説明

透過型電子顕微鏡の試料を位置決めするための電動マニピュレーター

【課題】
公知のマニピュレーターの問題は、部品及び連結の数が膨大で、それらを極めて高精度に機械加工しなければならないことである。
【解決手段】
本発明によるマニピュレーターは:
ベースに据付ける少なくとも3個のナノアクチュエーター、ここで各ナノアクチュエーターは先端を有し、少なくとも3個の先端はY−Z平面を定義し、各先端はベースに対してY−Z平面において移動することができ;
ナノアクチュエーターの先端に接触するプラットフォーム;及び
プラットフォームをナノアクチュエーターの先端に対して押し付けるクランプ手段;
を更に含むことを特徴とし、結果としてナノアクチュエーターはプラットフォームをベースに対してY−Z平面において回転させることができ、かつ、プラットフォームをY−Z平面に平行に移動させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、サブミクロン解像度でY−Z平面に平行に部品を位置決めするための、及び、部品をY−Z平面で回転させるための、電動マニピュレーターに関する。マニピュレーターは、ベース及び、部品をマニピュレーターに取り付けるための手段を含む。
【背景技術】
【0002】
技術分野に記載のマニピュレーターの一例は特許文献1に記載されている。
【0003】
この周知のマニピュレーターは、透過型電子顕微鏡(以下「TEM」という。)で試料の形態を取る部品を、位置を決め方向を決めるために用いる。このマニピュレーターは、マニピュレーターを据付けるTEMのハウジングを突き抜ける、支持アームのハウジングを含む。支持アームのハウジングの一端は、それにより装置の内部に位置し、従って周囲は真空である。他方、もう一端は大気に曝されている。漏出を防ぐために、支持アームのハウジングはOリングシールを有し、それがTEMのハウジングを貫通し、それによりTEMの内部を大気から密閉する。
【0004】
支持アームのハウジングは端から端まで穴を有する。この穴に試料保持器を据付ける。試料保持器は、両端の間にボールジョイントが位置するロッドを含む。一端はTEMの真空中に位置し、他方もう一端は大気に曝されている。ボールジョイントは支持アームのハウジングの穴に密接に適合し、Oリングシールを有し、それによりTEMの内部を大気から密閉する。ボールジョイントにより、ロッドが支持アームのハウジングに対して様々な自由度で動くことができる。TEMの内部のロッドの端は、試料を置くTEM試料グリッドを保持するように備え、他方もう一端は電動駆動部に接続される。真空中に位置するロッドの遠位端をX−Y平面(TEMの粒子ー光軸に垂直である)で動かすことにより、その平面で試料保持器を平行移動させることになり、他方そのロッドを軸に沿って回転させることにより、その平面で試料保持器を回転させることになる。これによりTEMの内部に位置する試料の位置と向きとを、外部から電動駆動部により定めることが可能になる。
【0005】
当業者には周知の通り、TEMは電子の形態の粒子のビームを用いる。電子ビームは、典型的には80keVと30keVとの間のエネルギーを有し、粒子―光軸に沿って進む。電子ビームは、例えば、粒子―光レンズによって焦点を合わせられ、かつ、例えば、粒子―光偏向器によって偏向される。
【0006】
薄い試料(標本とも呼ばれる)は、厚さが典型的には50nmと100nmとの間であり、粒子―光軸に置かれ、電子によって照射される。電子のうちいくらかは試料を貫通し、検出器で結像する。市販のTEMは今日0.1nm未満の空間分解能を達成することもある。
【0007】
このような分解能は、撮像に必要な時間の間、試料が粒子―光軸に対して0.1nmの範囲内で静止している場合にのみ達成可能である。粒子―光軸に対する試料のいかなる移動も(例えば熱ドリフトにより、又は例えば試料を保持するマニピュレーターの音響振動により)像を劣化させてしまう。撮像は典型的には数秒間から数分間の間かかる。粒子―光軸に対するマニピュレーターの安定性への要求は、従って極めて厳格である。
【0008】
極めて高倍率の場合、視野(FoV)は極めて狭い。例えば50x50nm^2である。この倍率で試料の位置決めをするときに、像がちょっとでも動くのを避けるのは大仕事である。試料の最小移動量を極めて小さくしなければならないのみではない。移動も極めて滑らかに行わなければならない。更に残留移動や振動といった、移動後のいかなる反発や余効も最小でなければならない。
