説明

進相コンデンサ制御装置、及び、力率調整器

【課題】進相コンデンサの制御の頻度を抑制するとともに、力率を適切に補償可能な技術を提供することを目的とする。
【解決手段】進相コンデンサ制御装置1は、無効電力と、無効電力が得られた際に投入されていた進相コンデンサ4の容量との差分である無効電力負荷の変化実績に対して統計処理を行う変動統計処理部15を備える。また、進相コンデンサ制御装置1は、現在の無効電力負荷と、当該統計処理の結果とに基づいて最大の無効電力負荷たる最大無効電力負荷を予測する最大負荷予測部16と、当該最大無効電力負荷を補償可能な複数の進相コンデンサ4の投入及び開放の組合せを決定する投入決定部17と、当該決定した組合せに基づいて、複数の進相コンデンサ4を投入及び開放する制御を行う制御部18とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、商用系統の受電点における無効電力負荷を補償する進相コンデンサ制御装置及び力率調整器に関するものである。
【背景技術】
【0002】
高圧系統ならびに特高系統などの商用系統(商用電力系統)から受電する需要家には、商用系統の受電点における力率の遅れを進み方向に進めるほど、つまり有効電力を100%に近づけるほど、電力使用の基本料金が安くなる力率割引制度が用意されている。そこで多くの需要家は、受電点の力率の遅れを進み方向に進めて補償する(改善する)ために、需要家構内系統に進相コンデンサを設置している。
【0003】
しかしながら、無効電力負荷(受電点での無効電力と、進相コンデンサの容量との差分)が大きくなる重負荷時において力率が100%前後となるように、進相コンデンサを常時接続して力率を補償する構成では、無効電力負荷が小さくなる軽負荷時には必要以上に進相コンデンサが投入される過補償となり、力率が極端に進むことになる。したがって、このような補償を行う構成では、需要家構内系統や商用系統の電力損失を増加させるとともに、系統電圧を不要に上昇させるなどの弊害が生じることがある。
【0004】
そこで、重負荷時及び軽負荷時のいずれであっても、受電点の力率を100%近くに維持する一般的な対策として、自動的に進相コンデンサを投入及び開放する制御を行う進相コンデンサ制御装置を備える、力率を調整する力率調整器を実現している。
【0005】
進相コンデンサ制御装置で一般的に用いられている進相コンデンサの制御ロジックは、例えば特許文献1に記載されている。具体的には、計測された受電点での無効電力負荷が、事前に設定された投入点より遅れ方向(つまり進相コンデンサによる無効電力補償が不足している状態)となった時点で進相コンデンサの投入量を増やす。進相コンデンサが複数ある場合には、無効電力負荷分を補償するのに必要十分な進相コンデンサの組合せを選択し、選択した進相コンデンサを投入し、かつ、それ以外の進相コンデンサを開放する制御を実施する。
【0006】
例えば、一方が20kVrであり、他方が50kVarである2つの進相コンデンサを有する構成を想定すると、進相コンデンサの投入可能な組合せとしては、0kVar、20kVar、50kVar、70kVarの4パターンが考えられる。この構成において無効電力が0kVarから徐々に60kVarまで増加する場合には、(1)いずれも開放→(2)20kVar投入→(3)20kVar開放かつ50kVar投入→(4)50kVar投入維持し20kVar再投入(計70kVar)という順に制御される。
【0007】
逆に、無効電力負荷が事前に設定された遮断点より進み方向(つまり進相コンデンサによる無効電力補償が過剰となっている状態)となった時点で進相コンデンサの投入量を減らす。この場合も、進相コンデンサが複数ある場合には、無効電力負荷分を補償するのに必要十分な組合せを選択し、選択した進相コンデンサを投入し、かつ、それ以外の進相コンデンサを開放する制御を実施する。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平6−4159号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、以上のような制御ロジックを行うと、無効電力負荷の変動が大きい場合には、上述の20kVarの進相コンデンサのように進相コンデンサの投入及び開放制御が多発し、進相コンデンサ本体や、その開閉器の寿命低下とつながる。それを避けるための対策として、所定時間の動作時限を設定し、投入点より遅れの状態、または、遮断点より進みの状態が動作時限以上継続しない限り、投入・開放の切り替え制御を実施しないことが考えられる。しかし、この対策では、特に投入点より遅れの状態が少なくとも動作時限の間は継続することから、その間の力率を補償できないという問題が残る。
