説明

送液装置

【課題】液の停止・前進を簡便に切り替えることのできるコンパクトな送液装置を提供する。
【解決手段】流路と、液体を前記流路に導入する液受け部と、前記流路内の液体を排出する排出部と、前記排出部内及び/又は前記流路内に設けられた第一の吸収体と、前記第一の吸収体よりも前記液受け部側に設けられた第二の吸収体と、を備え、前記流路と前記液受け部との合計容積をQ0、前記第一の吸収体の吸収可能液容量をQ1、前記第二の吸収体の吸収可能液容量をQ2、前記第一の吸収体の吸収力をF1、第前記二の吸収体の吸収力をF2とするとき、Q1+Q2≧Q0≧Q2及びF1≦F2が成立することを特徴とする送液装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液吸収体を利用した送液装置に関する。
【背景技術】
【0002】
近年、POCT(Point Of Care Testing)に関心が高まっている。POCTは、病院のベッドサイドや家庭など患者に近いところで実施する臨床検査を意味するが、POCTによると、検査結果をすぐに患者治療に活かすことができる。よって、迅速に質の高い治療を施すことが可能となる。このようなPOCTの実現には、簡便な操作で迅速な分析を行うことのできる小型の分析装置が必須となる。
【0003】
免疫分析法は、医療分野、生化学分野、アレルゲンなどの測定分野等において広く使用されている有用な分析法である。しかし、従来の免疫分析法は、大型な機器を必要とする。また、分析操作が煩雑で分析に一日以上の時間を必要とする。このため、従来のままの免疫分析法をPOCTに適用することはできない。
【0004】
この問題を緩和し得るものとして、近年、基板にマイクロオーダーの流路を形成し、流路内に抗体等を固定化したマイクロ分析チップが開発され、実用化されつつある。
マイクロ分析チップは、検液等の溶液をチップ内の反応部や検出部に導き、その溶液を下流側に送液する送液手段を必要とするが、微量の検液を用いて簡単な操作で分析を行うことができ、分析時間の短縮化と装置の小型化を図ることができる。
【0005】
このようなマイクロ分析チップに使用可能な送液方式としては、マイクロポンプを用いて送液する方式、流路と液体との間に生じる毛細管現象(界面張力)を利用して送液する方式、流路の下流側に設置した吸収体の液体吸収力を利用して送液する方式などがある。これらの方式にかかる技術について説明する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−128906号公報
【特許文献2】特開2006−220606号公報
【特許文献3】特開2001−88096号公報
【0007】
特許文献1は、微細加工技術を用いてマイクロポンプを組み込む技術を提案している。マイクロポンプを用いる方式であると、確実な送液が行える。しかし、チップへのマイクロポンプの組み込みに高度で複雑な加工技術を必要とする他、チップ上にマイクロポンプを収容する容積に加えて、マイクロポンプを駆動するための周辺要素の組み込む容積が必要となるので、マイクロ分析チップのコンパクト化を図り難いという問題がある。
【0008】
特許文献2は、毛細管力によって液体を移動させる方式を提案している。この方式は、ポンプを必要としないので、上記特許文献1の方式に比較し、チップのコンパクト化を図り易いという長所がある。他方、送液に毛細管力を利用するこの方式では、流路幅の大小関係が送液を律する重要な要素となるので、流路幅を自由に設定し難く、例えば流路の途中に流路幅の異なる部分を設けると、液の流れが停止したり、流速が不安定になったりするという問題を生じる。
【0009】
特許文献3は、多孔質体等の吸収体の液体吸収力を利用して、マイクロ分析チップの送液を行う方式を提案している。この方式は、下流側に吸収体を配置し、その液体吸収力を利用して送液を行うので上記特許文献2のような問題がない。この方式の詳細を、図13を参照しつつ説明する。
【0010】
図13は、従来技術に係るマイクロ分析チップを示す図であって、図13(a)は平面図、図13(b)は断面図である。また、図14は、図13に示す送液装置に流れる液の状況を説明する図であり、図14(a)〜(f)の順序で、その変化を示している。図14においては、液体が存在する部分を黒色で着色しており、且つ、液の流れを判りやすくするために、流路514を折れ曲がり形状としている。
【0011】
図13(a)、(b)に示すように、マイクロ分析チップは、流路514と、流路514の上流に接続された液受け部512と、流路514の下流に接続された排出部513と、排出部513内に設けられた吸収体530と、を備えている。送液装置は、流路514用の溝、液受け部512用の貫通孔及び排出部513用の貫通孔が設けられた第1基板510と、第1基板510の蓋をする第2基板511と、が重ね合わされている。
【0012】
このマイクロ分析チップの液受け部512から液体が注入されると(図14(a)参照)、毛細管現象によって液体が流路514を移動して、吸収体530に達する。液体が吸収体530に達すると(図14(b)参照)、液体が吸収体530に吸収され、流路を液体が継続的に流れて移送され(図14(c)参照)、吸収体530が完全に液体を吸いきって送液が停止する(図14(d)参照)。
【発明の概要】
【発明が解決しようとする課題】
【0013】
特許文献3の吸収体を用いて液移送する方式は、吸収体の吸収力の範囲内において安定した送液を行うことができるという長所を有する。しかし、上記技術では、液体の前進・停止・前進を制御することできない。
【0014】
マイクロ分析チップを用いて分析を行うには、流路内で所定の反応を行わせる必要があり、このために、反応用溶液、洗浄用溶液、検出用溶液などの複数種類の溶液を選択的に流路内に導入する必要がある。また、導入した溶液の流れを適正に制御する必要がある。例えば、反応用溶液については、反応を十分に進行させるために、反応部位で流れを一時的に停止させるのがよく、洗浄用溶液については、洗浄効果を高めるため、流れを止めず、反応部位や検出部位外まで流すのが好ましいが、特許文献3の技術にかかるマイクロ分析チップでは、このような使い方ができない。このことを、図14を用いて説明する。
【0015】
図14(a)〜(d)において、吸収体530の吸収可能液容量の方が、液受け部512から流路内に導入される液体(第1液)の容量よりも大きい場合、液受け部512から注入されて流路514内に入った第1液は、吸収体530に完全に吸収され、液の移動が停止するが、吸収体530には液体で埋まっていない吸収余力があり、吸収体530の内部や、吸収体530と排出部513の壁面との間に空隙が生じる(図14(d)参照)。この空隙が流路514からマイクロチップ外(排出部513)に空気を排出できる経路となるため、液受け部512から第2液を注入した場合、第2液は流路514内の空気を追い出しながら下流側(排出部513側)に移動する(図14(e)―(f))。
【0016】
この移動における液体の移動終了状態は、第1液を完全に吸収した後における吸収体530の吸収余力、すなわち、〔吸収体530の吸収可能液容量〕−〔第1液の容量〕で表される残存吸収可能液容量によって決まる。
【0017】
残存吸収可能液容量が注入された第2液の容量よりも大きい場合には、流路514に液体が存在しない状態となる(図14(d)と同様な状態)。他方、注入された第2液の容量が残存吸収可能液容量よりも大きい場合には、流路514全体に液体が存在したままの状態となる(図14(f))。また、第2液の容量が残存吸収可能液容量よりも圧倒的に大きい場合には、第2液は殆ど動かない状態となる(図14(e)と同様な状態)。
【0018】
このように、吸収体を用いた従来の送液技術では、分析操作者の意図に関わりなく、流路から液体が流去してしまったり、流路内に液体が溜まったりするため、反応や測定を安定して行い難いという課題を有している。この課題を解消する方法としては、流路内に、マイクロバルブやエレクトロウエッティングバルブまたは光バルブなどの開閉バルブを設けることも考えられる。
【0019】
しかし、マイクロバルブは、上記特許文献1のマイクロポンプにおけると同様、組み込みに高度な加工技術を必要とするほか、駆動要素用のスペースを必要とするため、分析チップ装置のコンパクト化を図り難いという問題がある。他方、エレクトロウエッティングバルブや光バルブは、分析チップ装置のコンパクト化への支障が少ないものの、液流れの停止・前進の制御が一回限りであり、停止から前進へ制御した後に再び液の流れを停止させるという制御ができない。それゆえ複数種類の溶液を選択的に用い、各々の溶液の送液を制御するといった使い方ができないという問題がある。
