から分離される低硫黄の
清浄な燃料(バルク燃料の約5〜15%)を用いて生成される水素で動作する燃料電池に
よって供給されてもよい。
【0071】
また、図1、図2および図4に示される図を参照して、500ppmの硫黄含有量を有
する燃料タンク61から主燃料は、その温度が250℃まで上昇される場合には、100
psigまでポンプによって熱交換器53および52に送り込まれ、次に周囲圧力まで降
下させることによって、ユニット31において分留、分離または部分的に気化される。蒸
気流れまたは透過流れ34は、放出器ユニット35において、凝縮された再循環流れ38
と混合することによって凝縮される(容量で供給の約25%)。凝縮された軽い炭化水素
流れは、硫黄の容量で約400ppmを包含するが、添加物は含まれておらず、ごく微量
の沸点より高い炭化水素成分のみを含む。次に、凝縮された軽い流れ42は、交換器51
と、液体未透過流れ47および蒸気透過流れ44に分離される膜分離器41に送られ、ユ
ニット31からの重い流れ37と結合されて、約550ppmの硫黄および添加物のすべ
てを含有する流れ45として主燃料タンクに戻される。流れ47は、9ppm未満の硫黄
を含有し、電力を生成する燃料電池において用いるための合成気体または水素を構成する
ためのAPU改質器(ここでは図示せず)に用いられる清浄な補助燃料である。
【実施例2】
【0072】
1ppm以下を含有する補助燃料
【0073】
一部の改質器が、1ppm以下の硫黄を含有する補助燃料を必要とする可能性がある場
合には、以下に述べ、図4に図示されるように、他の分離(ユニット147など)が追加
される。未透過流れ47は、分離器147を通過する。分離器147は、残留硫黄種を吸
収して保持する研磨段である。1ppm未満の硫黄を有する超清浄未透過(流れ)が流れ
148として生成され、ユニット58において必要な場合には冷却され、清浄な補助燃料
タンクに格納されるか、またはAPU改質器システム(ここでは図示せず)によって用い
られる。
【実施例3】
【0074】
航空機におけるAPU用の補助清浄燃料
【0075】
現在市販の航空機および民間航空機は一般に、サイズにおいて、50〜250kWのA
PUを有し、低い効率で燃焼工程においてJP−8燃料を用い、着陸中であっても汚染物
質を生成している。これらのAPUは、航空機において、バルク燃料から生成される補助
燃料を用いて、実施例1において記載されたような低汚染または非汚染の水素系燃料電池
に変換されることができる。
【実施例4】
【0076】
船舶におけるAPU用の補助清浄燃料
【0077】
軍艦および商船はまた、補助燃料生成物および改質器および燃料電池を備えることがで
き、250〜750kW規模のより大きな容量である点を除き、実施例1において教示し
たように、これらの船舶が入港している間に、清浄な電力を生成する。
【0078】
以下の実施例5〜実施例7は、モデル化の結果ではなく、実際に行われた実験の結果を
表す。
【実施例5】
【0079】
両方の段において20%削減される第1段の分離としてのフラッシュ気化器−分留およ
び第2段の分離としての極性浸透気化膜
【0080】
1530ppmの硫黄を含有するジェット燃料(JetA)サンプルは、分留に曝され
、留出物は、以下の硫黄レベルを含有することが分かった。JetA燃料サンプルは、原
子発光検出器(AED)を備えたガスクロマトグラフを用いて分析された。
【0081】
【表A】


留出物削減における硫黄分布


【0082】
上記の表Aは、バルク炭化水素燃料の種々の削減または部分の特性を示している。最後
の列は、1530ppm硫黄レベルを含有するJetA全体として定義されたバルク燃料
の硫黄濃度を示している。これらの硫黄種の大部分は、チオール、硫化物および二硫化物
(824ppm)などの軽い硫黄およびベンゾチオフェンなどの重い硫黄(674ppm
)として識別された。10%削減として識別される列は、最も軽い種のみが第1段の透過
(流れ)に類似であるように除去される燃料の留分を示しており、20%削減は、次の留
分または0〜10%削減において除去され、20〜100%削減において残った種を排除
する10〜20%削減を表す。値によって示されるとき、より軽い留分は、バルク燃料(