【0009】
電子顕微鏡の解像度は、一つ以上の粒子―光レンズの球面収差及び/又は色収差を補正する粒子―光補正器の導入により急激に進歩している。最適な状況下では0.05nm未満の分解能を達成する市販機器が入手可能である。その結果、マニピュレーターの機械的安定度に対する要求はより厳しくなりつつある。
【特許文献1】米国特許第6,388,262号
【発明の開示】
【発明が解決しようとする課題】
【0010】
特許文献1に記載のマニピュレーターの問題は、部品及び連結の数が膨大で、それらを極めて高精度に機械加工しなければならないことである。従って、かかるマニピュレーターは高価である。また、摩擦及び/又は遊びを生じる部品(例えばOリングシール)の数が多いために、かかるマニピュレーターを構築する際に、動作に要求される安定度と滑らかさを保ちながら余効を排除するのは困難である。電動機は小さな動きをする際に摩擦を克服しなければならないので、摩擦により動作がひっかかる可能性があり、結果としてスティックスリップ効果が生じる。部品同士の間の遊びは位置決めの精度を悪化させる可能性がある。
【0011】
関連する問題は、ロッドの長さ、結合の数及びOリングシールの数により、装置のハウジング(従って粒子―光軸も)と試料を置く側の端との間の結合が柔らかくなってしまうことである。当業者には周知の通り、振動の効果を減殺する際には、部品同士の間は(柔軟な結合に対して)剛性の高い結合のほうが好まれる。
【0012】
前述のマニピュレーターの別な問題は、マニピュレーターの一部が装置の外に突き出てしまうことである。従って、空調や周辺温度の変化等による装置の外部の気圧の変化によって、真空中の取付機構の位置が変化してしまう可能性があり、これにより試料に好ましくない動きが生じる可能性がある。
【0013】
前述の問題点を改良したマニピュレーターが必要である。
【課題を解決するための手段】
【0014】
本願に記載し請求する本発明は一部米国エネルギー省の資金提供(契約番号DE-AC02-05CH11231)を用いた。米国政府は本発明に一定の権利を有する。
【0015】
前述の課題を解決するために、本発明によるマニピュレーターは:
前記ベースに据付ける少なくとも3個のナノアクチュエーター、ここで各ナノアクチュエーターは先端を有し、少なくとも3個の前記先端は前記Y−Z平面を定義し、各先端は前記ベースに対して前記Y−Z平面において移動することができ;
前記ナノアクチュエーターの前記先端に接触するプラットフォーム;及び
前記プラットフォームを前記ナノアクチュエーターの前記先端に対して押し付けるクランプ手段;
を更に含むことを特徴とし、結果として前記ナノアクチュエーターは前記プラットフォームを前記ベースに対して前記Y−Z平面において回転させることができ、かつ、前記プラットフォームを前記Y−Z平面に平行に移動させることができる。
【0016】
この文脈において、ナノアクチュエーターは、ナノメートル及びナノメートル未満の規模の分解能で動作を実現することができるアクチュエーターである。かかるナノアクチュエーターは市販されている。例えばPhysik Instrumente GmbH & Co. KG, Karlsruhe/Palmbach, Germanyのtype P-112.03 (カタログ “High performance piezo actuators for OEM, Industry and research”、カタログ番号118 05/09.17 (09/2005)、1-24及び1-25頁に記載)。
【発明を実施するための最良の形態】
【0017】
先端をY−Z平面において同一の方向に移動することにより、プラットフォームをベースに対して平行移動できる。3個のナノアクチュエーターが位置する円の接線方向に、先端が時計回りの方向に移動すると、その円の中心に対する時計回りの回転が生じる。先端が反時計回りの方向に移動すると、反時計回りの回転が生じる。本発明によるマニピュレーターは、従って、自由度3を提供する。平行移動2と回転移動1である。
【0018】
可動部品の数が少ないので、高い剛性のマニピュレーターを実現できる。ナノアクチュエーター自体を除き、互いに移動する部品は無い。(ただし先端に対するプラットフォームの垂直抗力は、先端とプラットフォームとの界面の最大摩擦力より大きいものとする。さもなくば滑ってしまう。)従って、遊び及びスティックスリップの効果を排除する。