【0020】
本発明は、上記した各問題点を解消するものである。本発明は、簡単な構造で複数種類の溶液の前進と停止とを制御できるコンパクトなマイクロ分析チップを提供することを目的としている。
【課題を解決するための手段】
【0021】
上記課題を解決するための第1の本発明は、装置内に液体を導入する導入口と、前記導入口より導入された液体を受け止める液受け部と、前記液受け部よりも下流側に液体を流す流路と、前記流路内の液体を排出する排出部と、前記排出部内及び/又は前記流路内に設けられた第一の吸収体と、前記第一の吸収体よりも前記液受け部側に設けられた第二の吸収体と、を備え、前記流路と前記液受け部との合計容積をQ0、前記第一の吸収体の吸収可能液容量をQ1、前記第二の吸収体の収可能液容量をQ2、前記第一の吸収体の吸収力をF1、前記第二の吸収体の吸収力をF2とするとき、Q2≦Q0≦〔Q1+Q2〕およびF1≦F2が成立することを特徴とする。
【0022】
上記構成の作用を、図面を用いて説明する。図1(a)は上記構成にかかる送液装置の平面図、同(b)は断面図である。図2は、この送液装置の送液動作(液の流れ)を説明する図である。
【0023】
上記構成の送液装置の液受け部112に液が注入されると、液の自重や表面張力の作用により、液は流路114を通って下流側に流れ、液の先端が第二の吸収体132に達する。第二の吸収体132に達した液は第二の吸収体132に吸収されるので、液受け部112に注入された液は徐々に下流側に移動する。
【0024】
ここで上記構成では、第二の吸収体132よりも下流側(排出部側)に第一の吸収体131が配置されており、かつ流路114と液受け部112の合計容積Q0が第二の吸収体132の吸収可能液容量Q2以上に設定され、上記Q0が第一の吸収体131の吸収可能液容量Q1と第二の吸収体132の吸収可能液容量Q2との合計容量以下(Q2≦Q0≦〔Q1+Q2〕)に設定されている。更に第二の吸収体の吸収力F2が、第一の吸収体の吸収力F1以上に設定されている。この構成であると、第二の吸収体132の吸収可能液容量Q2以上の容量液を下流側に完全に送液することが可能となる。
【0025】
すなわち、第二の吸収体132の吸収可能液容量Q2以上で、かつ第一の吸収体131の吸収可能液容量Q1と第二の吸収体132の吸収可能液容量Q2との合計容量以下の第1液が送液装置内に導入されると、液は流路114内を進行し先ず第二の吸収体132に吸収される。そして第二の吸収体132の吸液量がQ2に達し、それ以上の液を吸収できない状態になると、第一の吸収体131が第二の吸収体132が吸収できず溢れた液を吸収するようになる。つまり、第二の吸収体132の吸収可能液容量Q2と第一の吸収体131の吸収可能液容量Q1との合計容量までの液を、それぞれの吸収体が段階的に吸収するので、〔Q1+Q2〕の液を送液することができる。
【0026】
例えば、Q2を超えかつ〔Q1+Q2〕以下の容量の第1液を液受け部112から導入すると、液は流路114内を前進し、第二の吸収体132に達し第二の吸収体132と第一の吸収体131とに吸収されるので、流路114内の液が完全に流路外へと移動し、送液動作が停止する(図2(a)〜(c)参照)。
【0027】
ここで、第1液の流入量が第二の吸収体の吸収可能液容量Q1を超える量であるので、送液停止時には、第一の吸収体131と第二の吸収体132の吸収力の差(F1とF2の差)により、第二の吸収体132に液が十分吸収された状態(飽和状態)になり、第二の吸収体132が飽和状態となると、流路114内の空気は、第二の吸収体132を通過することができなくなる。よって、液受け部112に新たな液(第2液)を注入した場合、第2液は下流側に流れることなく、液受け部112内で停止する。すなわち、上記構成の第1の本発明によると、複雑な機構を用いることなく、第2液を液受け部112内で停止させることができる(図2(e)参照)。
【0028】
なお、液受け部112は、液と空気とが置換できる十分な空間があり、導入口から空気を外部に逃がすことができる。よって、第2液を受け入れることができる。
【0029】
次に、上記構成における「吸収可能液容量」および「吸収力」の測定方法を説明する。図16は、「吸収可能液容量」および「吸収力」の測定に用いる装置を示す図である。図16(a),(b)に示すように、導入口を有する導入路612と、排出部613と、導入路612と排出部613とを繋ぐ流路614と、を備え、排出部613内に吸収体収容スペース640が設けられている。当該吸収体収容スペース640に、吸収体収容スペース640と同一サイズの吸収体が設置される。当該吸収体収容スペース640は、直径3mm、高さ5mmとする。また、第1基板610、第2基板611の少なくとも一方は、流路614内部の可視化のために、透明性のある材料を用いる。
【0030】
上記した同一サイズの吸収体とは、吸収体の外側輪郭のサイズが吸収体収容スペース640の内側のサイズと同一(体積も同一)であることを意味する。吸収体が、粉体や粒体からなる場合には、吸収体を密度測定用の容器に充填し、工業会規格TMIAS01015のタップ密度試験法でみかけ密度を測定し、吸収体収容スペース640の容積から吸収体の質量を算出する。算出された質量の吸収体を吸収体収容スペース640の高さと同じ高さまでタッピングを行い充填する。充填された吸収体により「吸収可能液容量」および「吸収力」の測定を行う。
【0031】
測定は、次のようにして行う。導入ロから液体を導入し、吸収体収容スペース640に収容された吸収体が液体を十分に吸収した状態(飽和状態)とする。この際、導入口から導入する液体の容量を、吸収体が吸収可能な容量よりも多くする。導入された液体の進行が完全に停止した段階で、吸収体よりも上流側に残存している液体長を測り、流路断面積に液体長を掛けることにより、残存液容量を計測する。導入液体容量と残存液容量との差から、単に体積当たりの吸収体の吸収可能液容量を算出する。また、流路内を液が進行しているときの最高速度を測定し、これを吸収体の吸収力とする。
【0032】
液の進行速度は、例えば次のようにして求めることができる。導入口から導入する液体に粒径1〜10μmのポリスチレンビーズなどの微粒子を懸濁しておく。また、流路近傍にCCD(Charge Coupled Device)イメージセンサを設置しておく。そして、CCDで流路内のビーズの移動を観察し、その速度を測定する。
【0033】
ここで、吸収体が吸水性ポリマーなどの場合には、吸液により当初の体積が膨張する。よって、吸液により体積膨張する素材を用いる場合には、吸収体収容スペース640の上方に膨張を吸収するスペースを設けておく。
【0034】
膨張を吸収するスペースとしては、吸収体の体積の0.5倍以下または1倍以下とする。
【0035】
上記課題を解決するための第2の本発明は、メイン流路と、前記メイン流路の一方端側に設けられた空気孔と、前記メイン流路に接続された、前記メイン流路に液体を導入する第1導入口を有する第1導入流路と、前記第1導入流路よりも前記空気孔側で前記メイン流路に接続された、前記メイン流路に液体を導入する第2導入口を有する第2導入流路と、前記メイン流路を挟んで前記第1導入流路と対向配置された、前記メイン流路内の液体を排出する排出口を有する排出流路と、前記排出口内及び/又は前記排出流路内に設けられた第1吸収体および前記第1吸収体よりも前記メイン流路側に設けられた第2吸収体と、前記第2の導入流路内に設けられた、停止状態の液体を前進に切り替えることのできるバルブと、を備え、前記第1導入流路及び第1導入口の容積をq1、前記第1吸収体の吸収可能液容量をq1、前記第2吸収体の吸収可能液容量をq2、前記第1吸収体の吸収力をf1、前記第2吸収体の吸収力をf2とするとき、q1≦q0≦〔q1+q2〕及びf1≦f2が成立する、ことを特徴とする送液装置である。
【0036】
この構成の作用を、図面を参照して説明する。図8は平面図であり、図9は送液装置の液の流れを説明するための平面図であり、この構成にかかる送液装置では、バルブ260bのみが必須であり、バルブ260a及び260cは必須でない。なお、図8、9は、実施の形態5の送液装置にかかる図である。
【0037】
