説明

過冷却防止剤、蓄熱方法及び蓄熱システム

【課題】蓄熱材の過冷却を防止する新規な技術を提供する。
【解決手段】本発明の過冷却防止剤の製造方法は、酢酸ナトリウム3水和物を含む融液に多孔体を浸漬する工程と、多孔体に融液が含浸した状態を保ちながら、融液の過冷却が解除される温度以下で融液及び多孔体を冷却する工程と、を含む。酢酸ナトリウム3水和物を含む蓄熱材を酢酸ナトリウム3水和物の融点よりも高い温度で加熱することによって熱を蓄える。本発明の方法で製造された過冷却防止剤の存在下で、酢酸ナトリウム3水和物が液相から固相へと変化するように蓄熱材から熱を奪う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、過冷却防止剤、蓄熱方法及び蓄熱システムに関する。
【背景技術】
【0002】
蓄熱材の顕熱及び潜熱を蓄えることができる潜熱蓄熱装置が従来から知られている。潜熱蓄熱装置を設計するとき、蓄熱材の過冷却が1つの問題となる。過冷却とは、凝固点まで温度が下がっても物質が凝固せず、液体の状態が保たれる現象を意味する。過冷却が起こると、潜熱を取り出すことができないので、潜熱蓄熱装置の性能は大幅に損なわれる。従って、蓄熱材の過冷却が起こらないようにすることが重要である。
【0003】
過冷却の問題は、特定の蓄熱材、例えば酢酸ナトリウム3水和物を使用した場合に顕在化する。酢酸ナトリウム3水和物の凝固点は約58℃であるが、いったん過冷却が起こると、酢酸ナトリウム3水和物は氷点下に達するまで液体の状態を保つこともある。
【0004】
特許文献1には、粉末状の活性炭を蓄熱材と共存させることによって、過冷却を防止できることが記載されている。活性炭が蓄熱材と共存していると、活性炭が種晶として働く。すなわち、液相の蓄熱材の中で活性炭が結晶成長の核となり、蓄熱材の結晶化が促進される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−96820号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
活性炭は過冷却を防ぐ働きを持っているものの、その効果は限定的である。過冷却を防ぐのに最も適した材料は、蓄熱材で作られた種晶であるが、そのような種晶を蓄熱材と共存させることは事実上不可能である。
【0007】
本発明は、蓄熱材の過冷却を防止する新規な技術を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、酢酸ナトリウム3水和物を含む蓄熱材の過冷却に関して鋭意検討した。その結果、多孔体に酢酸ナトリウム3水和物を含む融液を含浸させ、融液の過冷却が解除される温度以下の温度でその多孔体を冷却することによって得られた結果物が過冷却防止剤として有効であることを見出した。
【0009】
すなわち、本発明は、
酢酸ナトリウム3水和物を含む融液に多孔体を浸漬する工程と、
前記多孔体に前記融液が含浸した状態を保ちながら、前記融液の過冷却が解除される温度以下の温度で前記融液及び前記多孔体を冷却する工程と、
を含む、過冷却防止剤の製造方法を提供する。
【0010】
別の側面において、本発明は、
酢酸ナトリウム3水和物を含む蓄熱材を前記酢酸ナトリウム3水和物の融点よりも高い温度で加熱することによって熱を蓄える工程と、
上記本発明の方法で製造された過冷却防止剤の存在下で、前記酢酸ナトリウム3水和物が液相から固相へと変化するように前記蓄熱材から熱を奪う工程と、
を含む、蓄熱方法を提供する。
【0011】
さらに別の側面において、本発明は、
蓄熱槽と、
前記蓄熱槽に収容された、酢酸ナトリウム3水和物を含む蓄熱材と、
前記蓄熱材と共存するように前記蓄熱槽に収容された、上記本発明の方法で製造された過冷却防止剤と、
前記蓄熱材を前記酢酸ナトリウム3水和物の融点よりも高い温度で加熱することができる熱源と、
前記酢酸ナトリウム3水和物が液相から固相へと変化するように前記蓄熱材から熱を奪うことができる冷熱源と、