【0010】
また、進相コンデンサを一旦開放すると、コンデンサ内部の充電電力が自然に放電しきるまでの数分間は、再投入できないという制約がある。そのため、上述の例において(3)から(4)に移行する場合には、20kVarの進相コンデンサが開放されてから放電しきるまでの数分間は再投入することができない。したがって、無効電力負荷の増加が急激である場合には、すぐに進行コンデンサを投入することができないことから、その時間において力率を補償できないという問題が生じる。
【0011】
そこで、本発明は、上記のような問題点を鑑みてなされたものであり、進相コンデンサの制御の頻度を抑制するとともに、力率を適切に補償可能な技術を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明に係る進相コンデンサ制御装置は、商用系統の受電点において計測された無効電力に基づいて、互いに容量が異なる複数の進相コンデンサを前記受電点の負荷側において選択的に投入及び開放する制御を行う進相コンデンサ制御装置であって、前記無効電力と、当該無効電力が得られた際に投入されていた前記進相コンデンサの容量との差分である無効電力負荷の変化実績に対して統計処理を行う変動統計処理部を備える。また、前記進相コンデンサ制御装置は、現在の前記無効電力負荷と、前記変動統計処理部での前記統計処理の結果とに基づいて、現在から所定時間経過する将来までの最大の前記無効電力負荷たる最大無効電力負荷を予測する最大負荷予測部と、前記最大負荷予測部で予測した前記最大無効電力負荷を補償可能な前記複数の進相コンデンサの投入及び開放の組合せを決定する投入決定部と、前記投入決定部で決定した組合せに基づいて、前記複数の進相コンデンサを投入及び開放する制御を行う制御部とを備える。
【発明の効果】
【0013】
本発明によれば、所定期間の時間幅で補償すべき最大無効電力負荷を予測し、それを補償するように進相コンデンサの投入及び開放を制御する。したがって、無効電力負荷が急激に増加する場合に、途中段階の投入及び開放の組合せを経由することなく、所望の投入及び開放の組合せで制御するため、進相コンデンサの制御の頻度を抑制することができる。また、それに伴い、進相コンデンサを開放する頻度を抑制することができることから、進相コンデンサが放電しきるまでの待ち時間が生じる頻度を抑制することができる。したがって、力率を適切に補償することができる。
【図面の簡単な説明】
【0014】
【図1】実施の形態1に係る力率調整器の構成を示す図である。
【図2】無効電力負荷とその最大変動幅との関係を示す図である。
【図3】実施の形態1に係る負荷算出部及び負荷変動算出部の処理を示すフローチャートである。
【図4】実施の形態1に係る変動統計処理部の処理を示すフローチャートである。
【図5】実施の形態1に係る最大負荷予測部、投入決定部及び制御部の処理を示すフローチャートである。
【図6】実施の形態1に係る無効電力負荷の範囲と、複数の進相コンデンサの組合せとの関係を示す図である。
【図7】実施の形態2に係る力率調整器の構成を示す図である。
【図8】実施の形態2に係る力率調整器の処理を示すフローチャートである。
【図9】実施の形態2に係る力率調整器の動作を示す図である。
【発明を実施するための形態】
【0015】
<実施の形態1>
図1は、本発明の実施の形態1に係る力率調整器100の構成を示す図である。この図に示すように、力率調整器100は、進相コンデンサ制御装置1と、商用系統の受電点2での無効電力(以下「受電点無効電力」と呼ぶこともある)を計測する無効電力計測器3と、互いに容量が異なる複数(ここでは2つ)の進相コンデンサ4とを備えている。
【0016】