上記構成では、第1導入口212aから液が注入されると、液は第1導入流路252を通ってメイン流路251に移動し、メイン流路251の空気孔250側に移動すると共に、メイン流路251から排出流路271に移動して、出口内及び/又は排出流路内に設けられた第2吸収体(図示せず)に達し、第2吸収体に液が吸収されることにより流れが進行する。
【0038】
第2導入流路253には、バルブ260bが設けられているので、このバルブ260bを停止状態としておけば、メイン流路251から第2導入流路253側への液の移動が起こらない。なお、上記説明においては、バルブ260aおよびバルブ260cは開放状態(前進状態)にしてあるものとする。
【0039】
ここで、第1導入流路252と第1導入口212aとの合計容積q0が、第2吸収体の吸収可能液容量q1以上であり、第1および第2の吸収体の吸収可能液容量〔q1+q2〕以下に設定されている。よってq1以上で〔q1+q2〕以下の第1液を送液装置内に導入でき、この範囲内の第1液を送液装置内に導入すると、メイン流路251及び排出流路271内の液が第2吸収体及び第1吸収体に完全に吸収されて、送液が停止する(図9(b)〜(d)参照)。
【0040】
送液停止時には、第1吸収体と第2吸収体の吸収力の差(f1とf2の差)により、第2吸収体に液が十分吸収された状態(飽和状態)になっている。このときには、第2吸収体に空隙なないので、排出流路271内の空気は第2吸収体を通過することができない。よって、第2導入口212bから第2液を注入しても、当該液はメイン流路251から排出流路271に向かうことができない。また、空気孔250からの空気の流入により、第1導入流路に液が残り、この液が空気の移動の蓋をするので、当該液はメイン流路251から第1導入流路252に入ることができない(図9(e)参照)。つまり、第2の本発明構成によると、複雑な機構を用いることなく、第2液をメイン流路271内で停止させることができることになる(図9(f)参照)。
【0041】
上記課題を解決するための第3の本発明は、上記第2の本発明の要素を備え、更に前記第2導入流路よりも前記空気孔側で前記メイン流路に接続された、前記メイン流路に液体を導入する第3導入口を有する第3導入流路と、前記メイン流路を挟んで前記第2導入流路と対向配置された、前記メイン流路内の液体を排出する第2排出口を有する第2排出流路と、前記第2排出口内及び/又は前記第2排出流路内に設けられた第3吸収体と、前記第3吸収体よりも前記メイン流路側に設けられた第4吸収体と、前記第2排出流路内と、前記第3導入流路内と、にそれぞれ設けられた、停止状態の液体を前進に切り替えることのできるバルブと、備え、前記第2導入流路及び第2導入口の合計容積をq5、前記第3吸収体の吸収可能液容量をq3、前記第4吸収体の吸収可能液容量をq4、前記第3吸収体の吸収力をf3、前記第4吸収体の吸収力をf4とするとき、q3≦q5≦〔q3+q4〕及びf3≦f4が成立することを特徴とする送液装置である。
【0042】
上記構成では、上記第2の本発明と同様に、第2液をメイン流路251内で停止させることができる。また、第2導入流路、第2排出流路、第3導入流路、第4吸収体、第3吸収体が、それぞれ、上記第2の本発明の第1導入流路、排出流路、第2導入流路、第2吸収体、第1吸収体と同様に作用するので、第3導入流路から導入する第3液をメイン流路251内で停止させることができる。第3の本発明に係る送液装置には、さらに導入流路や排出流路を設けてもよい。
【0043】
上記した第1〜第3の本発明の送液装置は、液を停止させた状態で反応や検出を行う必要があるマイクロ分析チップに利用することができる。
【発明の効果】
【0044】
上記で説明したように、本発明によると、検出や反応等を行う流路や液受け部内に目的の液を停止させることができる送液装置を実現することができる。本発明に係る送液装置は、簡素な構造であるのにもかかわらず、高い信頼性を持った送液制御が行うことができるので、それを用いたマイクロ分析チップ、分析装置の使い勝手性の向上とコンパクト化に顕著な効果を発揮する。
【図面の簡単な説明】
【0045】
【図1】図1は、実施の形態1に係る送液装置を示す図であって、図1(a)は平面図、図1(b)は断面図である。
【図2】図2は、実施の形態1に係る送液装置の液の流れを説明するための平面図である。
【図3】図3は、実施の形態2に係る送液装置を示す図であって、図3(a)は平面図、図3(b)は断面図である。
【図4】図4は、実施の形態2に係る送液装置の液の流れを説明するための平面図である。
【図5】図5は、実施の形態3に係る送液装置を示す図であって、図5(a)は平面図、図5(b)は断面図である。
【図6】図6は、実施の形態3に係る送液装置の液の流れを説明するための平面図である。
【図7】図7は、実施の形態4に係る送液装置の液の流れを示す図であって、図7(a)は平面図、図7(b)は断面図である。
【図8】図8は、実施の形態5に係る送液装置を示す平面図である。
【図9】図9は、実施の形態5に係る送液装置の液の流れを説明するための平面図である。
【図10】図10は、実施の形態6に係る送液装置を示す平面図である。
【図11】図11は、実施の形態6に係る送液装置の液の流れを説明するための平面図である。
【図12】図12は、実施の形態6に係る送液装置の液の流れを説明するための平面図である。
【図13】図13は、従来技術にかかるマイクロ分析チップを示す図であって、図13(a)は平面図、図13(b)は断面図である。
【図14】図14は、従来技術にかかるマイクロ分析チップの液の流れを説明するための平面図である。
【図15】図15は、界面張力を説明するための図である。
【図16】図16は、吸収体の吸収可能液容量および吸収力の測定に用いる装置を示す図であって、図16(a)は平面図、図16(b)は断面図である。
【発明を実施するための形態】
【0046】
以下に、本発明を実施するための最良の形態を、図面を用いて詳細に説明する。本実施の形態は、上記第1本発明に関するものである。
【0047】
(実施の形態1)
図1は、実施の形態1に係る送液装置を示す図であって、図1(a)は平面図、図1(b)は断面図である。図1(a)、(b)に示すように、実施の形態1に係る送液装置は、流路114と、流路114の上流側に接続された、液体を流路に導入する導入口を備えた液受け部112と、流路114の下流側(液受け部112とは反対側)に接続され、流路114内の空気を排出するための排出部113を有しており、排出部113内及び/又は流路114内に第二の吸収体132と、その下流側に第一の吸収体131がそれぞれ設けられている。
【0048】
〈流路〉
本実施の形態では、第1基板110に設けられた溝と、第1基板110を蓋する第2基板111とが重ね合わされることにより流路114が形成されている。流路114は、互いに対向して配置された基板同士の間に形成された空洞で構成し、または基板内部を掘削した空洞又は管を配置することにより構成することもできる。
【0049】
流路114は、排出部113と、液受け部112と、を接続している。流路が分岐している場合や流路が複数存在する場合においては、排出部に接続された流路を排出流路と称し、導入口に接続された液受け部に相当する部分を導入流路と称する。また、排出流路および導入流路に接続された流路をメイン流路と称する。
【0050】
排出流路、導入流路、メイン流路等は、送液装置に設けられる流路の一部分であって、排出部および液受け部の形態に応じてその形状を変化させる。また、流路114は、好ましくは送液対象である液体を毛細管現象により送液できるものとする。次に毛細管現象による送液について説明する。
【0051】
一般に、流路の断面形状(流路における液体の流れ方向に垂直な断面形状)が円形状で、この流路の壁面(液体が接する表面)が均一(例えば、同一の材料で構成されている)である場合、液体に作用する圧力(毛細管現象による送液の圧力)Pは、気液界面の界面張力をσ、流路壁面の接触角をθ、流路の半径をrとするとき、次の式1で示される。
【0052】
P=2σcosθ/r・・・(式1)
【0053】
式1において、Pが正である場合には、液体は流路内の空間を進むことができ、Pが0又は負である場合には、液体は流路内の空間を進むことができない。ここで、σ、rはともに正の値であるため、毛細管現象により送液する(Pの値を正とする)ためには、流路の表面においてcosθが正である必要がある。つまり、水を溶媒とする液体の場合には、流路面(流路の表面)が親水性であるときに、毛細管現象により液を流すことができることになる。