1530ppm)より少ない硫黄(495〜721ppm)を有し、10%削減の場合の
25%と30%削減の場合の50%との間で軽い留分における相対的な硫黄を示している
。また、データは、ジベンゾチオフェンによって表される重い硫黄種の大部分が、主タン
クに戻されることになっている第1段の未透過(流れ)である30〜100%削減におい
て残っていることを示している。
【0083】
577ppmの総硫黄を有する第2の蒸留削減(容量で0〜20%)は、125℃まで
予熱され、125℃および26”Hg真空圧に維持された第2段の膜(SB4034.4
)を通過させられた。(20%の段削減で)第2段からの透過(流れ)は、1130pp
mの総硫黄を含有し、第2段からの未透過(流れ)は、500ppmの総硫黄を含有した
。第1段後の総硫黄の削減は62%であり、第2段後の総硫黄の削減は、67%であった
。ガソリン範囲の硫黄は、220℃(428°F)未満の沸点の化合物における硫黄とし
て定義され、第1段生成物の200ppmから第2段の未透過(流れ)における120p
pmまで削減された。この試験は、概念の有効性を裏付けるが、最も実用的な用途の場合
にはさらなる選択性が必要とされる予備データを示している。
【実施例6】
【0084】
第1段の透過における9%削減および第2段の分離における25%削減を有する第1段
の分離としてのフラッシュ気化器−分留および第2段の分離としての極性浸透気化膜
【0085】
ジェット燃料サンプルは、炎光光度検出器(PFPD)を備えたガスクロマトグラフを
用いて解析された。以下の表Bは、ジェット燃料全体および第1段の透過から得られた9
%削減の両方に関する硫黄種を示している。硫黄種は、さらに詳細に示され、表の一番上
には最も軽い種を、表の一番下には最も重い種を示すように表の中で体系化されている。
小計は、対象の軽い硫黄種を示すガソリン燃料留分において通常見られる硫黄種に関して
提供される。データによって示されているように、軽い留分における相対的な硫黄は、約
40%(611ppm/1473ppm)であった。9%削減はまた、重い硫黄種のより
大きな留分を削減を示し、上記のそれらは、ガソリン範囲であった。
【0086】
【表B】


分留による9%削減のサンプル(第1段)


【0087】
第2段において、9%削減留出物は、125℃まで予熱され、125℃および26”H
g真空圧に維持された第2段の膜に供給された。(26%の段削減での)第2段からの透
過(流れ)は、710ppmの硫黄を含有し、未透過(流れ)は、427ppmの硫黄を
含有し、第2段の浸透気化膜の硫黄選択性も示している。ガソリン範囲の硫黄は、膜を介
して第2段の浸透気化工程によって選択的に除去されるのに対して、より高い沸点の硫黄
化合物は、効果的に削減されていない。したがって、より効果的で全体的な脱硫工程のた
めに第1段の分離工程で微量の重い硫黄種をさらに多く除去するより軽い留出物削減を得
ることが好ましい。
【実施例7】
【0088】
2ステップ凝縮を用いた高流束浸透気化膜
【0089】
この実施例は、特に図5に関連しており、2つの凝縮器370および371が用いられ
ている。JetA燃料サンプルは、第1段の工程として機能する120℃および26”H
g真空圧で高流束膜を介して送られた。第1段の透過(流れ)34は、液体流れ384お
よび蒸気流れ382に部分的に凝縮され、軽い化合物から重い化合物を分離するのにさら
に役立つ。ここでは、重くて高い沸点の硫黄化合物のさらなる除去は、部分凝縮器370
を用いることによって、第1段の透過(流れ)34から排除された。20%の第1段の削
減(供給の20%が透過(流れ)34であり、供給の80%が未透過(流れ)37であっ
た)は、透過(流れ)34として抽出され、硫黄組成の結果は、部分凝縮のない第1段の
透過(流れ)として以下の表Cで提供される。データは、透過(流れ)34における相対
的な硫黄が元の硫黄濃度の15%未満であった(1473ppmに対して181ppm)
ことを示している。このデータは、第1段11の気化によって硫黄化合物におけるかなり
の削減を示しているが、これらの成分の一部(表Cのガソリン範囲の硫黄において定義さ
れた小計が以下に特定される)は、上記の図1に示されたような第2段16の工程におい
て除去することがきわめて困難である。これは、対処しなければならない問題を提示して