を備えた、蓄熱システムを提供する。
【発明の効果】
【0012】
本発明の方法で製造された過冷却防止剤を使用すれば、蓄熱材としての酢酸ナトリウム3水和物の過冷却を防止できる。従って、蓄熱システムの蓄熱性能を確実に発揮させることが可能となる。
【図面の簡単な説明】
【0013】
【図1】本発明の実施形態に係る蓄熱システムの構成図
【図2】温度変化に対する酢酸ナトリウム3水和物の状態変化を示すタイミング図
【図3】過冷却防止剤の製造方法を示す工程図
【図4】過冷却防止剤の製造に使用できる活性炭の模式図
【図5】発核試験の方法を示す概略図
【発明を実施するための形態】
【0014】
以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本発明が限定されるものではない。
【0015】
図1に示すように、本実施形態に係る蓄熱システム100は、蓄熱槽20、ヒートポンプ102、蓄熱回路104、放熱回路106及び制御装置108を備えている。ヒートポンプ102で生成した熱が蓄熱回路104を通じて蓄熱槽20に蓄えられ、蓄熱槽20に蓄えられた熱が放熱回路106を通じて取り出される。蓄熱システム100は、例えば、給湯機又は暖房装置として構成されている。
【0016】
ヒートポンプ102は、圧縮機11、放熱器12、膨張機構13及び蒸発器14によって構成されている。これらの機器が冷媒管で互いに接続され、それにより、冷媒回路15が形成されている。冷媒回路15には、二酸化炭素、プロパンなどの冷媒が充填されている。圧縮機11で圧縮された冷媒は、放熱器12で冷却された後、膨張機構13で膨張し、さらに蒸発器14で蒸発し、再び圧縮機11に戻る。膨張機構13は、典型的には、膨張弁である。膨張弁に代えて、冷媒から動力を回収できる容積式の膨張機を膨張機構13として使用してもよい。ヒートポンプ102は、深夜電力を使用したり、太陽光発電によって得られた電力を使用したりして蓄熱槽20に供給するべき熱を生成できるので、蓄熱システム100の熱源に好適である。
【0017】
蓄熱槽20には、蓄熱材22及び過冷却防止剤24が収容されている。蓄熱材22は、例えば、酢酸ナトリウム3水和物と水との混合物である。蓄熱槽20において、蓄熱材22と過冷却防止剤24とが共存している。過冷却防止剤24の働きにより、蓄熱材22の過冷却を防止できる。
【0018】
蓄熱材22における水の量は、酢酸ナトリウム3水和物の相分離によって無水酢酸ナトリウムが生成することを効果的に防止できる量に調節されている。具体的には、酢酸ナトリウム3水和物を無水酢酸ナトリウムに換算したときに蓄熱材22の中に存在する無水酢酸ナトリウムの比率(無水物濃度)が蓄熱材22の全量に対して50〜60質量%の範囲に収まるように、蓄熱材22における水の量が調節されている。無水物濃度が高すぎると、特定の温度で相分離が起こって無水酢酸ナトリウムが析出し、蓄熱量が低下する可能性がある。また、水の量が増えることでも蓄熱量が低下する。このため、無水物濃度は、上記範囲内にあることが適切である。なお、上記範囲内において無水物濃度が比較的高いとき、蓄熱材22の発核(液相から固相への変化)が生じやすい。
【0019】
蓄熱材22を酢酸ナトリウム3水和物の融点よりも高い温度で加熱することができる限りにおいて、蓄熱槽20に熱を供給する熱源はヒートポンプ102に限定されない。例えば、抵抗加熱装置、燃焼式加熱装置、太陽光や地熱などの自然エネルギーを使用した加熱装置、工場やビルの排熱を使用した加熱装置を熱源として採用できる。
【0020】