【0054】
ただし、流路面に疎水性部分が存在していてもよい。親水、疎水の両方の特性が並存する場合は、それぞれの界面張力の和により流路内に生じる毛細管現象が決定されるので、界面張力の和が親水性(cosθが正)となるようにすればよい。
【0055】
ここで、親水性とは、比抵抗が18mΩ・cmよりも大きい純水(25℃)を用いて、1気圧、25℃の条件で測定した接触角が90°未満である場合をいう(図15参照)。疎水性とは、上記純水の接触角が90°以上である場合をいう。ただし、接触角の送液方向に作用する成分である余弦(コサイン)は、90°付近で大きく変動するので、送液機能を安定して確保する観点から、純水に対する接触角が85°以下であることがより好ましく、接触角が75°以下であることがさらに好ましく、接触角が60°以下であることが最も好ましい。
【0056】
また、流路は、毛細管現象が生じる程度の大きさの流路を指す。例えば流路の幅や高さは、0.1μmから10mmであることが好ましく、10μmから1mmであることがより好ましい。
【0057】
〈基板)
基板に用いる材料は、送液装置の目的や用途等に応じて選択すればよく、特に限定されることはない。例えば、光学的な検出を行う場合には光学的な面を考慮し、電気的な検出を行う場合には電気絶縁性を考慮し、溝等の微細加工を必要とする場合には加工し易さを考慮するなど、それぞれの用途に適した材料を選択する。
【0058】
吸収体に吸収させる溶液が水である場合には、第1基板110、第2基板111の少なくとも一方に、親水性の材料を用いるか、又は親水化処理を行うことが好ましい。親水化処理方法としては、例えば、親水処理剤処理やプラズマ処理、UV処理、親水性膜のコーティング、表面粗さの制御等が挙げられる。
【0059】
また、光学的な操作(検出、バルブ等)を行う場合には、基板の少なくとも一方には透明又は半透明の材料を用いることになるが、このような透明または半透明な材料としては、ガラス、石英、熱硬化性樹脂、熱可塑性樹脂、フィルム等が挙げられる。具体的には、シリコン系樹脂、アクリル系樹脂、スチレン系樹脂が、透明性や成型性の観点から好ましい。また、操作用の光による励起発光が特に少ないプラスチック材料として、ポリメチルメタクリレートの水素原子をフッ素原子に置換したフッ化ポリメチルメタクリレート等のフッ素系のプラスチック材料や、触媒や安定剤等の添加剤に非蛍光材料を用いたポリメチルメタクリレート等が挙げられる。
【0060】
また、電気的な操作(検出、バルブ等)を行う場合には、流路や第1基板110、第2基板111の表面に電極を形成する必要があるため、第1基板110又は第2基板111の材料は、電極を形成することが可能な材料を用いる。電極形成が可能な材料としては、ガラス、石英、シリコン等が、生産性、再現性の観点から好ましい。なお、凹凸面に電極を形成することは難しいので、流路用溝等の凹凸が形成されていない基板(本実施の形態では第2基板111)に電極を形成するのが好ましい。
【0061】
第1基板110、第2基板111の厚みは特に限定されない。例えば、0.1〜10mm程度とする。実施の形態1では、第1基板110の厚みを0.5mm、第2基板の厚みを2mmとしている。
【0062】
また、実施の形態1では、第1基板110の厚みが0.5mmであるのに対し、この溝の深さは、50μmの深さで形成されている。この溝の深さは、毛細管現象により送液できる程度の深さであればよく、例えば、5μm〜500μm程度の深さで形成することが好ましい。なお、この溝は、第1基板をエッチング、切削等の機械的な加工、ホットエンボス法、金型成形法等で形成することができる。
【0063】
また、流路114を構成する溝は、その断面形状(液体を送液する方向に対して垂直な面における断面形状)が矩形となるように形成されている。この断面形状は、毛細管現象を生じる流路構造であれば特に限定されるものではなく、例えば、円形状、楕円形状、半円状、逆三角形状等であってもよい。
【0064】
〈液受け部、排出部〉
液受け部112は、外気に開放された導入口を備え、排出部113は、外気に開放された孔を備えている。液受け部112、排出部113は、それぞれ流路112と接続されている。
【0065】
排出部113及び液受け部112は、第1基板に貫通孔を設けることにより形成できる。穴の大きさは、例えば直径0.5mm〜10mmとする。
【0066】
〈吸収体〉
上記排出部内部には、第一の吸収体131と、第二の吸収体132とが、配置されている。第二の吸収体132は、第一の吸収体131よりも上流側(液受け部112側)に配置されている。なお、第二の吸収体132の一部が、流路114内に配置されていてもよいし、そうでなくともよい。
【0067】
第一の吸収体131および第二の吸収体132は、液体を吸収する構造物である。このような構造物としては、繊維、多孔質体、吸水性高分子等の材料およびそれらの材料を含んで形成された構造物等があり、具体的には、コットン等の植物繊維・羊毛等の動物繊維・ガラス繊維・化学繊維等の繊維材料、モレキュラーシーブス(ゼオライト)・炭酸カルシウム・多孔質樹脂・レジストによる微細構造物等の多孔質材料、ポリアクリル酸ナトリウム微粒子等の吸水性ポリマー材料等が挙げられる。
【0068】
吸収体が吸収する溶液の媒体が水である場合は、第一の吸収体131および第二の吸収体132として親水性材料を用いる。材料自体の親水性が低い場合や無い場合には、材料に親水化の処理を行うって親水性度を増したものを用いる。親水化処理としては、例えば、親水処理剤処理やプラズマ処理、UV処理、親水性膜のコーティング、表面粗さの制御等を用いることができる。
【0069】
水以外の溶媒を用いた溶液の場合は、吸収体材料として、当該溶媒に対し親和性を有する材料を用いる。
【0070】
第二の吸収体132の吸収力F2は、第一の吸収体131の吸収力F1よりも大きく構成されている。このような吸収力に差のある構成としては、例えば、第一の吸収体131をコットンで構成し、第二の吸収体132をモレキュラーシーブス(ゼオライト)粉末で構成する。
【0071】
第二の吸収体132は、液保持力が高いことから、多孔質材料や吸水性ポリマー材料を用いることが好ましい。
【0072】
また、第二の吸収体132の吸収可能液容量Q2は、流路114及び液受け部112の容積Q0よりも同等以下に構成されており、第一の吸収体131の吸収可能液容量Q1は、〔Q0−Q2〕よりも大きく構成されている。すなわち、Q0は、〔Q1+Q2〕の同等以下の容積に構成されている。
【0073】
〈吸収体と壁面の関係(1)〉
関係(1)は、第二の吸収体132の外周部の少なくとも一部が、排出部113または流路114の壁面と接している構造の場合である。この構造においては、液体は次のように移動する。
【0074】
液受け部112の導入口から導入された液は、流路114および排出部113壁面を伝わり、第二の吸収体132へ伝わる。その後、第二の吸収体132が吸収し切れない液体が、壁面または両吸収体の界面を伝わり第一の吸収体132に移動し吸収される。この構造では、流路114または排出部113の壁面に働く界面張力による毛細管力とともに、第二の吸収体132の外周部での界面張力による毛細管力も作用するので、壁面に沿って液が移動し易くなり、溶液の伝達が容易に行われる。
【0075】
〈吸収体と壁面の関係(2)〉
関係(1)は、第二の吸収体132の外周部と、排出部113または流路114の壁面との間に空隙を有し、排出部113または流路114の壁面のうち、少なくとも空隙を形成する部分の壁面が親水性である構造の場合である。
【0076】
この構造においては、第二の吸収体132に吸収された液体が蒸発等で減少した場合、第二の吸収体132内又は第二の吸収体132の外周部に空気の通り道ができ、これにより流路系内の空気が流路系外に流れる恐れが生じる。しかしながら、空間を形成する部分の壁面が親水性である構造である場合には、第二の吸収体132と壁面との間に形成される空隙に強い毛細管力が働くので、当該空隙が液体で満たされることになる。この結果、第二の吸収体132と壁面とで形成される空隙を介して流路系内の空気が系外に抜け出ることが防止される。
【0077】
つまり、第二の吸収体132の外周部と、排出部113または流路114の壁面との間に空隙を有する場合であっても、第二の吸収体132を空気の通過を防止する栓として機能させるために、空隙部分の壁面を親水性にすることが好ましい。