いる。
【0090】
【表C】


JetA燃料に関する第1段としての高流束膜


【0091】
この問題に対処するために、図5に示される部分凝縮器手法が、第1段11の工程に組
み込まれる。第1段の透過(流れ)34は、部分的にのみ熱交換器370によって冷却さ
れ、その結果、化合物の最も重い化合物のみが凝縮され、最も軽い化合物は依然として蒸
気状態であり、したがって、出口流れ381は、部分蒸気および部分液体である。この出
口流れ381は、分離器372に入り、液相またはより重い化合物が液体流れ384とし
て出て行き、気相または最も軽い化合物が蒸気流れ382として出て行く。成分のすべて
が凝縮されて、液体流れ383として出て行くまで、蒸気流れ382における最も軽い化
合物は、熱交換器371においてさらに冷却される。ここで、図6に関して、線390に
よって示される液体流れ383の最も軽い化合物および線391によって示される液体流
れ384の最も重い化合物の蒸留曲線の比較が示されている。
【0092】
上述の部分凝縮工程の硫黄解析が完了され、表Dにおいて提示される。流れ384にお
ける硫黄濃度または化合物の最も重い化合物(重い凝縮物)と、流れ383または最も軽
い化合物(軽い凝縮物)が定義される。軽い凝縮物流れ383は、重い硫黄を含有してい
ないことが判明した。重い硫黄化合物は、凝縮され、流れ384に含有されて、タンクに
戻される。
【0093】
【表D】


第1段の透過(流れ)に関する2段凝縮器


【0094】
種々の凝縮物に関して沸点の関数としての硫黄濃度が、図7に示されている。この図に
おいて、データ線394は、図5に示されたシステムに入る時の第1段の供給流れ321
またはジェット燃料全体を表す。データ線393は、第1の部分凝縮器370を出て、流
れ384として分離されるような透過(流れ)34における最も重い化合物を表し、デー
タ線392は、図5の最も軽い化合物の流れ382を表す。
【0095】
第2の凝縮器371からの軽い凝縮物は、第2段の分離器41または硫黄選択性S−B
rane膜分離器に送られた。第2段の未透過(流れ)47は、清浄な補助電力燃料流れ
として回復される。第1段の未透過(流れ)37および第1段の第1の部分凝縮物流れ3
84は、第2段の透過(流れ)44と結合され、主燃料タンクに送り返される。
【0096】
システムのこの実施形態は、第1段の透過(流れ)と整列する2つの凝縮器を用い、図
8に示されている。タンク61からの主燃料は、主燃料供給流れ32においてポンプ63
によって加圧される。主燃料供給流れ32は次に、工程の再熱式熱交換器53によって主
燃料の第1の高温供給流れ321まで加熱される。主燃料の第1の高温供給流れ321は
次に、熱交換器52における高温エンジン流体50によって主燃料の第2の高温供給流れ
322まで加熱される。この第2の高温供給流れ322は次に、第1段の分離器31に供
給され、第1段の未透過流れ37および第1段の透過流れ34に分離される。通常、大部
分の硫黄化合物は、第1段の透過流れ34として分離される軽い留分より重いため、大部
分の硫黄化合物は、未透過流れ37に保持される。蒸気状態におけるこの第1段の透過流
れ34は、研磨フィルタによって処理されることができる。研磨フィルタは、研磨フィル
タの吸収床部分の選択性を増大するため、または第1の部分凝縮器における凝縮を強化す
るために、H2気体または空気のいずれかをそれぞれ追加することによって、硫黄化合物
がH2SまたはSO2およびSO3に選択的に変換される触媒を含有してもよい。触媒シス
テムは、反応性を向上するために、100℃〜350℃の温度まで加熱されることができ
る。
【0097】
第1段の透過流れ34は次に、部分的にのみ熱交換器370によって冷却され、その結
果、化合物の最も重い化合物のみが凝縮され、最も軽い化合物は依然として蒸気状態であ
り、したがって、透過流れ381は、部分蒸気および部分液体である。この流れは、分離
器372に入り、液相またはより重い化合物が液体凝縮物流れ384として出て行き、気
相または最も軽い化合物が蒸気流れ382として出て行く。成分のすべてが凝縮されて、
液体流れ383として出て行くまで、蒸気流れ382における最も軽い化合物は、熱交換