蓄熱回路104は、熱交換器26、熱媒体流路30、ポンプ36及びセンサ17によって構成されている。熱交換器26は、蓄熱材22に接触した状態で蓄熱槽20の中に配置されている。熱交換器26の入口と出口は、それぞれ、熱媒体流路30に接続されている。本実施形態では、熱媒体としての水が熱交換器26及び熱媒体流路30を循環する。熱媒体流路30の水がヒートポンプ102の放熱器12で加熱され、加熱された水が熱交換器26を流れる。熱交換器26は、ヒートポンプ102からの熱を蓄熱材22に与える役割を担う。蓄熱槽20の中の蓄熱材22は、ヒートポンプ102の熱で間接的に加熱される。センサ17は、典型的には、サーミスタ、熱電対などの温度センサである。センサ17により、熱交換器26の入口における水の温度を検出することができる。
【0021】
なお、蓄熱材22がヒートポンプ102の熱で直接的に加熱されるように、ヒートポンプ102の放熱器12が蓄熱槽20の中に配置されていてもよい。この場合、蓄熱回路104を省略できる可能性がある。ただし、蓄熱回路104によれば、蓄熱材22の加熱温度を微調整するのに有利である。
【0022】
放熱回路106は、熱交換器26及び熱媒体流路32によって構成されている。熱媒体流路32は、例えば、市水を熱交換器26に供給するとともに、熱交換器26で加熱された水を蛇口、貯湯タンクなどの使用箇所に導くための流路である。放熱回路106の熱媒体流路32は、三方弁28及び29を介して、蓄熱回路104の熱媒体流路30に接続されている。本実施形態では、熱交換器26が蓄熱回路104と放熱回路106とに共用されている。ただし、放熱回路106の熱交換器と蓄熱回路104の熱交換器とが別々に設けられていてもよい。
【0023】
熱媒体流路32は、酢酸ナトリウム3水和物が液相から固相へと変化するように蓄熱材22から熱を奪うことができる冷熱源としての役割を担う。ただし、冷熱源は市水を流す熱媒体流路32に限定されない。例えば、蓄熱システム100が室内放熱器を有する暖房装置として構成されているとき、熱交換器26で加熱した水を室内放熱器に循環させるための流路と、室内放熱器とを冷熱源として採用できる。
【0024】
制御装置108は、ヒートポンプ102、ポンプ36、三方弁28及び三方弁29を制御するように構成されている。制御装置108の具体例はDSP(digital signal processor)である。
【0025】
蓄熱運転を行うとき、熱交換器26及び蓄熱回路104の熱媒体流路30を水が循環するように三方弁28及び29が制御される。ヒートポンプ102及びポンプ36を起動すれば、蓄熱回路104を水が循環し、ヒートポンプ102で生成された熱が蓄熱材22に与えられる。図2に示すように、蓄熱材22に含まれた酢酸ナトリウム3水和物の融点は約58℃である。蓄熱材22を酢酸ナトリウム3水和物の融点よりも高い温度で加熱することによって、潜熱及び顕熱を蓄えることができる。
【0026】
制御装置108は、蓄熱材22を加熱する際の蓄熱材22の温度が80℃を超えることを阻止するように熱交換器26における水(熱媒体)の温度を管理する。具体的に、制御装置108は、熱交換器26の入口に設けられたセンサ17から信号を取得し、熱交換器26の入口における水の温度を識別する。水の温度が80℃を超えないように、圧縮機11の回転数、膨張機構13の開度、ポンプ36の回転数が制御装置108によって調節される。後述する実施例から理解できるように、蓄熱材22の加熱温度を上げすぎると、過冷却防止剤24の効果が若干損なわれる。従って、熱交換器26の入口における水の温度を最適化することにより、過冷却防止剤24の効果を十分に発揮させることが可能となる。
【0027】
放熱運転を行うとき、放熱回路106の熱媒体流路32から熱交換器26に水が流れるように三方弁28及び29が制御される。酢酸ナトリウム3水和物の融点よりも十分に低い温度の水(熱媒体)を熱交換器26に流せば、蓄熱材22から熱が奪われ、酢酸ナトリウム3水和物が液相から固相へと変化する。すなわち、酢酸ナトリウム3水和物の潜熱及び顕熱を蓄熱材22から取り出すことができる。
【0028】