【0078】
〈流路と吸収体の配置〉
第二の吸収体132が流路内に存在すると、吸収後の吸収体からの液体の蒸発を防止することができる。よって、第二の吸収体132の一部または全部が流路114内にある構造とするのが好ましい。
【0079】
〈2つの吸収体の配置関係〉
第一の吸収体131と第二の吸収体132は、接触していてもよく、接触していなくてもよい。本実施の形態1では、第一の吸収体131と第二の吸収体132とが接触しているが(図1(b))、この構造であると、第二の吸収体132を通過した液体が直接第一の吸収体131に伝えられるため、第二の吸収体132の吸収力を第一の吸収体131に直接作用させることができる。よって、第一の吸収体131と第二の吸収体132との吸収力の差が小さい場合においても、第二の吸収体132に液を十分吸収させることができるので、好ましい。
【0080】
上記した要素以外の要素について説明する。
【0081】
〈検出部141〉
液受け部112には、その他の要素として、溶液に含まれる特定物質の量を検出する検出部141を設けることができる。例えば検出部が電気化学的な検出手段である場合には、液受け部112に作用電極、参照電極、対向電極が設けられることになる。作用電極、参照電極、対向電極の材料としては、一般的な電極材料でよく、例えば、金、白金、銀、塩化銀、銅、イリジウム、アルミニウム、ITO(インジウム錫酸化物)、ニッケル、チタン、クロムなどを用いることができる。
【0082】
また、作用電極、参照電極、対向電極の形状は、円形、角形状、線状等とでき特に限定されない。その大きさは、検出電流値に応じた大きさを確保するのがよく、例えば円形である場合には外径10μmから10mm程度とし、好ましくは外形0.5mmから5mm程度とする。円形以外の形状の場合も、円形の場合の面積と同程度の面積になるようにするのがよい。
【0083】
検出部がインピーダンスの変化により検出する手段である場合は、例えば液受け部112の底面にインピーダンス検出用の電極を設ける。インピーダンス検出用の電極の材料としては、一般的な電極材料でよく、例えば、金、白金、銀、塩化銀、銅、イリジウム、アルミ、ITO(インジウム錫酸化物)、ニッケル、チタン、クロムなどを用いることができる。
【0084】
検出部が蛍光検出を行う手段の場合は、例えば液受け部112の側面または底面に蛍光検出部を設ける。検出部は、液受け部(注入孔)112内に設けることができる。
【0085】
〈反応部〉
送液装置には、検出部141に代えて、または検出部と共に抗原抗体反応や酵素反応を行う反応部を設けることができる。酵素反応を行う場合は、例えば酵素反応に用いる酵素を液受け部112の側面または底面、または流路内に固定化しておく。また、酵素を含む溶液を反応部にまで流す方法とすることもできる。
【0086】
抗原抗体反応を行う場合は、上記と同様、抗原抗体反応に用いる抗体または抗原を液受け部112内な流路内に固定化しておくことができる。また、抗体または抗原を含む溶液を反応部に流すこともできる。
【0087】
抗原抗体反応や酵素反応を行う反応部の形状については、特に限定されることはない。
【0088】
〈装置の使用方法〉
本実施の形態1にかかる送液装置の使用方法を、図1および図2を用いて説明する。図2は、実施の形態1に係る送液装置の液の流れを説明するための平面図である。本実施の形態に係る送液装置では、液受け部112から液が注入されると(図2(a)参照)、液は流路114を通って第二の吸収体132に達し、第二の吸収体132により液が吸収され、この吸収力により液が流路114を進行する(図2(b)参照)。
【0089】
ここで、第二の吸収体132の吸収可能液容量Q1よりも多く、第二の吸収体132の吸収可能液容量Q1と第一の吸収可能液容量Q2の合計よりも少ない液量が導入されると、第二の吸収体132が飽和状態となるとともに、第二の吸収体132の吸収可能液容量Q1を超えた溶液が第一の吸収体131に吸収され、この段階で送液が停止する(図2(c)参照)。
【0090】
送液停止時には、第一の吸収体131と第二の吸収体132の吸収力の差(F1とF2の差)により、第二の吸収体132に液が十分吸収された状態(飽和状態)になる。第二の吸収体132に十分に液が吸収された状態では、流路114内の空気が第二の吸収体132を通過することができないため、次の液を液受け部112の導入口から注入した場合(図2(d)参照)、液が下流側(排出部113側)に流れない。
【0091】
他方、液受け部112は、導入口が外に開放されており、液と空気が置換できる余裕空間が設けてあるので、第2液を液受け部112内に注入でき、かつ注入された第2液にはそれ以上の送液力が働かない(吸収体132により蓋されている)ので、液受け部112内に停止することになる(図2(e)参照)。
【0092】
吸水性ポリマー材料よって、液受け部112内に検出部や、酵素反応、抗体反応等を行う反応部を設ける構造とすると、検出部や反応部に液を留め置けるので、信頼性の高い検出や反応を行うことができることになる。
【0093】
(実施の形態2)
実施の形態2は、上記実施の形態1の変形例である。実施の形態2に係る送液装置について、図3〜4を参照しつつ説明する。図3は、本実施の形態に係る送液装置を示す図であって、図3(a)は平面図、図3(b)は断面図であり、図4は、本実施の形態に係る送液装置の液の流れを説明するための平面図である。
【0094】
実施の形態2では、2つの排出部113、115を設け、下流側の排出部113に第一の吸収体131を、上流側の排出部115に第二の吸収体132をそれぞれ封入した形態をとっている。これら以外については、上記実施の形態1と同様であり、2つの排出部113、115は、上記実施の形態1の排出部と同様でよい。
【0095】
実施の形態2によっても、上記実施の形態1と同様の効果が得られる。
【0096】
(実施の形態3)
実施の形態3は、上記実施の形態1のさらなる変形例である。実施の形態3に係る送液装置について、図5〜6を参照して説明する。図5は、実施の形態3に係る送液装置を示す図であり、図6は、本実施の形態に係る送液装置の液の流れを説明するための平面図である。
【0097】
本実施の形態は、実施の形態1の流路114内に、液の停止を前進に切り替えることのできるバルブ160が存在することが特徴であり、これ以外は上記実施の形態1と同様である。
【0098】
バルブが設けられていると、第1液を流路(メイン流路)内で停止させることが可能となり、例えば第1液に目的物質と、当該目的物質と競合的に反応する、標識付き目的物質を含む液を流し、液を停止させた状態で反応させ、その後第2液として洗浄液を流し、標識付き目的物質の量を検出することにより、目的物質の量を検出する装置(検出装置)として利用できる。
【0099】
上記バルブとしては、エレクトロウエッティングバルブ、光バルブが使用できる。また、流路壁面の一部に疎水性部分を設け、かつ流路の上流側に押圧可能部位を設け、外部より圧力を加えることよって流路内の液体を、疎水性部分を越えて送り出す構造とすることができる。また、流路壁面に設けられた疎水性部分と、これよりも上流側の流路内に液体を電気分解して泡を発生させる電極部を備え、電気分解による泡の圧力で液体を、疎水性部分を越えさせる構造とすることができる。
【0100】
上記エレクトロウエッティングバルブは、電圧を印加しない状態では疎水性であり、電圧の印加により、電極表面の接触角が親水側に変化させることにより停止していた溶液を前進させる方式のバルブである。このような、エレクトロウエッティングバルブは、液の停止・前進を切り替える作用電極と、参照電極と、を備える構成とする。作用電極および参照電極の材料は、特に限定されるものではなく、一般的な導電性の材料を用いることができる。例えば、金、白金、銀、塩化銀、銅、イリジウム、アルミニウム、ITO(インジウム錫酸化物)、ニッケル、チタン、クロムなどが使用できる。
【0101】
また、作用電極の表面には、液の停止機能を確保するために、例えばテトラフルオロエチレン膜等の疎水性膜や、電極用金属の自然酸化膜等の親水性のきわめて低い膜を設けておく。
【0102】
上記光バルブとしては、光触媒(酸化チタン等)と、光触媒により分解される疎水性有機物と、をバルブとなる部分に形成したものが例示できる。このような光バルブでは、光触媒に反応する紫外線などの光を照射することにより、光触媒が反応して疎水性有機物が分解されて接触角が低下する結果、停止していた溶液が前進に切り替わることになる。