器371においてさらに冷却される。この蒸気流れ382は、第2の部分凝縮器371に
入る前に研磨フィルタを通過することによって処理されることができる。研磨フィルタは
、研磨フィルタの吸収床部分の選択性を増大するために、H2気体または空気のいずれか
をそれぞれ追加することによって、硫黄化合物がH2SまたはSO2およびSO3に選択的
に変換される触媒を含有してもよい。触媒システムは、反応性を向上するために、100
℃〜350℃の温度まで加熱されることができる。
【0098】
液体流れ383は次に、放出器35に搬送され、放出器はその推進流体38によって駆
動される。放出器35において、第1段の軽い凝縮物液体流れ383は真空圧に置かれ、
真空圧は放出器の推進流体38の供給流れに起因する。第1段の軽い凝縮物流れ383お
よび放出器の推進流体38の混合物である結合液体流れ36が放出器35から出る。この
結合液体流れ36は、冷却熱交換器57へと流れ、冷却される。
【0099】
高温液体流れ36は、熱交換器57において冷却されて、低温液体流れ360となり、
ポンプ137によって圧力を増大させ、放出器35に送られる推進流れ38および第2段
の供給流れ42に分離する。冷却ユニット55は、空気冷却放熱器または液体冷却放熱器
あるいは車両の空調システムなどの他の適切な機構からなる熱排出要素であり、これを介
して、過剰な熱がシステムから除去されることができる。再熱式熱交換器53は、戻り燃
料流れ46から供給流れ32に熱を移動する。戻り流れ46における蒸気のすべては凝縮
されることを保証するために、冷却熱交換器56が含まれる。
【0100】
液体流れ361の一部は、第2段の供給流れ42として第2段の分離器41に進められ
る。図8に示される実施形態において、液体流れ361のごく一部のみが第2段の分離器
41に進められ、大部分は放出器推進流体38として放出器へ流れ込む。放出器推進流体
38として液体流れ361を用いることにより、その気体−液体分離器および二重下流冷
却熱交換器に関して別個の作動流体を用いる必要性を排除する。安定状態の動作において
、気体−液体流れ36の組成は、以下にさらに詳細に説明するように、主に軽い炭化水素
および軽い硫黄化合物である。安定状態の動作において、流体383、36、38および
361の組成は、同一であり、気体−液体流れ36の直接的な凝縮を支援し、凝縮後、放
出器35から出るようになっている。
【0101】
第2段の供給42は、再熱式熱交換器51に進められ、第2段の分離器41に入る高温
の第2段の供給421になる。高温の第2段の供給421の供給流れは、第2段の透過流
れ44および第2段の未透過流れ47に分離される。第2段の分離器41における膜の硫
黄選択性は、第2段の透過流れ44における硫黄化合物の大部分の移動を支援すると同時
に、第2段の未透過流れ47として軽い炭化水素化合物の一部を維持する。第2段の未透
過流れは、吸着型研磨フィルタ床147を通過する。第2段の未透過(流れ)における硫
黄化合物は、吸着型床に捕捉され、その結果、床147に残る流れ148は、きわめて低
い硫黄濃度を有し、次に冷却され、補助燃料供給部としてタンク62に格納される。
【0102】
研磨フィルタは、第1段の透過流れの気相に任意に位置決めされてもよく、100℃〜
350℃の温度まで加熱されてもよい。一実施形態において、研磨フィルタは、選択性お
よび吸収性能を増大するために、H2気体または空気のいずれかをそれぞれ追加すること
によって、硫黄化合物がH2SまたはSO2およびSO3に選択的に変換される触媒を含有
してもよい。H2SまたはSO2およびSO3は次に、研磨フィルタにおいて吸着される。
【0103】
液体燃料における硫黄化合物の複雑さは、上記の解析によって識別された情報および種
によって示され、実際には種の各列挙は、個別の化合物の範囲であってもよい。一般に、
硫黄種は、以下の表Eに示されているように、それらの化学的複雑さおよび沸点特性に基
づいて重なる群に分離されることができる。これらの種の濃度は、特定の燃料および特定
の燃料のために用いられる精製工程および供給原料に基づいて変化する。この変動性が、
補助電力用途のための有効な脱硫工程の開発を困難にする。
【0104】
【表E】


群への硫黄種および化合物の分離


【0105】