【0019】
当業者には周知の通り、ナノアクチュエーターは極めて剛性を高くできる。ピエゾ(圧電)アクチュエーターという型は互いに移動する表面を持たない。代わりに、圧電セラミック材料の屈曲又は剪断を利用する。互いに移動する表面を持たないことにより、余効を排除し、他方、高い剛性により、例えば(音響的)振動に関する性能を向上させる。
【0020】
アクチュエーターは装置の内部(真空)に配置できるので、機械的な真空貫通接続は不要であり、従ってOリングを排除してもよい。
【0021】
これにより、剛性の高い結合を有し、反発、摩擦及び/又は遊びの無いマニピュレーターとなる。また、環境が装置に及ぼす影響(例えば周辺温度の変化や気圧の変動)を大きく減らす。
【0022】
クランプ手段は、プラットフォームの表面を先端に対して十分な力で押し付けねばならないことに注意。表面に先端を押し付ける、表面に対する垂直抗力は、先端と表面との間の摩擦係数とともに、表面と先端との間の滑りが起こるまでの最大の力を決定する。従って、クランプの力を十分大きく選ばなければならない。これにより、ベースに対してプラットフォームの動きを開始又は終了する際に、例えば振動及びプラットフォームに必要な加速の結果生じる、望まれない加速による滑りを回避する。
【0023】
本発明を図面を用いて更に説明する。図面において同一の参照番号は対応する要素を示す。
【実施例1】
【0024】
図1A及び図1Bに概略を示すのは本発明によるマニピュレーターの実施例であり、ナノアクチュエーターの1つの集合を用いる。
【0025】
図1Aはベース2を示す。ベース2に3個のナノアクチュエーター3、3及び3を据付ける。これらナノアクチュエーターの各々は、それぞれ先端4、4及び4を有する。プラットフォーム5は、ばね6の形のクランプ手段によって、これらの先端に対して押し付けられている。ばねの一端はベースの凹部7の縁8に連結し、もう一端はプラットフォームの縁18に連結する。プラットフォームから、ロッド9がプラットフォームに垂直に伸び、プラットフォームから遠い端はクランプ手段である試料取付手段30で終わる。
【0026】
図1Bはマニピュレーターのベースの上面図である。即ち、プラットフォームが通常ナノアクチュエーターに乗る側面から見た図である。図1Bはナノアクチュエーターの相互の位置及びばねを据付ける位置を示す。図示の通り、ナノアクチュエーターは円Cに沿って間隔を空けて配置する。
【0027】
図1A及び図1Bから明らかな通り、同一方向への(Y−Z平面における)ナノアクチュエーターの動きは、その方向へプラットフォームを平行移動することになる。先端を円Cに沿って時計回りの方向に動かすと、プラットフォームは円の中心の回りを時計回りの方向に回転することになる。当業者には明らかになる通り、双方の動きの組み合わせで、プラットフォームは平行移動と回転との結合した動きをする。
【0028】
先端の速度を遅くすることによって、即ち、最大摩擦力を決して超えないような速度に落とすことによって、先端はプラットフォームの表面の1つの位置に留まることになる。先端の速度を速くする場合には、即ち、横力が最大(静止)摩擦力を超える速度になると、先端は表面を滑る。力が動摩擦力よりも小さくなると、滑りは止まることになり、先端はプラットフォームで再位置決めされることになる。滑りが起こる速度は、滑らかな表面に対するナノアクチュエーターの垂直抗力、この二つの間の摩擦係数、及びプラットフォームの慣性に依存することに注意。
【0029】
適切なナノアクチュエーター(例えば前述のPhysik Instrumente GmbH & Co.のP-112.03)を用いることにより、1nm未満の最小移動量を実現することが可能であり、同時に2mmを超える往復移動距離及び360度を超える回転が達成できる。かかるナノアクチュエーターは、真空中で及び液体ヘリウム温度で動作することも可能である。これによりマニピュレーターを例えば所謂極低温TEM(即ち試料を極低温で保持するTEM)に適用することが可能となる。
【0030】