複数の進相コンデンサ4は、受電点無効電力をキャンセルして、受電点2での力率を補償する(改善する)ための設備であり、受電点2の負荷(構内負荷)側に延設された需要化構内系統5において選択的に投入及び開放される。なお、本実施の形態では、進相コンデンサ4は、通常の進相コンデンサと同様、図1に示すように受電点2近傍の地点(CT/PT)、もしくは負荷側にある変圧器(図示しない)の二次側において投入及び開放されるように配置される。複数の進相コンデンサ4には、進相コンデンサ制御装置1(制御部18)の制御に応じて、複数の進相コンデンサ4を投入及び開放するための開閉を行う開閉器4aがそれぞれ設けられている。
【0017】
進相コンデンサ制御装置1は、無効電力計測器3で計測された受電点無効電力に基づいて、複数の開閉器4aの開閉を制御することにより、複数の進相コンデンサ4を選択的に投入及び開放する制御を行う。本実施の形態に係る進相コンデンサ制御装置1は、進相コンデンサDB(データベース)11と、負荷算出部12と、負荷変動算出部13と、負荷変動DB(データベース)14と、変動統計処理部15と、最大負荷予測部16と、投入決定部17と、制御部18とを備えている。次に、この進相コンデンサ制御装置1の各構成要素について説明する。
【0018】
進相コンデンサDB11は、設置されている各進相コンデンサ4のそれぞれの容量を記憶するとともに、複数の進相コンデンサ4に関して現在投入及び開放されている進相コンデンサ4の組合せを記憶する。
【0019】
負荷算出部12は、進相コンデンサDB11に記憶された情報に基づいて、現在投入中の進相コンデンサ4の合計容量を算出する。そして、負荷算出部12は、無効電力計測器3によって計測された受電点無効電力から、当該合計容量を差し引く減算を行うことにより、無効電力負荷を求める。
【0020】
負荷変動算出部13は、無効電力負荷の変化実績を求める。
【0021】
図2は、負荷変動算出部13が求める変動実績を説明するための図である。本実施の形態において負荷変動算出部13が求める変化実績は、図2に示すように、現在tから所定期間である一定期間T1前の過去時点(t−T1)での無効電力負荷Q(t−T1)と、当該過去時点(t−T1)から現在tまでの最大の無効電力負荷Qpmaxとの差として定義される変動幅である。以下の説明では、この変動幅を「最大変動幅」と呼ぶこともある。負荷変動算出部13は、当該最大変動幅を一定期間T1ごとに求める。なお、一定期間T1は、例えば数分から数十分とする。
【0022】
負荷変動DB14は、負荷変動算出部13で求めた無効電力負荷の最大変動幅を、時間帯別及び無効電力負荷のレベル別に区分して、過去一定期間T2(T2はT1より長い期間であり、例えば1年)分記憶する。つまり、負荷変動DB14は、複数の最大変動幅を記憶する。
【0023】
なお、ここでの時間帯は、例えば1日を1時間刻みで分けた24時間帯、曜日単位で分けた時間帯、48時間帯、あるいは平日単位及び休日単位で分けた時間帯などが考えられる。また、無効電力負荷のレベル(以下略して「レベル」)は、例えば、設備容量を100%とし、10%刻みで分けた10段階のレベルなどが考えられる。
【0024】
変動統計処理部15は、負荷変動DB14に記憶された一定期間T2分の複数の最大変動幅に対して統計処理を行う。本実施の形態では、変動統計処理部15は、無効電力負荷の最大変化幅の平均Qavr及び標準偏差Qstdを求める統計処理を時間帯別及びレベル別に行い、求めた平均Qavr及び標準偏差Qstdを、時間帯別及びレベル別に区分して負荷変動DB14に記憶する。換言すれば、負荷変動DB14は、最大変動幅だけでなく、変動統計処理部15での統計処理の結果を、時間帯別及びレベル別に区分して記憶している。
【0025】
最大負荷予測部16は、現在の無効電力負荷と、負荷変動DB14に記憶されている、変動統計処理部15で求められた統計処理の結果とに基づいて、現在tから所定時間(ここでは上述の一定期間T1と同じ)経過する将来までに生じ得る最大の無効電力負荷たる最大無効電力負荷Qfmaxを予測する。ここでは、最大負荷予測部16は、現在の無効電力負荷Q(t)、平均Qavr及び標準偏差Qstdから、次式(1)に基づいて、最大無効電力負荷Qfmax(t+T1)を予測する。
【0026】
Qfmax(t+T1)=Q(t)+Qavr+α×Qstd…(1)
ただし、この式(1)において、αは1以上の任意の係数である。
【0027】