【0103】
上記光バルブ用の光触媒膜は、第2基板111にスパッタリング法およびリフトオフ法などにより、酸化チタン膜をパターニングすることにより形成できる。また、チタン膜を同様に成膜し、その後に熱処理や化学処理等を行い、チタン膜を酸化させて酸化チタン膜とする方法を用いてもよい。酸化チタンの初期状態の疎水性を向上させるためには、有機単分子膜等を酸化チタン表面に形成することが好ましく、オクタデシルトリクロロシランなどを用いることができる。また。第1基板110には光触媒と反応する光が透過する材料を用いる。
【0104】
本実施の形態3によっても、上記実施の形態1と同様の効果が得られるとともに、本実施の形態ではバルブ160により流路114内で液を停止させることができるので、第1液についても液の流れを停止させ反応や検出を行うことが可能になる。
【0105】
(実施の形態4)
実施の形態4は、上記実施の形態1のさらなる変形例である。実施の形態4に係る送液装置について、図7を参照して説明する。図7は、本実施の形態に係る送液装置を示す図であって、図7(a)は平面図、図7(b)は断面図である。
【0106】
実施の形態4は、第一の吸収体131が排出口113内に封入されており、第二の吸収体132が流路内に封入されていることを特徴とする。その他の形態は実施の形態1と同様である。第二の吸収体132が接している流路114の内壁180は親水処理により親水化されている。親水化の方法は、実施の形態1に記載した方法を用いることができる。
【0107】
図7において第二の吸収体132に吸収された液体が蒸発等で減少した場合、第二の吸収体132内又は第二の吸収体132の外周部に空気の通り道ができる恐れがある。然るに第二の吸収体132が接している流路114の内壁180が親水処理され親水化されている構造であると、液体が流路114から排出される際に、第二の吸収体132と壁面で形成される空隙に強い毛細管力が働き、当該空隙に液が留まり易くなる。それゆえ、第二の吸収体132と壁面で形成される隙間が液体で埋まり、空気の通り道が遮断される。
【0108】
以上から、実施の形態4であると、Q2≦Q0≦〔Q1+Q2〕およびF1≦F2の要件と、この要件とが相まって、第1液を前進させた後、第2液を停止させる動作を確実に行わせることができる。
【0109】
(実施の形態5)
実施の形態5は、上記第2の本発明にかかる実施の形態である。実施の形態5の送液装置について、図8〜図9を参照して説明する。図8は、実施の形態5の送液装置を示す平面図であり、図9は液の流れを説明するための平面図である。
【0110】
本実施の形態にかかる送液装置は、メイン流路251と、メイン流路251の一方端側に設けられた空気孔250と、メイン流路250に接続され、メイン流路に液体を導入する第1導入口212aを有する第1導入流路252と、第1導入流路252よりも空気孔250側でメイン流路251に接続され、メイン流路251に液体を導入する第2導入口212bを有する第2導入流路253と、メイン流路251を挟んで第1導入流路252と対向配置された、メイン流路251内の液を排出する排出口213を有する排出流路271と、を備えている。
【0111】
また、第1導入流路252とメイン流路251との境界、第2導入流路253とメイン流路251との境界、排出流路271とメイン流路251との境界には、それぞれ停止状態の液体を前進に切り替えることのできるバルブが設けられている。
【0112】
また、排出口213内及び/又は排出流路271内には、第1吸収体(図示せず)と、第1吸収体よりもメイン流路251側に設けられた第2吸収体(図示せず)と、が設けられている。なお、第2吸収体の吸収力は、第1吸収体の吸収力以上となっている。
【0113】
また、メイン流路251には、検出部241が設けられている。また、第1導入流路252と第1導入口212aとの合計容積が、第2吸収体の吸収可能液容量よりも大きく構成されている。
【0114】
第1導入流路252、第2導入流路253、メイン流路251、排出流路271は、実施の形態1の流路114と同様な材質、形状とすることができる。
【0115】
また、空気孔250は、上記実施の形態1の排出部と同様であり、バルブ260a〜260cは、上記実施の形態3と同様である。
【0116】
また、基板の材質、吸収体、吸収体と壁面との関係、排出流路と吸収体の配置、2つの吸収体の配置関係、検出部、反応部などの条件は、上記実施の形態1と同様である。
【0117】
本実施の形態5に係る送液装置の液の流れを図8、図9に基づいて説明する。第1液を第1導入口212a、第2液を第2導入口212bに溶液を導入すると、第1導入流路252および第2導入流路253に溶液が進入するが、バルブ260a、260bが閉じられているためここで停止する(図9(a)参照)。
【0118】
第1導入流路252のバルブ260aを開けると、溶液はメイン流路251に進み、空気孔250側に移動してメイン流路251内に第1液が満たされる(図9(b)参照)。このとき、バルブ260b,260cを閉じておく。これにより、第1液の第2導入流路253や排出流路271側への移動が防止される。
【0119】
次に、排出流路271に繋がるバルブ260cを開けると、第1液が排出流路271の方向へ進み、第2吸収体及び第1吸収体により溶液が吸収され、第1導入流路252およびメイン流路251の溶液が排出される(図9(c)、(d)参照)。このとき、第1導入流路252の溶液は、空気孔250から進入した空気により分断されるため、第1導入流路252に一部の溶液が残る(図9(e)参照)。
【0120】
次に、第2導入流路253のバルブ260bを開けると、第2液はメイン流路251に進み、空気孔250側へ第2液が進む(図9(f)参照)。このとき、第2吸収体が飽和状態であるので、上記実施の形態1と同様の作用により、排出流路271側に溶液は移動できない。また、第1導入流路252に残存した溶液により、第2液は第1導入流路252側に移動できない。よって、第2液をメイン流路251内で停止させることができる。
【0121】
以上から、メイン流路251内に検出部241を設けることで、複数の溶液を送液する検出装置が実現できる。
【0122】
なお、上記検出部241に代えて、又は検出部241とともに、反応を行う反応部を設けることができる。
【0123】
(実施の形態6)
実施の形態6に係る送液装置について、図10〜図12を参照して説明する。実施の形態6は、上記第3の本発明にかかる実施の形態である。図10は、本実施の形態に係る送液装置を示す平面図であり、図11、図12は、本実施の形態に係る送液装置の液の流れを説明するための平面図である。
【0124】
本実施の形態にかかる送液装置は、メイン流路251と、メイン流路251の一方端側に設けられた空気孔250と、メイン流路250に接続され、メイン流路に液体を導入する第1導入口212aを有する第1導入流路252と、第1導入流路252よりも空気孔250側でメイン流路251に接続され、メイン流路251に液体を導入する第2導入口212bを有する第2導入流路253と、第2導入流路253よりも空気孔250側でメイン流路251に接続され、メイン流路251に液体を導入する第3導入口212cを有する第3導入流路254と、メイン流路251を挟んで第1導入流路252と対向配置された、メイン流路251内の液を排出する第1排出口213aを有する第1排出流路271と、メイン流路251を挟んで第2導入流路253と対向配置された、メイン流路251内の液体を排出する第2排出口213bを有する第2排出流路272と、を備えている。
【0125】
また、第1導入流路252とメイン流路251との境界、第2導入流路253とメイン流路251との境界、第3導入流路254とメイン流路251との境界、第1排出流路271とメイン流路251との境界、第2排出流路272とメイン流路251との境界には、それぞれ停止状態の液体を前進に切り替えることのできるバルブ260a〜260eが設けられている。
【0126】
また、第1排出口213a内及び/又は第1排出流路271内には、第1吸収体(図示せず)と、第1吸収体よりもメイン流路251側に設けられた第2吸収体(図示せず)と、が設けられ、第2排出口213b内及び/又は第2排出流路272内には、第3吸収体(図示せず)と、第3吸収体よりもメイン流路251側に設けられた第4吸収体(図示せず)と、が設けられている。そして、第2吸収体の吸収力は、第1吸収体の吸収力以上となっており、且つ、第4吸収体の吸収力は、第3吸収体の吸収力以上となっている。