試料取付手段及びそれらと関連し協同する試料運搬器はそれ自体周知であることに注意。一例が欧州特許出願EP06114632に記載されている。本マニピュレーターと共に使ってもよい試料取付手段の他の実施例はFEI Company, Hillsboro, USAのPolara(商標)のようなTEMのいくつかから周知である。
【実施例2】
【0031】
図2に概略を示すのは本発明によるマニピュレーターの別の実施例であり、ナノアクチュエーターの2つの集合を用いる。
【0032】
図2は図1Aから派生したと考えることができる。図1でクランプ手段がばねの形を取っていたところ、図2のクランプ手段は、ベルビルワッシャー16の集合でばね留めしたカウンターベース12を含む。カウンターベースはナノアクチュエーター13、13及び13の第2の集合によってプラットフォームに対して押し付けられており、それによってプラットフォームはナノアクチュエーターの2つの集合の間でクランプされている。これらナノアクチュエーターの第2の集合の各々は、それぞれ先端14、14及び14を有する。対応するナノアクチュエーターを一緒に(よって3を13と一緒に、等)同一の方向に同一の大きさで動かすことにより、ベースとカウンターベースは互いに対して静止しながら、プラットフォームはその2つの間で移動する。
【実施例3】
【0033】
図3に概略を示すのは本発明によるマニピュレーターのまた別の実施例であり、ベースとプラットフォームとにおける貫通孔により粒子ビームがマニピュレーターを貫通することができる。
【0034】
図3は図2から派生したと考えることができる。図3ではロッド9を削除し、貫通孔41をプラットフォーム5に形成する。貫通孔42、42及び42はベースに形成する。これらの貫通孔41、42、42及び42により、粒子ビームが粒子―光軸11に沿ってマニピュレーターを貫通して通ることが可能となる。
【0035】
図3にはまた、プラットフォームに据付ける副マニピュレーター40の概略を示す。これにより試料取付手段30を、図1A、図1B及び図2に示すマニピュレーターが提供する自由度3(平行移動2と回転移動1)よりも多い自由度で位置決めすることができる。
【0036】
ベース2の側壁の更なる貫通孔43によって、試料又は試料運搬器を試料取付手段30に導入することが可能となる。
【0037】
マニピュレーターの本実施例を、いくつかのTEMで用いられているトップエントリーステージのマニピュレーターに類似の方法で据付けてもよい。即ち、磁気レンズの磁極片近傍に据付ける。
【0038】
副マニピュレーターはそれ自体周知であることに注意。本発明によるマニピュレーターの部分として用いてもよい副マニピュレーターの例は、2007年9月26日に出願された出願係属中の米国特許出願第11/861721号に記載されている。
【0039】
マニピュレーターは、例えばTEMで用いる真空中で使えるように構成してもよい。この真空は典型的には10−6hPa〜10−9hPaの間の真空であるが、より高い又はより低い圧力でもよい。
【0040】
マニピュレーターはまた、極低温に保たれる試料取付手段及び試料保持器の双方と共に使えるように構成してもよい。極低温とは例えば液体窒素や液体ヘリウムの温度である。又は、高温(例えば摂氏300度)に保たれる試料取付手段及び試料保持器の双方と共に使えるように構成してもよい。
【実施例4】
【0041】
図4A及び図4Bに概略を示すのは、本発明によるマニピュレーターの組立図(図4A)及び分解図(図4B)である。
【0042】
ベースはハウジング402、トッププレート401及びボトムプレート403を含み、マニピュレーターの外装を形作る。ナノアクチュエーター404の1つの集合がベース(ボトムプレート)に据付けられており、プラットフォーム405をベースに対して動かす。プラットフォーム405の貫通孔の中に、副マニピュレーター406を取付ける。副マニピュレーター406は、試料取付手段407により試料又は試料保持器を保持することができる。ナノアクチュエーター409の第2の集合は、カウンターベース408に据付けられ、ベースの反対側に接触し、それによってプラットフォーム405がナノアクチュエーターの2つの集合404、409の間でクランプされるようになる。ナノアクチュエーターの第2の集合は、2個のボール411経由でばね410によってベースに押し付けられている。このばねは、2個のボール412経由でベースのトッププレート401によってベースに向けて力をかけている。ボールの2つの集合411と412は互いに90度離れて配置しているので、ばね410と共に、カルダンばねアセンブリーを形成する。これにより全てのアクチュエーターが同じ力を受けることを保証する。ねじ413は、ばね410の力を調整するために用いる。これによりアクチュエーターの受ける力を調整する。
