Notice: Undefined variable: fterm_desc_sub in /mnt/www/biblio_conv.php on line 353
酵母におけるHPV52L1の最適化された発現
説明

酵母におけるHPV52L1の最適化された発現

HPV 52 L1タンパク質をコードする合成DNA分子が提供される。具体的には、本発明はHPV 52 L1タンパク質をコードするポリヌクレオチドを提供し、このポリヌクレオチドは酵母細胞内において高レベル発現をするようコドン最適化されている。本発明のもう1つの実施形態では、合成分子のヌクレオチド配列は酵母によって認識される転写終結シグナルを除去するよう改変されている。合成分子はHPV 52ウイルス様粒子(VLPs)を産生するため、およびHPV 52 VLPsを含むワクチンおよび医薬組成物を生産するために使用され得る。本発明のワクチンは、中和抗体および細胞媒介性免疫反応を通してパピローマウイルス感染に対する有効な免疫学的予防を提供し、また既存のHPV感染の治療にも有効であり得る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的にヒトパピローマウイルス(HPV)感染の予防および/または治療に関する。より具体的には、本発明は、HPV 52 L1タンパク質をコードする合成ポリヌクレオチド、並びに前記ポリヌクレオチドを含む組み換えベクターおよび宿主に関する。本発明は、酵母細胞において組み換えHPV 52 L1またはL1+L2の発現により産生されるHPV 52ウイルス様粒子(VLPs)、およびHPV感染の予防および治療用のワクチン、並びに医薬組成物におけるそれらの使用にも関する。
【背景技術】
【0002】
ヒトパピローマウイルス(HPV)は80タイプ以上存在するが、その多くは、良性の増殖性のいぼから悪性の癌まで、多様な生物学的表現型に関連している(McMurrayら,Int.J.Exp.Pathol.82(1):15‐33(2001)参照)。HPV6およびHPV11は最も一般的に良性のいぼ、非悪性の尖圭コンジローマ、および/または生殖器または呼吸器粘膜の軽度の異形成に関連する。HPV16およびHPV18は最も頻繁に子宮頚部、腟、外陰部、および肛門管の上皮内癌および浸潤癌に関連する、リスクの高いタイプである。子宮頚癌の90%以上はHPV16、HPV18または罹患の少ない腫瘍形成型のHPV31、‐33、‐45、‐52および‐58の感染と関連している(Schiffmanら,J.Natl.Cancer Inst.85(12):958‐64(1993))。HPV DNAが子宮頚癌の90‐100%において検出されるという観察は、HPVが子宮頚癌を引き起こすという強い疫学的証拠を与える(Boschら,J.Clin.Pathol.55:244‐265(2002)参照)。
【0003】
パピローマウイルスは最大8個の初期および2個の後期遺伝子をコードする、小さく(50‐60nm)、エンベロープを持たない、二十面体のDNAウイルスである。ウイルスのゲノムのオープンリーディングフレーム(ORFs)はE1〜E7、およびL1、L2と命名されており、「E」は初期、「L」は後期を意味する。L1とL2はウイルスカプシドタンパク質をコードし、一方E遺伝子はウイルスの複製および細胞の形質転換のような機能に関連している。
【0004】
L1タンパク質は主要カプシドタンパク質であり、分子量55‐60kDaを有する。L2タンパク質はマイナーなカプシドタンパク質である。免疫学的データにより、ウイルスのカプシドにおいてL2タンパク質の大部分はL1タンパク質より内側にあることが示唆されている。L1およびL2タンパク質は両方とも、異なるパピローマウイルスの間で高度に保存されている。
【0005】