図2に破線で示すように、酢酸ナトリウム3水和物の過冷却が起こると、融点(凝固点)未満の温度になっても酢酸ナトリウム3水和物は液体の状態を保つので、潜熱を取り出すことができない。本実施形態の蓄熱システム100では、蓄熱槽20に過冷却防止剤24が収容されている。過冷却防止剤24の存在下で、酢酸ナトリウム3水和物が液相から固相へと変化するように蓄熱材22から熱を奪うように放熱運転を実施する。このようにすれば、酢酸ナトリウム3水和物の過冷却を防止できるので、酢酸ナトリウム3水和物の潜熱及び顕熱を確実に取り出すことができる。
【0029】
次に、蓄熱システム100で使用されている過冷却防止剤24の製造方法を説明する。
【0030】
図3に示すように、まず、酢酸ナトリウム3水和物と水との混合物を融解させる(ステップS1)。これにより、酢酸ナトリウム3水和物と水とを含む融液が得られる。融液の温度は、例えば60〜100℃の範囲にあり、典型的には70℃である。
【0031】
本実施形態では、酢酸ナトリウム3水和物を無水酢酸ナトリウムに換算したときに融液中に存在する無水酢酸ナトリウムの比率が融液に対して53〜60質量%の範囲に収まるように、融液中の水の量が調節されている。
【0032】
酢酸ナトリウム3水和物の分子量は136である。無水酢酸ナトリウムの分子量は82である。純粋な酢酸ナトリウム3水和物の融液中に存在する酢酸ナトリウムの比率は、融液の質量を100%として、60.3質量%である((82/136)×100=60.3)。例えば、酢酸ナトリウムの比率を53質量%まで下げるためには、下記式(1)に基づき、1molの酢酸ナトリウム3水和物に対して、約1.04molの水を加える必要がある。
[82/(136+18×a)]=0.53・・・(1)
a:加えるべき水のモル量
【0033】
酢酸ナトリウム3水和物のみを含む融液を使用することもできるが、後述する実施例で説明するように、酢酸ナトリウム3水和物と水とを含む融液を使用すると優れた過冷却防止効果を発揮しうる過冷却防止剤が得られる。過冷却防止剤24の製造に使用するべき融液における水の濃度は、蓄熱槽20に収容された蓄熱材22における水の濃度に等しくてもよい。なお、工業上不可避の不純物が融液に含まれる可能性はある。
【0034】
次に、多孔体としての活性炭を融液に浸漬する(ステップS2:浸漬工程)。そのまましばらく放置すると、融液が活性炭に浸み込む。図4に示すように、融液41は、活性炭の細孔44(マクロ孔)及び細孔45(ミクロ孔、メソ孔)に保持される。
【0035】
活性炭は、基本的に非晶質であり、微小な黒鉛様結晶子とそれらをつなぐ炭化水素部分とからなっており、多孔性吸着剤として知られている。活性炭の原料は、石炭系、木質系、その他に大別される。高温で原料を炭化した後、賦活(活性化)することによって活性炭が得られる。原料によって細孔径の分布に特色がある。IUPAC(International Union of Pure and Applied Chemistry)の定義では、ミクロ孔は直径2nm以下であり、メソ孔は直径2〜50nmであり、マクロ孔は直径50nm以上である。原料が椰子殻、石炭、石油ピッチなど変わることで細孔径が異なる。活性炭の形状は、例えば、粉末状、破砕状、ペレット状である。過冷却防止効果は、細孔径が小さく、寸法が大きいものの方が良い傾向が見られる。例えば、2nm以下の平均孔径の細孔を有する活性炭を過冷却防止剤24の製造に好適に使用できる。
【0036】
なお、活性炭の細孔の平均孔径は、IUPACで推奨されるガス吸着法で測定することができる。
【0037】
また、活性炭以外の多孔体も使用可能である。例えば、樹脂多孔質膜などの有機多孔体、多孔質セラミック、ゼオライト、シリカゲルなどの無機多孔体を使用できる。これらの多孔体も活性炭と同様の細孔を有しており、過冷却防止剤24の材料として使用できる。ただし、活性炭は、親水性である、小さい孔径を有する、安価で入手しやすいなどの理由により、過冷却防止剤24の材料として特に推奨される。
【0038】