図9は、本開示の画期的な脱硫工程およびシステムの全体範囲の概略を示す簡略化した
概念流れ図を提供する。図10、図11、図12、図13および図14は、本開示の工程
およびシステムの複数の異なる実装例を示す。
【0106】
ここで、図9に示される特に簡略化したシステム600に目を向けると、構成要素間の
実線は液相連結を表し、破線は気相連結を表し、熱交換器、冷却器および加熱器は概略図
を簡単にするために省略されている。これらの潜在的な熱統合構成要素の排除は、本開示
の全体範囲を制限することを意図しているのではなく、この時点における説明の分かりや
すくするために過ぎない。
【0107】
タンク601に包含される供給燃料供給部は、本開示の画期的な工程によって補助用途
のために、低硫黄燃料に分離および調整される。処理された低硫黄燃料は、タンク602
に格納される。従来の手法は、硫黄種を除去する吸着剤または吸収剤を固定した床を用い
て、清浄な燃料を分配するが、高濃度の硫黄種に関して、これらの固定床は大きいか、お
よび/または頻繁な交換または再生を必要とし、この簡素な工程を無効化する可能性があ
る。本開示の画期的な工程は、特定の硫黄種を選択的に分離し、それらを主燃料タンク6
01に戻す、および/または分離されなかった硫黄種を反応させて、下流構成要素で容易
に分離されるようにすることによって、この非効率性および無効化を回避する。
【0108】
図9において、タンク601からの液体供給燃料は、分離器604などの第1段の膜分
離器への連結部610を通過する。低沸点燃料が、供給燃料から蒸気として抽出され、連
結部611を介してさらなる処理のために下流構成要素に送られる。この実施形態におい
て、これらの下流工程の1つは、二次分離構成要素608が後に続く気相反応脱硫(RD
S)触媒反応装置607であってもよい。反応性脱硫触媒反応装置607は、連結部62
0を介して触媒(反応装置)607に入る反応物質を用いる。反応物質は、酸素、空気、
過酸化物などの酸化剤、蒸気、又は触媒反応装置607に酸素原子を提供する他のきわめ
て酸化性の強い反応物質であってもよい。これらのRDS技術は、酸素脱硫(ODS)技
術として定義され、気相硫黄種が酸化されて、収着剤床で容易に分離されるSO2および
SO3の(SO(x))化合物を形成する。選択的硫黄酸化(SCO)触媒の実施例は、Eng
elhard CorporationのJ.Lampert著、「J of Powe
r Sources」、(第131巻、1〜2号、2004年5月14日、27〜34頁
)に記載されている。SCO触媒は、ハニカム型モノリスで支持される貴金属触媒である
。SO(x)に関する収着剤/トラップは、単一床または一方がSO3用、他方がSO2であ
る2つの連続床における混合された金属酸化物であることが多い。
【0109】
反応蒸気はまた、水素などの反応物質または他のきわめて還元性の強い反応物質を用い
た還元反応を受けることができる。これらのRDS技術は、水素化脱硫(HDS)技術と
して定義され、気相硫黄種が還元されて、酸化亜鉛などの金属酸化物またはCuO/Zn
O/NiOなどの混合金属酸化物またはTOSPIX94などの遷移金属含浸合活性炭ま
たはゼオライトから構成される収着剤床で容易に分離される硫化水素またはH2Sを形成
する。一般的な気相HDS触媒は、アルミナ上のニッケル‐モリブデンまたはアルミナ上
のコバルト−モリブデンである。
【0110】
二次分離構成要素は、供給混合物における硫黄種の特定のタイプおよび第1段の工程中
に第1段の透過気相611において分離される硫黄種の特定のタイプおよび量に応じて、
気相収着剤床608(吸着剤または吸収剤)および/または膜分離器605および/また
は液相収着剤床606(吸着剤または吸収剤)であってもよい。これらの実施形態のそれ
ぞれは、以下にさらに詳細に記載される。
【0111】
一般に、表Fに定義される硫黄種の群化に対して、第1段の膜工程は、より重い群、た
とえば、群3、群4および群5における種を除去するように設計される。タンク601に
おける供給材料特性(ガソリン、ケロシン、および/またはディーゼル燃料の削減)、第
1段の透過(流れ)611と供給(流れ)610との間の質量流量比に基づき、群3、群
4および群5のすべてを分離する有効性が変化する。上記の表Dに示されているように、