酵母、昆虫細胞、哺乳類の細胞または細菌における、L1タンパク質またはL1およびL2タンパク質の組合せの発現は、ウイルス様粒子(VLPs)の自己アセンブリをもたらす(Schiller and Roden,Papillomavirus Reviews内:Current Research on Papillomaviruses;Lacey編,Leeds,UK:Leeds Medical Information,pp 101‐12(1996)参照)。VLPsは形態学的に本物のビリオンに類似しており、動物またはヒトに投与すると高い力価の中和抗体を誘導する能力がある。VLPsは潜在的に腫瘍形成性のウイルスゲノムを含んでいないため、それらはHPVワクチンの開発における生きたウイルスの使用に対する安全な選択肢を示している(Schiller and Hidesheim,J.Clin.Virol.19:67‐74(2000)参照)。この理由から、L1およびL2遺伝子はHPV感染および疾患の予防および治療用ワクチンを開発するための免疫学的な標的として同定された。
【0006】
HPVワクチンの開発および商品化は、形質転換が成功した宿主生物においてカプシドタンパク質の高い発現レベルを得ることと関連する障害によって妨げられており、これが精製タンパク質の産生を制限している。それゆえ、HPV 52 L1タンパク質のようなHPV L1タンパク質をコードする野生型のヌクレオチド配列が同定されているにもかかわらず、意図した宿主細胞内での発現を最適化されたHPV 52 L1をコードするヌクレオチド配列を利用する、粗HPV L1タンパク質の容易に再生可能な源を開発することが非常に期待されるであろう。加えて、ワクチン開発における使用のために天然タンパク質の免疫付与特性を有するHPV 52 L1 VLPsの大量生産は有用であろう。
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、HPV 52 L1遺伝子により発現されるタンパク質産物に対する免疫を誘起または増強する組成物および方法に関する。
【課題を解決するための手段】
【0008】
特に、本発明はHPV 52 L1タンパク質をコードするポリヌクレオチドを提供するものであり、このポリヌクレオチドは酵母細胞内で高レベル発現をするようコドン最適化されたものである。本発明のもう1つの実施形態においては、前記ポリヌクレオチドのヌクレオチド配列は酵母によって認識される転写終結シグナルを除去するように改変されている。本発明はさらに酵母細胞における組み換えHPV 52 L1またはL1+L2の発現により産生されるHPV 52ウイルス様粒子(VLPs)を提供し、またHPV疾患およびHPVと関連のある癌の予防および/または治療のための免疫原性の組成物およびワクチンにおけるHPV 52 VLPsの使用を開示している。
【0009】
本発明は、HPV 52 L1タンパク質をコードする合成DNA分子に関する。合成分子のコドンは酵母細胞によって優先されるコドンを使用するように設計されている。本発明のもう1つの実施形態では、合成分子のヌクレオチド配列は酵母によって認識される転写終結シグナルを除去するよう改変されている。合成分子はVLPsに自己アセンブリしうるHPV 52 L1タンパク質の源として使用されうる。前記VLPsは、VLPを主成分とするワクチンにおいて使用されうる。
【0010】
本発明の典型的な実施形態は、SEQ ID NO:2に規定されるHPV 52 L1タンパク質をコードする合成核酸分子を含み、前記核酸分子は酵母細胞内での高レベル発現のためにコドン最適化されたヌクレオチド配列を含む。
【0011】
本明細書を通して開示される核酸分子を含む、組み換えベクターおよび原核と真核の両方の組み換え宿主細胞を提供する。本発明の好ましい実施形態において、宿主細胞は酵母細胞である。
【0012】
本発明は、(a)HPV 52 L1タンパク質をコードする核酸を含むベクターを酵母宿主細胞内に導入すること;および(b)酵母宿主細胞を前記HPV 52 L1タンパク質を発現させる条件下で培養すること:を含む、組み換え宿主細胞でのHPV 52 L1タンパク質の発現方法にも関する。
【0013】
本発明はさらに、(a)HPV 52 L1タンパク質をコードする核酸分子を含むベクターを酵母宿主細胞内に導入すること(ここで、その核酸分子は酵母宿主細胞内で最適な発現をするようコドン最適化されている);および(b)酵母宿主細胞を前記HPV 52 L1タンパク質を発現させる条件下で培養すること:を含む、組み換え宿主細胞でのHPV 52 L1タンパク質の発現方法に関する。
【0014】
好ましい実施形態においては、核酸分子はSEQ ID NO:1に規定されるヌクレオチド配列を含む(本明細書中で「52 L1 R配列」と呼ぶ)。