次に、活性炭を融液に浸した状態を一定時間保持する(ステップS3)。これにより、融液が活性炭に徐々に浸み込む。このときの融液の温度は、例えば60〜100℃であり、典型的には70℃である。保持時間は、例えば0.1〜6時間であり、典型的には3時間である。活性炭への融液の含浸を促進するための処理、例えば、真空含浸処理を実施してもよい。
【0039】
次に、活性炭を融液に浸漬した状態を保ちながら、融液の過冷却が解除される温度以下の温度で融液及び活性炭を冷却する(ステップS4:冷却工程)。種晶を入れるといった特別な操作を行わない限り、融液の温度を下げると、簡単に過冷却が起こる。冷却過程において、融液の温度と酢酸ナトリウム3水和物の融点(58℃)との差が大きくなればなるほど、過冷却が不安定化し、過冷却が解除される傾向が強まる。従って、過冷却を解除するための冷却温度は、低ければ低いほど好ましいと言える。酢酸ナトリウム3水和物の再結晶化温度は約−23℃であることが知られているので、「融液の過冷却が解除される温度」も−23℃と考えることができる。従って、融液の温度を−25℃まで下げてしばらく放置すれば、過冷却を確実に解除できる。典型的には、融液及び活性炭を−25℃又はそれ以下の温度の雰囲気下にしばらく放置する。
【0040】
本実施形態では、冷却工程において、活性炭を融液に浸漬したまま融液及び活性炭を全体的に冷却している。この方法は、酢酸ナトリウム3水和物及び水の混合物を活性炭の細孔で結晶化させる観点において優れている。ただし、融液の外で活性炭を冷却することも可能である。すなわち、活性炭に融液が含浸した状態を保ちながら、融液の過冷却が解除される温度以下の温度(好ましくは、−25℃又はそれ以下の雰囲気温度)で活性炭を冷却すればよい。具体的には、活性炭を融液から取り出して冷却してもよい。
【0041】
ステップS4の冷却工程の後、活性炭の周りから余分な酢酸ナトリウム3水和物を取り除く。これにより、過冷却防止剤24が得られる。冷却工程の後、活性炭を乾燥させる工程を実施してもよい。
【0042】
本実施形態の方法によれば、網目状の細孔を有する活性炭に酢酸ナトリウム3水和物と水との混合物を含浸させ、冷却により過冷却を解除する。すなわち、温度の低下に基づいて過冷却を解除させる。これにより、活性炭の内部に存在する酢酸ナトリウム3水和物と水との混合物が結晶化する。必ずしも明らかではないが、活性炭の内部で結晶化した酢酸ナトリウム3水和物と水との混合の一部は、活性炭との相互作用により、蓄熱時にも溶解しないものと考えられる。そのため、結晶の状態を保持した酢酸ナトリウム3水和物が放熱時に種晶として働き、これにより過冷却防止効果が発揮される。
【0043】
例えば、活性炭に融液を含浸させた後、融液の温度を30℃まで下げて融液に種晶を入れると、過冷却が直ちに解除され、酢酸ナトリウム3水和物の結晶化が急速に進行する。一見すると、種晶を使用する方法によって製造された過冷却防止剤は、過冷却が自然に解除される温度まで融液の温度を下げる方法(本実施形態の方法)によって製造された過冷却防止剤と同じもののように見える。しかし、後述する実施例から明らかとなるように、種晶を使用する方法で製造された過冷却防止剤の効果は限定的である。
【0044】
本実施形態の方法で製造した過冷却防止剤24は、蓄熱システム100に次のような利点をもたらす。システムの複雑化を招くことなく、熱効率的に不利となる過冷却を防止できる。過冷却防止剤24は、活性炭、酢酸ナトリウム3水和物及び水で製造できるので、コストの大幅な増加を招くおそれもない。
【0045】
過冷却防止剤24の効果は、例えば、図5に示す方法で確かめることができる。図5に示すように、蓄熱材22とともに過冷却防止剤24を透明な樹脂製の袋54に入れる。袋54を密封し、70〜80℃の範囲の温度で蓄熱材22を加熱して溶かす。その後、30℃程度の温度の水が貯められた恒温槽52に袋54を入れる。恒温槽52に袋54を入れた時点から蓄熱材22が結晶化するまでに費やされた時間を測定する。蓄熱材22の結晶化は、目視で観察することができる。測定された時間は、過冷却防止剤24の効果の指標となりうる。