【0127】
また、メイン流路251には、検出部241が設けられている。また、第1導入流路252と第1導入口212aとの合計容積は、第2吸収体の吸収可能液容量よりも大きく構成され、且つ、第2導入流路253と第2導入口212bとの合計容積が、第4吸収体の吸収可能液容量よりも大きく構成されている。
【0128】
第1導入流路252、第2導入流路253、第3導入流路254、メイン流路251、第1排出流路271、第2排出流路272は、上記実施の形態1の流路114と同様に形成することができる。
【0129】
第1導入流路252、第2導入流路253、第3導入流路254、メイン流路251、第1排出流路271、第2排出流路272は、実施の形態1の流路114と同様に形成することができる。
【0130】
空気孔250は、上記実施の形態1の排出部と同様である。また、バルブ260a〜260eは、上記実施の形態3と同様である。
【0131】
基板材料、吸収体、吸収体と壁面の相互関係、第1排出流路と第2吸収体の配置、第1吸収体と第2吸収体の配置関係、検出部、反応部は、上記実施の形態1と同様である。
【0132】
また、第3吸収体と第4吸収体の配置関係や、第2排出流路と第4吸収体の配置吸収体の配置は、第1吸収体と第2吸収体の配置関係、第1排出流路と第2吸収体の配置吸収体の配置と、それぞれ同様とする。
【0133】
本実施の形態に係る送液装置の液の流れを説明する。第1導入口212aに第1液、第2導入口212bに第2液、第3導入口212cに第3液をそれぞれ導入すると、第1導入流路252、第二の溶液導入流路253、第3導入流路254にそれぞれ液が進入し、バルブ260a〜260cで停止する(図11(a)参照)。
【0134】
次に、第1導入流路252のバルブ260aを開けると、第1液はメイン流路251に進み、メイン流路251が溶液で満たされる(図11(b)参照)。このとき、バルブ212b〜212eは閉じられているので、第2導入流路253、第3導入流路254、第1排出流路271、第2排出流路272側に液が移動することはない。
【0135】
次に、第1排出流路271に繋がるバルブ260dを開けると、液が第1排出流路271の方向へ進み、第一の排出口213aに設けられた第2吸収体(図示せず)および第1吸収体(図示せず)により溶液が吸収され、第一導入流路271及びメイン流路251の溶液が排出される(図11(c)、(d)参照)。
【0136】
第1導入流路252内の液は、空気孔250から進入した空気により分断されるため、第1導入流路252に一部の溶液が残る(図12(a)参照)。
【0137】
次に、第2導入流路253のバルブ260bを開けると、第2液はメイン流路251に進み、空気孔250側へ溶液が進む(図12(b)参照)。このとき、バルブ212c、212eは閉じられているので、第3導入流路254、第2排出流路272側に液が移動することはない。そして上記実施の形態5と同様の作用により、排出流路271側及び第1導入流路252側に移動できないので、第2液をメイン流路251内で停止させることができる。
【0138】
次に、第2排出流路272のバルブ260eを開けると、第2液が第2排出流路272の方向へ進み(図12(c)参照)、第2排出口213bに設けられた第4吸収体(図示せず)および第3吸収体(図示せず)により溶液が吸収され、第2導入流路253およびメイン流路251の溶液が排出される(図12(d)参照)。
【0139】
第2導入流路253の溶液は、空気孔250から進入した空気により分断されるため、第2導入流路253に一部の溶液が残る(図12(e)参照)。
【0140】
次に、第3導入流路254のバルブ260cを開けると、液はメイン流路251に進み、空気孔250側へ溶液が進む(図12(f)参照)。このとき、第2吸収体及び第4吸収体が飽和状態であり、且つ、第1導入流路252及び第2導入流路253には溶液が残存しているので、上記と同様に、溶液は第1導入流路252、第2導入流路253、第1排出流路271、第2排出流路272側に移動できない。よって、第3液をメイン流路251内で停止させることができる。
【0141】
以上から、実施の形態6によると、メイン流路251内に設けた検出部241に、複数の溶液を順次送液することのできる検出装置を実現できる。
【0142】
なお、検出部241に代えて、又は検出部241とともに、反応を行う反応部を設けることができる。例えば、メイン流路251に抗体を固定した反応部と検出部241とが設けられている場合、第1導入流路252から測定対象となる抗原と酵素標識抗原を含む液、第2導入流路253から洗浄液、第3導入流路254から基質を含む液を流すと、液が停止されることにより安定した抗原抗体反応と酵素基質反応とを行うことができ、酵素基質反応による生成物を検出部で検出することができる。
【0143】
(実施例1)
本発明を、実施例を用いてさらに説明する。実施例1に係る送液装置の基本構造は、上記実施の形態1と同様である。図1を参照して実施例1の送液装置を更に具体的に説明する。
【0144】
第1基板110への流路の溝の形成は、金型を用いた樹脂成型法により行った。金型は、シリコン基板にフォトリソ法でレジストパターンを形成後、ドライエッチングプロセス法によりエッチングを行って作製した。流路114の幅は600μm、流路114の高さは50μm、流路114の長さは15mmとした。
【0145】
作製された金型に型枠を設け、シリコンゴム(ポリジメチルシロキサン、東レダウコーニング社製 ジルポット184)を厚みが2mmになるまで流し込み、100℃、15分の加熱を行い、硬化させた。硬化後、金型と硬化したシリコンゴムを分離させた。
【0146】
次いで、シリコンゴムを縦20mm、横10mm、厚み2mmに整形し、液受け部112になる孔、排出部113になる孔として、直径2mmの貫通孔をポンチを用いて開け、第1基板110を作製した。作製した第1基板110の表面に、TWEEN20(GEヘルスケアジャパン製)を塗布し、100℃で5分間乾燥させた。
【0147】
第2基板111は、厚み600μmのテンパックスガラス基板をダイシングソーで縦25mm、横15mmに切断して作製した。
【0148】
第一の吸収体131としては、不織布(旭化成せんい製BEMCOT(登録商標))を直径2mmにカットしたものを用意し、第二の吸収体132には、モレキュラーシーブス3A(和光純薬製)を粉砕したものを用意した。
【0149】
作製した第1基板と第2基板とを重ね合わせ、排出部113の穴に第二の吸収体132及び第一の吸収体131を充填し、実施例1にかかる送液装置を作製した。
【0150】
上記実施例1に係る送液装置について、液体を流す試験を行った。液体としてリン酸緩衝液を用い、リン酸緩衝液を液受け部112に滴下した。すると、リン酸緩衝液は毛細管現象により送液装置内の流路114に入った。そして流路114内の液体は、第二の吸収体132、第一の吸収体131の順で吸収が行なわれ、液受け部112の導入口から空気が進入して、流路114内のリン酸緩衝液が流路114から完全に排出された。
【0151】
次いで、第2液としてのリン酸緩衝液を液受け部112の導入口に滴下したところ、当該溶液は流路114に進入することなく液受け部112内に停止していた。
【0152】
(比較例1)
比較例として、第二の吸収体を用いないこと、第一の吸収体の吸収可能液容量が、第1液と第2液の合計液量以上且つ液受け部112と流路114の合計容積以上としたこと以外は、上記実施例1と同様な送液装置を作製した。
【0153】
比較例にかかる送液装置について、液体を流す実験を、上記実施例1と同様の方法で行った。
【0154】
比較例1では、リン酸緩衝液を液受け部112に滴下すると、毛細管現象により送液装置内の流路114に溶液が入った。次いで、流路114内の液体は第一の吸収体131に吸収され、液受け部112から空気が進入し、流路114内の溶液が完全に第一の吸収体131に吸収されて、流路114から液が排出された。
【0155】
この後、第2液としてのリン酸緩衝液を液受け部112に滴下すると、当該溶液が流路114に進入し、第一の吸収体131に液が完全に吸収されて、流路114内の溶液が完全に排出された。
【0156】