投入決定部17は、最大負荷予測部16で予測した最大無効電力負荷Qfmax(t+T1)を補償可能な、複数の進相コンデンサ4の投入及び開放の最適な組合せを決定する。ここでは、投入決定部17は、進相コンデンサDB11に記憶されている各進相コンデンサ4のそれぞれの容量に基づいて当該組合せを決定する。そして、投入決定部17は、決定した組合せを進相コンデンサDB11に記憶する。ここで記憶された組合せは、制御部18が次に説明する動作を行った後に、現在の組合せとして用いられる。
【0028】
制御部18は、投入決定部17で決定した組合せに基づいて、複数の開閉器4aの開閉を制御することにより、複数の進相コンデンサ4を選択的に投入及び開放する制御を行う。ここでは、制御部18は、進相コンデンサDB11に記憶されている現在の投入及び開放の組合せと、投入決定部17で決定した投入及び開放の組合せとの差異を抽出し、当該差異に基づいて当該制御を行う。
【0029】
次に、進相コンデンサ制御装置1における主要な構成要素での処理について説明する。
【0030】
図3は、進相コンデンサ制御装置1における負荷算出部12及び負荷変動算出部13の処理を示すフローチャートである。なお、この処理は、例えば、1秒単位などの定周期で実施される。
【0031】
まず、ステップS1にて、負荷算出部12は、無効電力計測器3から受電点無効電力の計測値を取り込む。ステップS2にて、負荷算出部12は、進相コンデンサDB11から、複数の進相コンデンサ4の容量と、それらの現在の投入及び開放の組合せとを取得し、現在投入中の進相コンデンサ4の合計容量を算出する。そして、負荷算出部12は、ステップS1で取得した受電点無効電力と、算出した合計容量との差分を、無効電力負荷として算出する。
【0032】
ステップS3にて、負荷算出部13は、算出した無効電力負荷から、図2に示した一定期間T1ごとの最大変動幅(ここではプラス方向の最大変動幅)を求める。そして、ステップS4にて、負荷算出部13は、ステップS3で求めた最大変動幅を負荷変動DB14に時間帯別及びレベル別に記録する。
【0033】
図4は、進相コンデンサ制御装置1における変動統計処理部15の処理を示すフローチャートである。なお、この処理は、例えば、1ヶ月単位などの定周期で実施される。
【0034】
まず、ステップS11にて、変動統計処理部15は、負荷変動DB14に記憶された一定期間T2分の複数の最大変動幅を、時間帯別及びレベル別に取得する。変動統計処理部15は、ステップS12にて、取得した最大変動幅の平均Qavr及び標準偏差Qstdを時間帯別及びレベル別に求め、ステップS13にて、これらを時間帯別及びレベル別に負荷変動DB14に記録する。
【0035】
図5は、進相コンデンサ制御装置1における最大負荷予測部16、投入決定部17及び制御部18の処理を示すフローチャートである。なお、この処理は、例えば、1秒単位などの定周期で実施される。
【0036】
まず、ステップS21にて、最大負荷予測部16は、上述のステップS2に係る現在の無効電力負荷Q(t)を取得する。ステップS22にて、最大負荷予測部16は、現在の時間帯及び現在の無効電力負荷Q(t)のレベルに対応する、負荷変動DB14に記憶された統計処理の結果(最大変動幅の平均Qavr及び標準偏差Qstd)を、最新の統計処理の結果(最新の最大変動幅の平均Qavr及び標準偏差Qstd)として取得する。
【0037】
ステップS23にて、最大負荷予測部16は、ステップS2に係る現在の無効電力負荷Q(t)と、ステップS22に係る最新の平均Qavr及び標準偏差Qstdとから、上述の式(1)に基づいて、現在tから一定期間T1経過する将来(t+T1)までの間における最大無効電力負荷Qfmax(t+T1)を予測する。
【0038】
ステップS24にて、投入決定部17は、予測した最大無効電力負荷Qfmax(t+T1)を補償するのに必要十分な複数の進相コンデンサ4の投入及び開放の組合せを、各進相コンデンサ4のそれぞれの容量に基づいて決定する。例えば、図6に示すように、補償すべき無効電力負荷の範囲ごとに、投入すべき複数の進相コンデンサ4の組合せをテーブル式に予め登録しておき、そのテーブルを参照することによって、上述の組合せを決定すればよい。
【0039】
ステップS25にて、制御部18は、現在の複数の進相コンデンサ4の投入及び開放の組合せを進相コンデンサDB11から取得する。そして、ステップS26にて、制御部18は、取得した現在の投入及び開放の組合せと、ステップS24で決定した投入及び開放の組合せとを比較して、新たに投入及び開放すべき進相コンデンサ4を抽出する。そして、制御部18は、当該進相コンデンサ4の開閉器4aに対して入り切り指令(制御指令)を送出する。