【実施例】
【0046】
(実施例1)
図3を参照して説明した方法に沿って過冷却防止剤を製造した。まず、9.46gの酢酸ナトリウム3水和物(和光純薬工業社製、試薬特級)と、0.54mlの純水との混合物を70℃で融解させた。次に、得られた融液に0.1〜0.2gの活性炭(カルゴンカーボンジャパン社製、椰子殻活性炭、ペレット状、直径約5mm)を入れ、温度を70℃に保ちながら融液を3時間放置した。3時間経過後、活性炭の内部に保持された酢酸ナトリウム3水和物及び水を結晶化させるために、融液を−25℃の雰囲気温度で冷却し、結晶化が目視で確認できるまで−25℃の温度で融液を放置した。このようにして、試料No.1〜16の過冷却防止剤を得た。
【0047】
(比較例)
実施例と同じ方法で酢酸ナトリウム3水和物及び水を含む融液を調製し、融液に活性炭を浸漬して3時間放置した。3時間経過後、融液を雰囲気温度で30℃まで冷却した後、酢酸ナトリウム3水和物の種晶を融液に入れて過冷却を強制的に解除させた。このようにして、試料No.17〜32の過冷却防止剤を得た。
【0048】
(発核試験)
実施例及び比較例の過冷却防止剤を用い、図5を参照して説明した方法に従って発核試験を実施した。具体的には、過冷却防止剤及び蓄熱材(10g)をポリエチレン製の袋に入れ、袋を密封した。蓄熱材の組成は、過冷却防止剤の作製に使用した融液と同じ組成であった(無水物濃度57質量%)。袋を70℃又は80℃にて20分間加熱し、蓄熱材を融解させた。その後、30℃の水が貯められた恒温槽に袋を移し、移し替えた直後から蓄熱材の結晶化までに費やされた時間を測定した。結果を表1に示す。
【0049】
【表1】

【0050】
表1に示すように、試料No.1〜8の過冷却防止剤を使用し、融解温度を70℃に設定したとき、蓄熱材は1分以内に結晶化した。融解温度を80℃に設定すると、蓄熱材の結晶化までに若干長い時間を要した試料(試料No.10,13)があったが、その他の試料では10分以内に蓄熱材が結晶化した。これに対し、比較例の過冷却防止剤(No.17〜32)を使用したとき、融解温度によらず、10分以内に蓄熱材は結晶化しなかった。
【0051】
活性炭そのものは融液に浮くが、実施例及び比較例の過冷却防止剤は、溶けた蓄熱材に沈降した。このことは、活性炭の内部に酢酸ナトリウム3水和物が保持されていることを意味する。実施例の過冷却防止剤を目視で観察したところ、活性剤の周囲に蓄熱材(酢酸ナトリウム3水和物と水との混合物)が隙間無く固着して白くなっていた。これに対し、比較例の過冷却防止剤は、蓄熱材の存在を殆ど確認できず、外観は活性炭と変わらなかった。実施例の方法によれば、何らかの理由により、溶解しにくい結晶が活性炭内部の細孔又は外表面に形成されたものと考えられる。その結果、実施例と比較例との間で過冷却防止効果に大きな違いが生じたものと考えられる。
【0052】
(実施例2)
活性炭を浸漬するべき融液として、酢酸ナトリウム3水和物のみを使用した点を除き、実施例1と同じ方法で過冷却防止剤(試料No.33〜40)を製造した。次に、実施例1及び比較例と同じ方法で発核試験を実施した。蓄熱材の組成も実施例1及び比較例の発核試験で用いた蓄熱材の組成と同じであった。融解温度は70℃に設定した。その結果、全ての試料で1分以内に蓄熱材が結晶化した。このことは、活性炭に酢酸ナトリウム3水和物のみを含浸させることによって過冷却防止剤を製造しても、過冷却を防止する効果が十分に発揮されることを意味する。
【0053】
(実施例3)
8.79gの酢酸ナトリウム3水和物(和光純薬工業社製、試薬特級)と、1.21mlの純水との混合物を70℃で融解させた。これにより、活性炭を浸漬するべき融液を得た。その他は、実施例1と同じ方法で過冷却防止剤(試料No.41〜48)を製造した。次に、実施例1及び比較例と同じ方法で発核試験を実施した。蓄熱材の組成も実施例1及び比較例の発核試験で用いた蓄熱材の組成と同じであった。融解温度は70℃に設定した。その結果、2つの試料で1分以内に蓄熱材が結晶化し、他の6つの試料で10分以内に蓄熱材は結晶化しなかった。このことは、活性炭に含浸させるべき融液における水の量を多少増やしたとしても、過冷却を防止する効果がある程度発揮されることを意味している。