以上より、実施例1では第2液の溶液が液受け部112に留まってそれ以上進行しなかったのに対し、比較例1では第2液の溶液が完全に排出されるのが確認された。すなわち、実施例1の送液装置は、第2液の流れを停止させて、液受け部112に留めおくことができることが確認された。
【0157】
なお、上記の実施の形態1〜6で示した種々の特徴を、組み合わせた構成の送液装置としてもよいことは勿論である。
【産業上の利用可能性】
【0158】
以上に説明したように、本発明によると、簡単な構造でもって簡便な操作で液の停止・前進を切り替えることのできるコンパクトな送液装置を実現できる。このような送液装置は、チップ内で反応や検出を行うマイクロ分析チップとして利用可能であり、本発明の産業上の利用可能性は大きい。
【符号の説明】
【0159】
110 第1基板
111 第2基板
112 液受け部
113 排出部
114 流路
115 排出部
131 第一の吸収体
132 第二の吸収体
141 検出部
160 バルブ
180 流路の内壁
210 第1基板
211 第2基板
212 導入口
213 排出口
215 吸収体用の穴
231 第1吸収体
232 第2吸収体
241 検出部
252、253、254 導入流路
250 空気孔
251 メイン流路
260 バルブ
271、272 排出流路
280 流路の内壁
510 第1基板
511 第2基板
512 液受け部
513 排出部
514 流路
530 吸収体
610 第1基板
611 第2基板
612 液受け部
613 排出部
614 流路
640 吸収体収容スペース

【特許請求の範囲】
【請求項1】
装置内に液体を導入する導入口と、
前記導入口より導入された液体を受け止める液受け部と、
前記液受け部よりも下流側に液体を流す流路と、
前記流路内の液体を排出する排出部と、
前記排出部内及び/又は前記流路内に設けられた第一の吸収体と、前記第一の吸収体よりも前記液受け部側に設けられた第二の吸収体と、を備え、
前記流路と前記液受け部との合計容積をQ0、前記第一の吸収体の吸収可能液容量をQ1、前記第二の吸収体の収可能液容量をQ2、前記第一の吸収体の吸収力をF1、前記第二の吸収体の吸収力をF2とするとき、
Q2≦Q0≦〔Q1+Q2〕およびF1≦F2が成立する、
ことを特徴とする送液装置。
【請求項2】
請求項1に記載の送液装置において、
前記液受け部には、検出を行う検出部又は反応を行う反応部が設けられている、
ことを特徴とする送液装置。
【請求項3】
請求項1又は2に記載の送液装置において、
第二の吸収体の外周部の少なくとも一部が、前記排出部または前記流路の壁面と接している、
ことを特徴とする送液装置。
【請求項4】
請求項1又は2に記載の送液装置において、
前記第二の吸収体の外周部と、前記排出部または前記流路の壁面との間に空間を有し、前記排出部または前記流路の壁面のうち、少なくとも前記空間を形成する部分の壁面が親水性である、
ことを特徴とする送液装置。
【請求項5】
請求項1ないし4のいずれか1項に記載の送液装置において、
第二の吸収体の一部または全部が前記流路内にある、
ことを特徴とする送液装置。
【請求項6】
請求項1ないし5のいずれか1項に記載の送液装置において、
前記流路の壁面の少なくとも一部が親水性である、
ことを特徴とする送液装置。
【請求項7】
請求項1ないし6のいずれか1項に記載の送液装置において、
前記第一の吸収体と前記第二の吸収体とが接触している
ことを特徴とする送液装置。
【請求項8】
請求項1ないし7のいずれか1項に記載の送液装置において、
前記流路内に、停止状態の液体を前進に切り替えることのできるバルブが設けられている、
ことを特徴とする送液装置。
【請求項9】
メイン流路と、
前記メイン流路の一方端側に設けられた空気孔と、
前記メイン流路に接続された、前記メイン流路に液体を導入する第1導入口を有する第1導入流路と、
前記第1導入流路よりも前記空気孔側で前記メイン流路に接続された、前記メイン流路に液体を導入する第2導入口を有する第2導入流路と、
前記メイン流路を挟んで前記第1導入流路と対向配置された、前記メイン流路内の液体を排出する排出口を有する排出流路と、
前記排出口内及び/又は前記排出流路内に設けられた第1吸収体および前記第1吸収体よりも前記メイン流路側に設けられた第2吸収体と、
前記第2の導入流路内に設けられた、停止状態の液体を前進に切り替えることのできるバルブと、を備え、
前記第1導入流路及び第1導入口の容積をq1、前記第1吸収体の吸収可能液容量をq1、前記第2吸収体の吸収可能液容量をq2、前記第1吸収体の吸収力をf1、前記第2吸収体の吸収力をf2とするとき、
q1≦q0≦〔q1+q2〕及びf1≦f2が成立する、
ことを特徴とする送液装置。
【請求項10】
請求項9記載の送液装置において、
前記第2導入流路よりも前記空気孔側で前記メイン流路に接続された、前記メイン流路に液体を導入する第3導入口を有する第3導入流路と、
前記メイン流路を挟んで前記第2導入流路と対向配置された、前記メイン流路内の液体を排出する第2排出口を有する第2排出流路と、
前記第2排出口内及び/又は前記第2排出流路内に設けられた第3吸収体と、前記第3吸収体よりも前記メイン流路側に設けられた第4吸収体と、
前記第2排出流路内と、前記第3導入流路内と、にそれぞれ設けられた、停止状態の液体を前進に切り替えることのできるバルブと、をさらに備え、
前記第2導入流路及び第2導入口の合計容積をq5、前記第3吸収体の吸収可能液容量をq3、前記第4吸収体の吸収可能液容量をq4、前記第3吸収体の吸収力をf3、前記第4吸収体の吸収力をf4とするとき、q3≦q5≦〔q3+q4〕及びf3≦f4が成立する、
ことを特徴とする送液装置。
【請求項11】
請求項9又は10に記載の送液装置において、
前記メイン流路内であって、前記第2導入流路よりも前記空気孔側に、検出を行う検出部及び/又は反応を行う反応部が設けられている、
ことを特徴とする送液装置。
【請求項12】
請求項9、10又は11に記載の送液装置において、
第2吸収体の外周部の少なくとも一部が、前記排出流路または前記排出口の壁面と接している、
ことを特徴とする送液装置。
【請求項13】
請求項9、10又は11に記載の送液装置において、
前記第2吸収体の外周部と、前記排出口または前記排出流路の壁面との間に空間を有し、前記排出口または前記排出流路の壁面のうち、少なくとも前記空間を形成する部分の壁面が親水性である、
ことを特徴とする送液装置。
【請求項14】
請求項9ないし13のいずれか1項に記載の送液装置において、
第2吸収体の一部または全部が前記排出流路内にある、
ことを特徴とする送液装置。
【請求項15】
請求項9ないし14いずれか1項に記載の送液装置において、
前記第1の導入流路、前記第2の導入流路、前記メイン流路及び前記排出流路の壁面の少なくとも一部が親水性である、
ことを特徴とする送液装置。
【請求項16】
請求項9ないし15のいずれか1項に記載の送液装置において、
前記第1の排出流路内に、停止状態の液体を前進に切り替えることのできるバルブが設けられている、
ことを特徴とする送液装置。
【請求項17】
請求項8又は9に記載の送液装置において、
前記バルブが、エレクトロウエッティングバルブである、
ことを特徴とする送液装置。
【請求項18】
請求項8又は9に記載の送液装置において、
前記バルブが、光バルブである、
ことを特徴とする送液装置。
【請求項19】
請求項8又は9に記載の送液装置において、
前記バルブは、前記流路壁面に設けられた疎水性部分と、前記疎水性部分よりも上流側に設けられた押圧可能部位と、を備え、外部より圧力を加えることよって流路内の液体を前記疎水性部分を越えて送り出す構造である、
ことを特徴とする送液装置。
【請求項20】
請求項8又は9に記載の送液装置において、
前記バルブは、前記流路壁面に設けられた疎水性部分と、前記疎水性部分よりも上流側に設けられた電極部と、を備え、電気分解による泡の圧力で液体を、前記疎水性部分を越えさせる構造である、
ことを特徴とする送液装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2012−112724(P2012−112724A)
【公開日】平成24年6月14日(2012.6.14)
【国際特許分類】
【出願番号】特願2010−260455(P2010−260455)
【出願日】平成22年11月22日(2010.11.22)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】