第1段の膜604は、群4および群5の硫黄の除去においてきわめて有効であるが、群3
の硫黄の50ppm以上は依然として残っている。これらの群3の硫黄を除去するために
、部分凝縮器603が下流に配置される。その結果、連結部612において分離される燃
料を表す表Dの軽い凝縮物は、群3の硫黄をほとんど含まず、主に群1および群2の硫黄
からなる。
【0112】
1つの手法は、連結部612においてこの蒸気を凝縮し、第2段の膜反応装置605に
よってそれを処理することである。第2段の透過(流れ)619における群1および群2
の硫黄を分離する有効性に応じて、最後の第3段の収着剤床606は効果的であり、頻繁
すぎる交換または再生サイクルを必要としない可能性がある。この手法は、上述の図1〜
図5に関する説明によってさらに詳細に概略が記載される。第2段の膜工程が群1および
群2の硫黄を分離するほど十分に効果的ではない場合には、RDS触媒607に関する代
替の実施形態が必要とされる。
【0113】
図10は、この脱硫工程システムの1つのさらに詳細な好ましい実施形態500を示し
ている。タンク501における燃料は、連結部531を介してポンプ511に送られ、連
結部532および熱交換器512に送られる。熱交換器512は、連結部533を通過し
て、第1段の膜504に送り込まれる前に、その温度を上昇させる燃料に対して熱を提供
する。熱交換器512において用いられる熱エネルギは、任意の主供給源からの直接的な
熱であってもよく、または主車両エンジンなどの工程の境界の外側のシステムからの再熱
であってもよく、または脱硫工程境界内からの再熱であってもよく、またはこれらの供給
源の任意の組み合わせであってもよい。連結部533における燃料流れは、第1段の分離
器504に入り、燃料が第1段の透過(流れ)534および第1段の未透過流れ550に
分離される。重い硫黄群は、主に第1段の未透過流れ550に分離され、主燃料タンクに
戻される。より軽い硫黄群のみが蒸気透過流れ534に残っている。反応物質は計量して
、連結部560を介してシステム500に供給され、透過(流れ)534と混合し、触媒
507上で反応する。この反応の生成物は、非硫黄炭化水素からさらに容易に分離される
硫黄種である。たとえば、連結部537を通過させることによって、収着剤床508で吸
収または吸着されることができる。これは、低硫黄燃料蒸気流れを生じさせる。低硫黄蒸
気流れは、連結部538を介して収着剤床508から出て、熱交換器515において低硫
黄燃料液体に凝縮される。熱交換器515は、冷却装置、高い高度の航空機からの周辺空
気のような乗り物の外側の冷却熱シンクなどの外部供給源、またはシステム500内の任
意の再熱式冷却供給源またはこれらの供給源の任意の組み合わせによって直接的に冷却さ
れることができる。低硫黄液体炭化水素補助燃料は次に、連結部539を介してポンプ5
16に供給され、連結部540を介して補助燃料格納タンク502にポンプによって送り
込まれる。この実施形態は、透過(流れ)534における軽い硫黄群が触媒507におい
て効果的に反応され、収着剤床508において吸収または吸着される場合には、きわめて
効果的である。
【0114】
供給流れ533に対する透過流れ534の質量比が、システム500において高く、透
過流れ534により重い硫黄群を結果として生じる場合には、部分凝縮器の追加が潜在的
に必要とされる。部分凝縮器513を含む処理システムの好ましい実施形態560が、図
11に示されている。この実施形態560において、気相透過(流れ)534は、熱交換
器513において部分的に凝縮され、連結部535の通過後、分離器509において分離
される。より重い硫黄群を有する凝縮された液体流れは、連結部551および552を介
してポンプ514によって送り込まれ、タンク501に戻される。流れ535の気相留分
は、分離器509によって分離され、連結部536を介してRDS触媒507に送られる
。前の実施形態の場合のように、気相流れ536において残っている硫黄種は、触媒50
7上で連結部560からの反応物質と反応される。これらの硫黄種は、収着剤床508で
さらに効果的に吸着または吸収される硫黄種に変換される。
【0115】
処理システムの別の実施形態570が、図12に示されている。蒸気流れ536におけ