【0040】
以上のような本実施の形態に係る進相コンデンサ制御装置1及び力率調整器100によれば、一定期間T1の時間幅で補償すべき最大無効電力負荷を予測し、それを補償するように進相コンデンサ4の投入及び開放を制御する。したがって、無効電力負荷が急激に増加する場合に、途中段階の投入及び開放の組合せを経由することなく、所望の投入及び開放の組合せで制御するため、進相コンデンサ4の制御の頻度を抑制することができる。よって、進相コンデンサ4等の寿命が短くなるのを抑制することができる。また、それに伴い、進相コンデンサ4を開放する頻度を抑制することができることから、進相コンデンサ4が放電しきるまでの待ち時間が生じる頻度を抑制することができる。したがって、力率の補償を迅速に行うことができ、力率を適切に補償することができる。
【0041】
また、本実施の形態によれば、最大負荷予測部16は、上式(1)に基づいて、最大無効電力負荷Qfmaxを予測する。したがって、αを任意の数値に設定することにより、その予測精度を調整することができる。例えば、α=2とすれば、実際の無効電力負荷が、予測した最大無効電力負荷Qfmaxを超える確率を、統計的に概ね2.5%とすることができる。
【0042】
また、本実施の形態によれば、最大負荷予測部16は、現在の無効電力負荷Q(t)と、現在の時間帯及び現在の無効電力負荷のレベルに対応する負荷変動DB14に記憶された統計処理の結果とに基づいて、最大無効電力負荷Qfmaxを予測する。したがって、現在の時間帯及びレベルを考慮して最大無効電力負荷Qfmaxを予測することができるため、最大無効電力負荷Qfmaxの予測精度を向上させることができる。
【0043】
なお、以上の説明では、負荷算出部13がプラス方向の最大変動幅を求める場合について説明したが、同様にして、マイナス方向の最大変動幅を求めてもよい。
【0044】
<実施の形態2>
図7は、本発明の実施の形態2に係る力率調整器100の構成を示す図である。以下、本実施の形態に係る力率調整器100(進相コンデンサ制御装置1)の説明において、実施の形態1で説明した構成要素と類似するものについては同じ符号を付して説明を省略する。
【0045】
この図に示すように、本実施の形態に係る力率調整器100(進相コンデンサ制御装置1)は、実施の形態1に係る力率調整器100(進相コンデンサ制御装置1)に、負荷変動初動検出部21が追加されたものとなっている。この負荷変動初動検出部21は、現在tの無効電力負荷Q(t)を、負荷算出部12から取得する。
【0046】
また、負荷変動初動検出部21は、現在tから一定期間T1(例えば1分)前の第1時点(t−T1)での過去の無効電力負荷Q(t−T1)と、第1時点(t−T1)から一定期間T1前の第2時点(t−2×T1)での過去の無効電力負荷Q(t−2×T1)とを、負荷変動DB14から取得する。そして、負荷変動初動検出部21は、無効電力負荷Q(t)と無効電力負荷Q(t−T1)との第1差分が予め設定された指定値(所定値)以上であるかを検出するとともに、無効電力負荷Q(t−T1)と無効電力負荷Q(t−2×T1)との第2差分が上述の指定値以上であるかを検出する。
【0047】
図8は、本実施の形態に係る進相コンデンサ制御装置1における負荷変動初動検出部21、最大負荷予測部16、投入決定部17及び制御部18の処理を示すフローチャートである。なお、この処理は、例えば、1秒単位などの定周期で実施される。
【0048】
まず、ステップS31にて、負荷変動初動検出部21は、無効電力計測器3からの現在の受電点無効電力を取得するとともに、現在の無効電力負荷Q(t)を負荷算出部12から取得する。ステップS32にて、負荷変動初動検出部21は、受電点無効電力が遅れの状態、すなわち進相コンデンサ4による無効電力負荷の補償が十分で有るか否かを判定する。
【0049】
ステップS32にて補償が十分であると判定された場合にはステップS33に進み、ステップS33にて、投入決定部17が、現在の無効電力負荷Q(t)を補償可能な複数の進相コンデンサ4の投入及び開放の組合せを決定する。その後、ステップS40に進む。
【0050】