【0043】
通常の使用(即ち、ベースに対する変位が通常の範囲である場合)において、プラットフォーム405はハウジング402に接触しないことに注意。
【実施例5】
【0044】
図5に概略を示すのは本発明によるマニピュレーターを備えるTEMである。
【0045】
図5において、粒子源501は粒子―光軸500を中心として進む電子ビームを生成する。粒子源は電子機器(図示していない)に繋がる高圧線524によって電力を供給される。電子機器は粒子源の操作のために適切な電圧と電流を供給する。電子ビームは、例えば粒子―光偏向器502によって、粒子―光軸を中心に収束する。ダイアフラム503はビームを制限する絞りの役割を果たすアパーチャーを備える。粒子―光レンズ504は、電子ビームを対物レンズ505に送る集約器の役割を果たす。試料保持器511に据付けた試料を粒子ビームで照射すると、一部の電子が試料を通過する。試料を通過した電子を粒子―光レンズ506によって検出器507に結像させる。検出器507は例えば蛍光スクリーン又はCCDカメラでありうる。蛍光スクリーンを用いる場合は、像をガラス窓508を通して見てもよい。
【0046】
電子顕微鏡の内部は真空壁520で囲まれており、真空ポンプ522によって、真空コネクション521経由で排気する。
【0047】
標本保持器を位置決めするために、本発明によるマニピュレーター509を用いる。マニピュレーター509には副マニピュレーター510を据付け、自由度を増す。エアロック512により、試料保持器に据付けた試料を真空になったTEMの内部に導入することができ、試料保持器を副マニピュレーターに据付けることができる。
【実施例6】
【0048】
本発明によるマニピュレーターの1実施例においては、ナノアクチュエーターはベース2ではなくプラットフォーム5に据付ける。これはナノアクチュエーターの代わりの位置である。
【実施例7】
【0049】
本発明によるマニピュレーターの別の実施例においては、クランプ手段は、ばねで留めたカウンターベース12の形を取る。カウンターベースは、プラットフォームに対して、プラットフォームが先端4、4及び4と接触する側の反対側を押し付ける。
【実施例8】
【0050】
本発明によるマニピュレーターの更なる実施例においては、カウンターベース12は少なくとも3個のナノアクチュエーター13、13及び13を含む第2の集合を備える。カウンターベースのナノアクチュエーターの第2の集合の各々は、先端14、14及び14を有し、ナノアクチュエーターの第2の集合の先端の各々はY方向とZ方向に動くことができ、プラットフォームはばねの荷重によってナノアクチュエーターの第2の集合の先端に接触し続けており、マニピュレーターは、Y−Z平面におけるベース2とカウンターベース12との相対位置を実質的に固定するように備えている。
【実施例9】
【0051】
本発明によるマニピュレーターの別の実施例においては、プラットフォーム5は1つ以上の滑らかな表面を有し、ナノアクチュエーター3、3、3、13、13及び13の先端4、4、4、14、14及び14の各々は1つ以上の滑らかな表面の1つと接触し、先端の各々はプラットフォームの1つ以上の滑らかな表面に対して移動するように備えている。
【0052】
本実施例においては、先端の各々は滑らかな表面でプラットフォームと接触する。各々の先端はそれに対応する滑らかな表面を有してもよく、又は複数の先端が共通の滑らかな表面を共有してもよい。
【実施例10】
【0053】
本発明によるマニピュレーターの好適な実施例においては、プラットフォーム5の1つ以上の滑らかな表面における移動は、プラットフォームの1つ以上の滑らかな表面において先端4、4、4、14、14及び14を滑らせる形を取る。
【0054】
滑らかな表面において先端を滑らせることにより、先端をプラットフォームに対して再位置決めをすることができる。その結果、この好適な実施例において達成できる平行移動及び/又は回転は、プラットフォームに対して先端を再位置決めをしない場合よりも大きい。
【0055】