る硫黄種のすべてが、触媒床507で反応され、収着剤床508において分離されるわけ
ではない場合には、液相収着剤床が必要とされる。この実施形態570において、液相収
着剤床506は、補助燃料供給部タンク502の直前に追加され、補助燃料タンク502
に排出される燃料の連結部543を介した供給流れにおいて許容可能であるほど低い硫黄
含有量であることを保証する。それ以外は、図12に示されるシステム570は、図11
に示されるシステム560と同一である。
【0116】
図13に示される処理システムの他の実施形態580において、RDS触媒507の有
効性は、蒸気流れ534におけるより重い硫黄群に制限され、したがって、高いレベルの
軽い硫黄群1および/または2は、上流工程によって分離されず、連結部540における
液体流れに残っている。この場合には、第2段の膜反応装置505は、液相収着剤床50
6に入らないようにこれらの群を最小限に抑えるか、または排除するために効果的に用い
られるられることができる。
【0117】
連結部540における液相燃料は、熱交換器517によって加熱され、連結部541を
介して膜反応装置505に送られる。膜反応装置505において、第2段の透過流れ55
3および第2段の未透過流れ542が分離される。軽い硫黄種は、膜の硫黄選択性に起因
して気相透過流れ553に分離される。この蒸気流れは、熱交換器518において凝縮さ
れ、ポンプ519によってタンク501に送り返される。
【0118】
補助燃料流れは、未透過流れ542である。第2段の反応装置505の性能に基づき、
研磨フィルタ506が必要とされる場合も必要とされない場合もある。低硫黄燃料流れは
次に、連結部543を介して補助格納タンク502に送られる。
【0119】
処理システムの別の実施形態590が、図14に示されている。この実施形態590に
おいて、部分凝縮器513/分離器509および第2段の膜反応装置505の両方が含ま
れる。この実施形態590の分離に関する説明は、この実施形態の特徴は、図11〜図1
3に示された実施形態の特徴から簡単に組み合わせられるために、必要であるとは考えら
れない。
【0120】
図11に提示された構成の妥当性評価が行われ、試験データ以下の表Fに提示される。
水素化脱硫工程に関する水素である反応物質560に関して、2回の試験(18788−
52Aおよび18788−52B)が行われ、触媒507は市販のNiMo型であった。
1回の試験(921−3−4)は、酸化脱硫工程に関する酸素(空気)である反応物質5
60に関して行われ、触媒507は、企業独自の貴金属型触媒であった。3回の試験のす
べての間、収着剤床508は、広い表面積の活性炭型床であった。提示されたデータは、
凝縮後に流れ539における硫黄種の濃度を表している。データは、試験実行18788
−52Aに関して15ppm未満の硫黄濃度を有し、図11に定義された実施形態の硫黄
削減性能を明確に示している。
【0121】
【表F】


RDおよび部分凝縮器(図11)に関する3回の実行による試験データ結果
【0122】
改変、変更および追加は、包含される本明細書における開示の範囲を逸脱することなく
、上記のシステムおよび工程において行われてもよい。したがって、上記の説明に含まれ
るすべての事項は、添付図面に示されているように、説明および例示として解釈すること
を意図している。本開示は、示された実施形態に限定されることを意図しているわけでは
ない。

【特許請求の範囲】
【請求項1】
本願明細書に記載された発明。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2013−100466(P2013−100466A)
【公開日】平成25年5月23日(2013.5.23)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−207825(P2012−207825)
【出願日】平成24年9月21日(2012.9.21)
【分割の表示】特願2008−553226(P2008−553226)の分割
【原出願日】平成18年9月25日(2006.9.25)
【出願人】(508233412)インテリジェント エナジー インコーポレイテッド (5)
【Fターム(参考)】