【0015】
本発明は、酵母細胞内で産生されるHPV 52ウイルス様粒子(VLPs)、HPV 52 VLPsの産生方法、およびHPV 52 VLPsの使用方法にも関する。
【0016】
本発明の好ましい実施形態においては、酵母はSaccharomyces cerevisiae,Hansenula polymorpha,Pichia pastoris,Kluyvermyces fragilis,Kluveromyces lactis,およびSchizosaccharomyces pombe:からなる群から選択される。
【0017】
本発明のもう1つの態様は、HPV 52 VLPであり、VLPは酵母細胞内でのHPV 52 L1またはL1+L2の組み換え発現により産生される。
【0018】
さらに、本発明のもう1つの態様は、コドン最適化されたHPV 52 L1遺伝子により産生されたHPV 52 L1タンパク質を含むHPV 52 VLPである。本発明のこの態様の典型的な実施形態においては、コドン最適化されたHPV 52 L1遺伝子はSEQ ID NO:1に規定されるヌクレオチド配列を含む。
【0019】
本発明は、動物にHPV 52ウイルス様粒子を投与することを含む、動物における免疫応答を誘起する方法も提供する。好ましい実施形態においては、HPV 52 VLPsはコドン最適化された遺伝子によって産生される。
【0020】
さらに、本発明のもう1つの態様は、HPV 52 VLPsを含むワクチンを哺乳動物に投与することを含む、HPVの関連する子宮頚癌の予防または治療方法である。本発明のこの態様の好ましい実施形態においては、HPV 52 VLPsは酵母内で産生される。
【0021】
本発明は、HPV 52ウイルス様粒子(VLPs)を含むワクチンにも関し、ここでHPV 52 VLPsは酵母内で産生される。
【0022】
本発明のこの態様のもう1つの実施形態においては、ワクチンはさらに少なくとも1つの追加のHPV型のVLPsを含む。少なくとも1つの追加のHPV型は関係のあるどんなHPV型でもよく、当分野で記載された全てのHPV型、またはその後に同定されたものも含む。好ましい実施形態においては、HPV型はいぼや子宮頚癌のような臨床的な表現型と関連する型である。さらに好ましい実施形態においては、少なくとも1つの追加のHPV型はHPV6、HPV11、HPV16、HPV18、HPV31、HPV33、HPV35、HPV39、HPV45、HPV51、HPV55、HPV56、HPV58、HPV59、およびHPV68:からなる群から選択される。
【0023】
本発明は、HPV 52ウイルス様粒子を含む医薬組成物にも関し、ここでHPV 52 VLPsは酵母内で産生される。さらに、本発明はHPV 52 VLPsおよび少なくとも1つの追加のHPV型のVLPsを含む医薬組成物に関する。好ましい実施形態においては、少なくとも1つの追加のHPV型はHPV6、HPV11、HPV16、HPV18、HPV31、HPV33、HPV35、HPV39、HPV45、HPV51、HPV55、HPV56、HPV58、HPV59、およびHPV68:からなる群から選択される。
【0024】
本明細書を通しておよび添付の請求項において使用されているように、単数形の「a」、「an」、および「the」はもし文脈が明らかに別のものを規定していなければ、複数の例を含んでいる。
【0025】
本明細書および添付の請求項を通して使用されているように、以下の定義および略語が適用される:
「プロモーター」という用語は、RNAポリメラーゼが結合するDNA鎖上の認識部位を指す。プロモーターは、転写活性を開始および作動するために、RNAポリメラーゼと共に開始複合体を形成する。複合体は、「エンハンサー」または「上流活性化配列」と呼ばれる配列を活性化すること、または「サイレンサー」と呼ばれる配列を阻害することにより、修飾されうる。
【0026】
「ベクター」という用語は、DNA断片が宿主生物または宿主組織へと導入されうる、幾つかの手段を指す。プラスミド、ウイルス(アデノウイルスを含む)、バクテリオファージおよびコスミドを含む様々な型のベクターが存在する。
【0027】