滑らかな表面において先端を滑らせることは、滑らかな表面の面に平行な、先端と滑らかな表面との間の滑らせる力が、この2つの間の最大静止摩擦力を超える場合に起こる。これは先端に素早い変位を起こさせることによって実現される。これは次の形を取ってもよい:全ての先端を同時に滑らせる;先端の第1の集合からの先端の1つと、先端の第2の集合の対応する先端とを滑らせる;又は一時には1つの先端のみを対応する滑らかな表面において滑らせる。プラットフォームの慣性により、プラットフォームは簡単には動かない。先端の再位置決めを完了した後は、先端及びプラットフォームは高い剛性を有し、プラットフォーム及びベースのいかなる残留移動も減殺する。
【0056】
少数の先端が同時に再位置決めする場合には、残りの先端がプラットフォームを動かないように保持でき、再位置決めの最中ですら、ベースとプラットフォームとの間で剛性の高い結合を維持できることに注意。当業者が認識することになる通り、同時に少数の先端を再位置決めしつつ、残りの多数の先端でプラットフォームを動かすことによって、プラットフォームの定常移動を維持することも可能である。
【実施例11】
【0057】
本発明によるマニピュレーターの別の実施例においては、副マニピュレーター40をプラットフォーム5に据付ける。この副マニピュレーターはプラットフォームに対して試料取付手段30を動かすように備えており、試料取付手段は部品を副マニピュレーターに取り付ける。
【0058】
かかる副マニピュレーターは、例えば2007年9月26日に出願された出願係属中の米国特許出願第11/861721号に記載されている。
【実施例12】
【0059】
本発明によるマニピュレーターの更なる実施例においては、副マニピュレーター40は追加的な自由度に沿った部品の位置決めを行うように備える。
【0060】
副マニピュレーターを本発明によるマニピュレーターに据付けることによって、部品を専らマニピュレーターに取り付ける場合に比べて、部品を追加的な自由度で位置決めを行ってもよい。
【実施例13】
【0061】
本発明によるマニピュレーターの別の実施例においては、ナノアクチュエーター3、3、3、13、13及び13は圧電ナノアクチュエーターである。
【実施例14】
【0062】
本発明によるマニピュレーターの尚別の実施例においては、ベース2の少なくとも部分、ナノアクチュエーター3、3、3、13、13及び13、プラットフォーム5、クランプ手段16及び試料取付手段30は、真空において暴露され操作されるように備える。
【0063】
真空中にマニピュレーターを据付けることにより、試料や試料保持器のような部品の位置を決定する試料取付手段に対する、環境から伝達される影響を最小限に留める。
【実施例15】
【0064】
本発明によるマニピュレーターの更なる実施例においては、真空は粒子―光装置の内部の真空である。この粒子―光装置は、粒子ビームを生成するための粒子源及び1つ以上の粒子―光レンズを含む。この粒子源及び粒子―光レンズの各々は、粒子ビームが沿って通ってもよい粒子―光軸を中心に取り巻く。
【0065】
マニピュレーターを透過型電子顕微鏡(TEM)、走査型透過電子顕微鏡(STEM)、走査型電子顕微鏡(SEM)、又は収束イオンビーム(FIB)装置のような粒子―光装置の内部に据付けることにより、部品を、かかる装置で用いる粒子ビームに対して位置決めできる。この部品は試料又は試料保持器であってよいが、同様に、粒子―光軸を中心に整列しなければならないアパーチャー又はマルチポールのような粒子―光部品であってもよい。
【実施例16】
【0066】
本発明によるマニピュレーターのまた更なる実施例においては、粒子―光装置は電子顕微鏡である。
【0067】
このマニピュレーターは、TEMやSTEMのような高分解能の粒子―光装置においてはとりわけ有用である。
【実施例17】
【0068】
本発明によるマニピュレーターの尚更なる実施例においては、マニピュレーターは粒子ビームを通すために、ベース2に貫通孔42、42及び42を備え、かつ、プラットフォーム12に貫通孔41を備える。
【0069】
マニピュレーターに(例えばプラットフォームとベースの中心に)貫通孔を備え、貫通孔を粒子―光軸11(それに沿って粒子が進む)が貫通するような仕方で貫通孔を整列することにより、部品を粒子―光軸を中心に取り巻いて配置することができる。部品が試料保持器であれば、これはいくつかのTEMで用いられている所謂トップエントリーステージに類似する。この実施例は、装置の粒子―光軸の回りにアパーチャー、ゾーンプレート、又はマルチポールのような粒子―光要素を位置決めする際にとりわけ魅力的でありうる。