【産業上の利用可能性】
【0054】
本発明の過冷却防止剤は、優れた過冷却防止効果を奏するものであり、種々の蓄熱システムに有用である。また、本発明の過冷却防止剤は、酢酸ナトリウム3水和物以外の蓄熱材、蓄冷材にも使用できる可能性がある。
【符号の説明】
【0055】
20 蓄熱槽
22 蓄熱材
24 過冷却防止剤
26 熱交換器
30,32 熱媒体流路
100 蓄熱システム
102 ヒートポンプ
104 蓄熱回路
106 放熱回路
108 制御装置



【特許請求の範囲】
【請求項1】
酢酸ナトリウム3水和物を含む融液に多孔体を浸漬する工程と、
前記多孔体に前記融液が含浸した状態を保ちながら、前記融液の過冷却が解除される温度以下の温度で前記多孔体を冷却する工程と、
を含む、過冷却防止剤の製造方法。
【請求項2】
前記融液の過冷却が解除される温度が−23℃である、請求項1に記載の過冷却防止剤の製造方法。
【請求項3】
前記融液が水をさらに含む、請求項1又は2に記載の過冷却防止剤の製造方法。
【請求項4】
前記融液が前記酢酸ナトリウム3水和物と前記水とからなり、
前記酢酸ナトリウム3水和物を無水酢酸ナトリウムに換算したときに前記融液の中に存在する無水酢酸ナトリウムの比率が前記融液に対して53〜60質量%の範囲に収まるように、前記融液の中の前記水の量が調節されている、請求項3に記載の過冷却防止剤の製造方法。
【請求項5】
前記冷却工程において、前記多孔体を前記融液に浸漬したまま前記融液及び前記多孔体を冷却する、請求項1〜4のいずれか1項に記載の過冷却防止剤の製造方法。
【請求項6】
前記多孔体の細孔の平均孔径が2nm以下である、請求項1〜5のいずれか1項に記載の過冷却防止剤の製造方法。
【請求項7】
前記多孔体が活性炭である、請求項1〜6のいずれか1項に記載の過冷却防止剤の製造方法。
【請求項8】
酢酸ナトリウム3水和物を含む蓄熱材を前記酢酸ナトリウム3水和物の融点よりも高い温度で加熱することによって熱を蓄える工程と、
請求項1〜7のいずれか1項に記載の方法で製造された過冷却防止剤の存在下で、前記酢酸ナトリウム3水和物が液相から固相へと変化するように前記蓄熱材から熱を奪う工程と、
を含む、蓄熱方法。
【請求項9】
蓄熱槽と、
前記蓄熱槽に収容された、酢酸ナトリウム3水和物を含む蓄熱材と、
前記蓄熱材と共存するように前記蓄熱槽に収容された、請求項1〜7のいずれか1項に記載の方法で製造された過冷却防止剤と、
前記蓄熱材を前記酢酸ナトリウム3水和物の融点よりも高い温度で加熱することができる熱源と、
前記酢酸ナトリウム3水和物が液相から固相へと変化するように前記蓄熱材から熱を奪うことができる冷熱源と、
を備えた、蓄熱システム。
【請求項10】
前記熱源が、圧縮機、放熱器、膨張機構及び蒸発器を備えたヒートポンプを含む、請求項9に記載の蓄熱システム。
【請求項11】
前記蓄熱材に接触した状態で前記蓄熱槽の中に配置され、前記熱源からの熱を前記蓄熱材に与える熱交換器と、
前記蓄熱材を加熱する際の前記蓄熱材の温度が80℃を超えることを阻止するように前記熱交換器における熱媒体の温度を管理する制御装置と、
をさらに備えた、請求項9又は10に記載の蓄熱システム。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−67720(P2013−67720A)
【公開日】平成25年4月18日(2013.4.18)
【国際特許分類】
【出願番号】特願2011−207274(P2011−207274)
【出願日】平成23年9月22日(2011.9.22)
【出願人】(000005821)パナソニック株式会社 (73,050)