「カセット」という用語は、ベクターから発現されるべきヌクレオチドまたは遺伝子配列を意味し、例えば、HPV 52 L1タンパク質をコードするヌクレオチドまたは遺伝子配列である。概して、カセットはベクターに挿入される遺伝子配列を含み、ベクターは、ある実施形態においては、ヌクレオチドまたは遺伝子配列を発現するために制御配列を備えている。他の実施形態においては、ヌクレオチドまたは遺伝子配列はその発現のために制御配列を備えている。さらなる実施形態においては、ベクターは幾つかの制御配列を備えており、ヌクレオチドまたは遺伝子配列は他の制御配列を備えている。例えば、ベクターはヌクレオチドまたは遺伝子配列を転写するためのプロモーターを備えることができ、当該ヌクレオチドまたは遺伝子配列は転写終結配列を備える。ベクターにより備えられうる制御配列は、エンハンサー、転写終結配列、スプライスアクセプターおよびドナー配列、イントロン、リボソーム結合配列、およびポリ(A)付加配列を含むが、これらに限定されない。
【0028】
「52 L1野生型配列」および「52 L1 wt配列」という呼称は、本明細書にSEQ ID NO:3として開示されるHPV 52 L1配列を指す。HPV 52 L1野生型配列は以前に記述されているが、臨床的分離物から得られたDNA間での小さな配列の変化をみつけることは稀ではない。それゆえ、代表的なHPV 52 L1野生型配列を、以前にHPV 52 DNAを含むことが示されている臨床サンプルから分離した(実施例1参照)。HPV 52 L1野生型配列を、本明細書に開示されたコドン最適化されたHPV 52 L1配列と比較するために、参照配列として使用した(図1参照)。
【0029】
「HPV 52 L1 R」および「52 L1 R」という呼称は、代表的な合成HPV 52 L1ヌクレオチド配列(SEQ ID NO:1)を意味し、本明細書に開示されるように、当該配列は酵母細胞において高レベル発現をするように優先されるコドンを含むように、再構築されたものである。
【0030】
「有効量」という用語は免疫応答が起こるよう、好適な濃度のポリペプチドを産生するのに十分なワクチン組成物が導入されることを意味する。当業者はこの濃度が変動しうることを認識する。
【0031】
「保存されたアミノ酸置換」はあるアミノ酸残基を別の、化学的に類似したアミノ酸残基により置き換えることを指す。そのような保存された置換の例は:一つの疎水性の残基(イソロイシン、ロイシン、バリン、またはメチオニン)を別のものの代わりに用いること;一つの極性残基を同じ電荷の別の極性残基の代わりに用いること(例えば、リジンの代わりにアルギニン;アスパラギン酸の代わりにグルタミン酸)である。
【0032】
「哺乳類」という用語は、ヒトを含む、あらゆる哺乳動物を指す。
【0033】
「VLP」または「VLPs」は、ウイルス様粒子または複数のウイルス様粒子を意味する。
【0034】
「合成の」は、HPV 52 L1遺伝子が天然に生じることが設計された野生型HPV 52 L1遺伝子(52 L1 wt,SEQ ID NO:3)中に存在するヌクレオチド配列と同じでないヌクレオチド配列を含むように作り出されたことを意味する。先に述べたように、合成分子は本明細書では酵母細胞による発現に好ましいコドンを含むヌクレオチド配列を含むものが提供されている。本明細書で提供される合成分子は、野生型HPV 52 L1遺伝子(SEQ ID NO:2)と同じアミノ酸配列をコードしている。
【0035】
(発明の詳細な説明)
子宮頚癌のほとんどはヒトパピローマウイルス(HPV)の特定の腫瘍形成型の感染と関連がある。本発明は、腫瘍形成性のHPV型の遺伝子により発現されるタンパク質産物に対する免疫を誘起または増強する組成物および方法に関する。具体的には、本発明はHPV 52 L1タンパク質をコードするポリヌクレオチドを提供するものであるが、このポリヌクレオチドは酵母細胞内において高レベル発現をするようにコドン最適化されたものである。本発明はまた酵母内で産生されるHPV 52ウイルス様粒子(VLPs)を提供し、HPVと関連性の癌の予防および/または治療のための免疫原性の組成物およびワクチンにおける前記ポリヌクレオチドおよびVLPsの使用を開示する。
【0036】