【実施例18】
【0070】
本発明によるマニピュレーターの尚更なる実施例においては、粒子―光軸11はY−Z平面に実質的に垂直である。
【0071】
この実施例においては、プラットフォームと粒子―光軸とは、部品が粒子―光軸に垂直な平面に位置決めされる(平行移動され回転される)ことができるような仕方で整列する。マニピュレーターのこの配置は、多くのTEMで用いられている所謂サイドエントリー試料保持器に類似する。
【実施例19】
【0072】
本発明によるマニピュレーターの別の実施例においては、部品は粒子―光部品である。
【0073】
この部品は例えば所謂アパーチャー、フェーズプレート、又は例えばマルチポールであってもよい。
【実施例20】
【0074】
本発明によるマニピュレーターの尚別の実施例においては、部品は試料保持器であり、マニピュレーターは試料保持器を動かすように備える。
【実施例21】
【0075】
本発明の1観点においては、本発明によるマニピュレーターを操作する方法は、次の工程を繰り返し実行することを特徴とする:
1つ以上の先端4、4、4、14、14及び14を、1つ以上の滑らかな表面においてその先端が滑らないように十分低速で動かす工程;及び
1つ以上の先端を、1つ以上の滑らかな表面において1つ以上の先端が滑るように十分高速で動かし、これにより1つ以上の先端をプラットフォーム5に対して再位置決めする工程。
【0076】
その結果、プラットフォームに対して先端の再位置決めをしない場合に達成できるよりも大きな、距離又は回転の角度を、ベース2に対してプラットフォームは動く。
【図面の簡単な説明】
【0077】
【図1A】図1Aは、ナノアクチュエーターの1つの集合を用いる、本発明によるマニピュレーターの実施例の概略図である。
【図1B】図1Bは、ナノアクチュエーターの1つの集合を用いる、本発明によるマニピュレーターの実施例の概略図である。
【図2】ナノアクチュエーターの2つの集合を用いる、本発明によるマニピュレーターの別の実施例の概略図である。
【図3】ベースとプラットフォームとにおける貫通孔により粒子ビームがマニピュレーターを貫通できる、本発明によるマニピュレーターのまた別の実施例の概略図である。
【図4A】本発明によるマニピュレーターの概略組立図である。
【図4B】本発明によるマニピュレーターの概略分解図である。
【図5】本発明によるマニピュレーターを備えるTEMの概略図である。

【特許請求の範囲】
【請求項1】
部品をサブミクロン解像度でY−Z平面に平行に位置決めするための、及び、前記部品を前記Y−Z平面で回転させるための、電動マニピュレーターであって、前記マニピュレーターは:
ベース;及び
前記部品を前記マニピュレーターに取付けるための試料取付手段;
を含み、前記マニピュレーターは:
前記ベースに据付ける少なくとも3個のナノアクチュエーター、ここで各ナノアクチュエーターは先端を有し、少なくとも3個の前記先端は前記Y−Z平面を定義し、各先端は前記ベースに対して前記Y−Z平面において動くことができ;
前記ナノアクチュエーターの前記先端に接触するプラットフォーム;及び
前記プラットフォームを前記ナノアクチュエーターの前記先端に対して押し付けるクランプ手段;
を更に含むことを特徴とし、結果として前記ナノアクチュエーターは前記プラットフォームを前記ベースに対して前記Y−Z平面において回転させることができ、かつ、前記プラットフォームを前記Y−Z平面に平行に移動させることができる、マニピュレーター。
【請求項2】
前記ナノアクチュエーターを、前記ベースに代えて、前記プラットフォームに据付ける、請求項1に記載のマニピュレーター。
【請求項3】
前記クランプ手段は、ばねで留めたカウンターベースの形を取り、前記カウンターベースは前記プラットフォームに対して、前記プラットフォームが前記先端と接触する側の反対側を押し付ける、請求項1又は請求項2に記載のマニピュレーター。
【請求項4】