ステップS32にて補償が不十分であると判定された場合にはステップS34に進み、ステップS34にて、負荷変動初動検出部21は、過去の無効電力負荷Q(t−T1),Q(t−2×T1)を負荷変動DB14から取得する。
【0051】
ステップS35にて、負荷変動初動検出部21が、無効電力負荷Q(t)と無効電力負荷Q(t−T1)との第1差分が指定値よりも小さいことを検出した場合には、上述のステップS33に進む。つまり、この場合には、無効電力負荷の変動が小さい、または、無効電力負荷の変動が終了したとして、最大無効電力負荷Qfmaxの予測を行わずに、投入決定部17が、現在の無効電力負荷を補償可能な複数の進相コンデンサ4の投入及び開放の組合せを決定する。その後、ステップS40に進む。
【0052】
ステップS35にて、負荷変動初動検出部21が、当該第1差分が指定値以上であることを検出した場合には、ステップS36に進む。ステップS36にて、負荷変動初動検出部21が、無効電力負荷Q(t−T1)と無効電力負荷Q(t−2×T1)との第2差分が指定値以上であることを検出した場合には、前回の無効電力負荷の変動が継続しているとして、制御は実施せずに終了する。
【0053】
ステップS36にて、負荷変動初動検出部21が、当該第2差分が指定値よりも小さいことを検出した場合には、現在において無効電力負荷での大きな変動が開始したとして、ステップS37〜S39にて、実施の形態1で説明したステップS22〜S24と同様の処理を行う。すなわち、ステップS37にて、最大負荷予測部16は、現在の時間帯及び現在の無効電力負荷Q(t)のレベルに対応する、負荷変動DB14に記憶された最大変動幅の平均Qavr及び標準偏差Qstdを、最新の最大変動幅の平均Qavr及び標準偏差Qstdとして取得する。
【0054】
ステップ38にて、最大負荷予測部16は、現在の無効電力負荷Q(t)と、最新の平均Qavr及び標準偏差Qstdとから、上述の式(1)に基づいて最大無効電力負荷Qfmaxを予測する。ステップS39にて、投入決定部17は、予測した最大無効電力負荷Qfmaxを補償するのに必要十分な複数の進相コンデンサ4の投入及び開放の組合せを決定する。
【0055】
ステップS40にて、制御部18は、現在の複数の進相コンデンサ4の投入及び開放の組合せを進相コンデンサDB11から取得する。そして、ステップS41にて、制御部18は、ステップS40で取得した現在の投入及び開放の組合せと、ステップS33またはS39で決定した投入及び開放の組合せとを比較して、新たに投入及び開放すべき進相コンデンサ4を抽出する。そして、制御部18は、当該進相コンデンサ4の開閉器4aに対して入り切り指令(制御指令)を送出する。
【0056】
以上のような本実施の形態に係る進相コンデンサ制御装置1及び力率調整器100によれば、図9に示すように、現在tが、無効電力負荷の変動が小さいt1以前である場合には、そのときの無効電力負荷を補償する。また、現在tが、無効電力負荷の変動が大きいt1からt2までの間にある場合には、最大無効電力負荷Qfmaxを予測し、当該最大無効電力負荷Qfmaxを補償する。つまり、この場合には実施の形態1と同様に、進相コンデンサ4の制御の頻度を抑制することができるとともに、力率の補償を迅速に行うことができる。また、現在tが、無効電力負荷の変動が小さいt2以降である場合には、そのときの無効電力負荷を補償する。以上のように本実施の形態によれば、無効電力負荷が急激に変化した場合にのみ、最大無効電力負荷Qfmaxを予測して複数の進相コンデンサ4の投入及び開放を制御することから、力率をより適切に補償することができる。
【0057】
なお、以上の説明では、負荷変動初動検出部21が現在の無効電力負荷Q(t)を負荷算出部12から取得する処理をステップS34で行ったが、これに限ったものではなく、ステップS31で行ってもよい。
【符号の説明】
【0058】
1 進相コンデンサ制御装置、2 受電点、3 無効電力計測器、4 進相コンデンサ、4a 開閉器、14 負荷変動DB、15 変動統計処理部、16 最大負荷予測部、17 投入決定部、18 制御部、21 負荷変動初動検出部、100 力率調整器。

【特許請求の範囲】
【請求項1】
商用系統の受電点において計測された無効電力に基づいて、互いに容量が異なる複数の進相コンデンサを前記受電点の負荷側において選択的に投入及び開放する制御を行う進相コンデンサ制御装置であって、