野生型のHPV 52 L1ヌクレオチド配列は報告されている(Genbank Accession # NC 001592)。本発明は、HPV 52 L1タンパク質をコードする合成DNA分子を提供する。本発明の一つの態様においては、合成分子はコドン配列を含み、ここで少なくとも幾つかのコドンは高レベル発現をするよう酵母細胞に好まれるコドンを使用するよう改変されている。本発明のもう1つの態様においては、合成分子のヌクレオチド配列は酵母によって認識される転写終結シグナルを除去するように改変されている。合成分子はVLPsに自己アセンブリしうるHPV 52 L1タンパク質発現のためのコード配列として使用されうる。前記VLPsはVLPを主成分とするワクチンにおいて、中和抗体や細胞媒介性免疫反応を通してパピローマウイルス感染に対する効果的な免疫学的予防を提供するために使用されうる。そのようなVLPを主成分とするワクチンは既に確立されているHPV感染の治療にも有効である可能性がある。
【0037】
酵母細胞内でのHPV VLPsの発現は費用効率が高く、発酵槽での大規模生産に容易に適応するというメリットを提供する。加えて、酵母ゲノムは生育および発現の可能性が増加した組み換えおよび形質転換された酵母の選択を確実にするために、容易に改変が可能である。しかしながら、HPV 52 L1を含む多くのHPV L1タンパク質は酵母細胞内での商用的スケールアップに望まれるよりも低レベルで発現される(実施例2参照)。
【0038】
従って、本発明は、酵母細胞の環境内での高レベル発現のために「最適化」されたHPV 52 L1遺伝子配列に関する。
【0039】
4つの可能なヌクレオチド塩基の「トリプレット」コドンは、60以上の異なる形態で存在しうる。これらのコドンはわずか20種の異なるアミノ酸へのメッセージを提供するので(転写の開始および終結と同様)、幾つかのアミノ酸は1つ以上のコドンによってコードされることができ、これはコドンの縮重性として知られる現象である。完全には理解されていない理由により、代替コドンは異なる型の細胞の内因性DNA内に均一には現れない。実際、ある型の細胞においては一定のコドンに対する変わりやすい自然の序列または「優先性」が存在するようである。一例として、アミノ酸のロイシンはCTA、CTC、CTG、CTT、TTA、およびTTGを含む6つのDNAコドンのいずれによっても指定される。微生物に対するゲノムコドンの使用頻度の徹底的な解析によって、酵母および粘菌類のDNAが最も共通してTTAというロイシンを指定するコドンを含むのに対して、大腸菌の内因性DNAは最も共通してCTGというロイシンを指定するコドンを含むことが明らかにされている。この序列を考慮して、大腸菌の宿主によるロイシンの多いポリペプチドの高レベル発現を得る見込みは、ある程度はコドンの使用頻度に依存すると一般に考えられている。例えば、TTAコドンに富んだ遺伝子は大腸菌では発現が乏しく、これに対してCTGに富んだ遺伝子は恐らくこの宿主で高度に発現されるようである。同様に、酵母宿主細胞内でのロイシンの多いポリペプチドの発現に対する優先コドンはTTAであろう。
【0040】
組み換えDNA技術におけるコドンの優先現象の意味合いは明白であり、この現象は形質転換が成功した宿主生物における外因性遺伝子の高発現レベルを得ることに対する、多くのこれまでの失敗を説明するのに役立つ可能性がある(挿入遺伝子中に優先度の低いコドンが繰り返し存在しているかも知れないし、発現のための宿主細胞の機構が同様に効率的に作動していないかも知れない)。この現象は計画された宿主細胞の優先コドンを含むように設計された合成遺伝子が、組み換えタンパク質発現の実施のために外来遺伝物質の最適な形態を与えることを示唆している。従って、本発明の一つの態様は、酵母細胞内において高レベル発現をするようコドン最適化されたHPV 52 L1遺伝子である。本発明の好ましい実施形態においては、同じタンパク質配列をコードする代替コドンの使用は、酵母細胞によるHPV 52 L1タンパク質発現における制約を取り除く可能性があることが明らかになった。
【0041】