前記カウンターベースは、少なくとも3個のナノアクチュエーターを含む第2の集合を備え、前記カウンターベースのナノアクチュエーターの前記第2の集合の各々は先端を有し、ナノアクチュエーターの前記第2の集合の各先端は、Y方向及びZ方向に動くことができ、前記プラットフォームは、前記ばねの荷重によってナノアクチュエーターの前記第2の集合の前記先端に接触し続け、かつ、前記マニピュレーターは、前記Y−Z平面における前記ベースと前記カウンターベースとの相対位置を実質的に固定するように備える、請求項3に記載のマニピュレーター。
【請求項5】
前記プラットフォームは1つ以上の滑らかな表面を有し、前記ナノアクチュエーターの前記先端の各々は前記1つ以上の滑らかな表面の1つと接触し、前記先端の各々は前記プラットフォームの前記1つ以上の滑らかな表面に対して移動するように備える、請求項1乃至4のうち何れか1項に記載のマニピュレーター。
【請求項6】
前記プラットフォームの前記1つ以上の滑らかな表面における前記移動は、前記プラットフォームの前記1つ以上の滑らかな表面において前記先端を滑らせる形を取る、請求項5に記載のマニピュレーター。
【請求項7】
副マニピュレーターを前記プラットフォームに据付け、前記副マニピュレーターは前記プラットフォームに対して前記試料取付手段を動かすように備え、かつ、前記試料取付手段は前記部品を前記副マニピュレーターに取り付ける、請求項1乃至6のうち何れか1項に記載のマニピュレーター。
【請求項8】
前記副マニピュレーターは追加的な自由度で前記部品の位置決めを行うように備える、請求項7に記載のマニピュレーター。
【請求項9】
前記ナノアクチュエーターは圧電ナノアクチュエーターである、請求項1乃至8のうち何れか1項に記載のマニピュレーター。
【請求項10】
前記ベースの少なくとも部分、前記ナノアクチュエーター、前記プラットフォーム、前記クランプ手段及び前記試料取付手段は、真空において暴露され操作されるように備える、請求項1乃至9のうち何れか1項に記載のマニピュレーター。
【請求項11】
前記真空は粒子―光装置の内部の真空であり、前記粒子―光装置は、粒子ビームを生成するための粒子源及び1つ以上の粒子―光レンズを含み、前記粒子源及び前記粒子―光レンズの各々は、前記粒子ビームが沿って通ってもよい粒子―光軸を中心に取り巻く、請求項10に記載のマニピュレーター。
【請求項12】
前記粒子―光装置は電子顕微鏡である、請求項11に記載のマニピュレーター。
【請求項13】
前記マニピュレーターは前記粒子ビームを通すために、前記ベースに貫通孔を備え、かつ、前記プラットフォームに貫通孔を備え、前記粒子ビームは粒子―光軸に沿って進む、請求項11又は請求項12に記載のマニピュレーター。
【請求項14】
前記粒子―光軸は前記Y−Z平面に実質的に垂直である、請求項13に記載のマニピュレーター。
【請求項15】
前記粒子―光軸は前記Y−Z平面に実質的に平行である、請求項11又は請求項12に記載のマニピュレーター。
【請求項16】
前記部品は粒子―光部品である、請求項11乃至15のうち何れか1項に記載のマニピュレーター。
【請求項17】
前記部品は試料保持器であり、前記マニピュレーターは前記試料保持器を動かすように備える、請求項11乃至15のうち何れか1項に記載のマニピュレーター。
【請求項18】
請求項6に記載のマニピュレーターを操作する方法であって:
1つ以上の先端を、前記1つ以上の滑らかな表面において前記先端が滑らないように十分低速で動かす工程;及び
前記1つ以上の先端を、前記1つ以上の滑らかな表面において前記1つ以上の先端が滑るように十分高速で動かし、これにより前記1つ以上の先端を前記プラットフォームに対して再位置決めする工程;
を繰り返し実行することを含み、結果として、前記プラットフォームに対して前記先端の再位置決めをしない場合に達成できるよりも大きな、距離又は回転の角度を、前記ベースに対して前記プラットフォームは動く、方法。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate


【公開番号】特開2009−99568(P2009−99568A)
【公開日】平成21年5月7日(2009.5.7)
【国際特許分類】
【出願番号】特願2008−267089(P2008−267089)
【出願日】平成20年10月16日(2008.10.16)
【出願人】(504471296)ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア (13)
【Fターム(参考)】