前記無効電力と、当該無効電力が得られた際に投入されていた前記進相コンデンサの容量との差分である無効電力負荷の変化実績に対して統計処理を行う変動統計処理部と、
現在の前記無効電力負荷と、前記変動統計処理部での前記統計処理の結果とに基づいて、現在から所定時間経過する将来までの最大の前記無効電力負荷たる最大無効電力負荷を予測する最大負荷予測部と、
前記最大負荷予測部で予測した前記最大無効電力負荷を補償可能な前記複数の進相コンデンサの投入及び開放の組合せを決定する投入決定部と、
前記投入決定部で決定した組合せに基づいて、前記複数の進相コンデンサを投入及び開放する制御を行う制御部と
を備える、進相コンデンサ制御装置。
【請求項2】
請求項1に記載の進相コンデンサ制御装置であって、
前記無効電力負荷の前記変化実績は、現在から所定期間前の過去時点での前記無効電力負荷と、当該過去時点から現在までの最大の前記無効電力負荷との差として定義される前記所定期間ごとの変動幅を含み、
前記変動統計処理部は、
前記変動幅の平均及び標準偏差を求める統計処理を行い、
前記最大負荷予測部は、前記現在の無効電力負荷、前記平均及び前記標準偏差から、式(1)に基づいて、前記最大無効電力負荷を予測する、進相コンデンサ制御装置。
最大無効電力負荷=(現在の無効電力負荷)+(平均)+α×(標準偏差)…(1)
ただし、αは1以上の任意の係数
【請求項3】
請求項1または請求項2に記載の進相コンデンサ制御装置であって、
前記変動統計処理部での前記統計処理の結果を、時間帯別及び前記無効電力負荷のレベル別に記憶する負荷変動データベースをさらに備え、
前記最大負荷予測部は、
現在の時間帯及び前記現在の無効電力負荷のレベルに対応する前記負荷変動データベースに記憶された前記統計処理の結果を、最新の統計処理の結果として取得し、当該最新の統計処理の結果と、前記現在の無効電力負荷とから前記最大無効電力負荷を予測する、進相コンデンサ制御装置。
【請求項4】
請求項1または請求項2に記載の進相コンデンサ制御装置であって、
前記変動統計処理部での前記統計処理の結果を、時間帯別及び前記無効電力負荷のレベル別に記憶する負荷変動データベースをさらに備え、
前記最大負荷予測部は、
現在の時間帯及び前記現在の無効電力負荷のレベルに対応する前記負荷変動データベースに記憶された前記統計処理の結果を、最新の統計処理の結果として取得し、当該最新の統計処理の結果と、前記現在の無効電力負荷とから前記最大無効電力負荷を予測し、
現在の前記無効電力負荷と、現在から前記所定期間前の第1時点の前記無効電力負荷との第1差分が所定値以上であるかを検出するともに、当該第1時点の前記無効電力負荷と、前記第1時点から前記所定期間前の第2時点の前記無効電力負荷との第2差分が前記所定値以上であるかを検出する負荷変動初動検出部をさらに備え、
前記負荷変動初動検出部にて前記第1差分が前記所定値以上でかつ前記第2差分が前記所定値よりも小さいことを検出した場合には、前記最大負荷予測部が前記最新の統計処理の結果と前記現在の無効電力負荷とから前記最大無効電力負荷を予測するとともに、前記投入決定部及び前記制御部が動作し、
前記負荷変動初動検出部にて前記第1差分が前記所定値よりも小さいことを検出した場合には、前記投入決定部が前記現在の無効電力負荷を補償可能な前記複数の進相コンデンサの投入及び開放の組合せを決定するとともに、前記制御部が当該組合せに基づいて、前記複数の進相コンデンサを投入及び開放する、進相コンデンサ制御装置。
【請求項5】
請求項1乃至請求項4のいずれかに記載の進相コンデンサ制御装置と、
前記受電点での前記無効電力を計測する無効電力計測器と、
前記複数の進相コンデンサと
を備え、
前記進相コンデンサには、
前記制御部の制御に応じて、前記進相コンデンサを投入及び開放するための開閉を行う開閉器が設けられている、力率調整器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−70513(P2013−70513A)
【公開日】平成25年4月18日(2013.4.18)
【国際特許分類】
【出願番号】特願2011−207237(P2011−207237)
【出願日】平成23年9月22日(2011.9.22)
【出願人】(000006013)三菱電機株式会社 (33,312)
【出願人】(000222037)東北電力株式会社 (228)
【Fターム(参考)】