本発明に従うと、HPV 52 L1遺伝子セグメントは同一の翻訳配列を有するがSharpおよびCoweにより記述されているように(本明細書に参考として援用するSynonymous Codon Usage in Saccharomyces cerevisiae. Yeast 7:657‐678(1991))、代替コドンを使用した配列に改変された。この方法論は、一般に高度に発現される酵母遺伝子と一般に関連性のない野生型の配列内のコドンを同定すること、および酵母細胞内で高度に発現するために最適なコドンでそれらを置換することからなる。ついで、新しい遺伝子配列はこれらのコドンの置換によって発生した、望ましくない配列について点検される(例えば、「ATTTA」配列、イントロンのスプライス認識部位の不注意な創設、不要な制限酵素部位、高GC含量、酵母によって認識される転写終結シグナルなど)。望ましくない配列は、既存のコドンを同じアミノ酸をコードする異なるコドンで置換することによって除去される。ついで、合成遺伝子セグメントは改善された発現について試験される。
【0042】
上記の方法をHPV 52 L1の合成遺伝子セグメントを創造するために使用して、遺伝子が高レベル発現をするよう最適化されたコドンを含む結果となった。上記手順がHPVワクチンでの使用のためにコドン最適化された遺伝子を設計するための我々の方法論の概略を提供する一方、類似ワクチンの効力または増加した遺伝子発現は、手順における小さな変化または配列中の小さな変化によって得られた可能性があることが、当業者に理解されている。
【0043】
従って、本発明は、HPV 52 L1タンパク質をコードするヌクレオチド配列を含む合成ポリヌクレオチド、またはHPV 52 L1タンパク質の生物学的に活性なフラグメントもしくは突然変異体に関し、そのポリヌクレオチド配列は酵母細胞内での発現のために最適化されたコドンを含んでいる。前記のHPV 52 L1タンパク質の突然変異体は:保存されたアミノ酸置換、アミノ末端のトランケーション、カルボキシ末端のトランケーション、欠失、または付加を含むが、これらに限定されるものではない。任意のそのような生物学的に活性なフラグメントおよび/または突然変異体も、SEQ ID NO:2に規定されるHPV 52 L1タンパク質を免疫学的特性に少なくとも実質的に模倣するタンパク質またはタンパク質フラグメントのいずれかをコードするであろう。本発明の合成ポリヌクレオチドは治療用または予防用のHPVワクチンの開発に有用であるように、機能性HPV 52 L1タンパク質を発現するmRNA分子をコードしている。
【0044】
本発明の一つの態様は、SEQ ID NO:2に規定されるHPV 52 L1タンパク質をコードするコドン最適化された核酸分子であり、前記核酸分子は酵母細胞内で高レベル発現をするようコドン最適化されたヌクレオチド配列を含む。本発明のこの態様の好ましい実施形態においては、核酸分子は、SEQ ID NO:1に規定されるヌクレオチド配列を含む。
【0045】
本発明は、本明細書を通して開示される核酸分子を含む、組み換えベクターおよび原核と真核の両方の組み換え宿主細胞にも関する。本発明の好ましい実施形態においては、宿主細胞は酵母細胞である。
【0046】
本明細書に述べられる方法を通して構築される合成HPV 52 L1 DNA、それらの機能的等価物、およびそれらのフラグメントは、好適なプロモーターおよび他の適切な転写制御要素を含む発現ベクターへの分子クローニングにより組み換え発現されるであろう。前記発現ベクターは、組み換えHPV 52 L1タンパク質を産生するために原核または真核の宿主細胞に形質転換されるであろう。そのような操作のための手法は、当分野で十分に記載されている(Sambrookら Molecular Cloning:A Laboratory Manual;Cold Spring Harbor Laboratory,Cold Spring Harbor,New York(1989);Current Protocols in Molecular Biology,Ausubelら,Green Pub.Associates and Wiley‐Interscience,New York(1988);Yeast Genetics:A Laboratory Course Manual,Roseら,Cold Spring Harbor Laboratory,Cold Spring Harbor,New York(1990),これらは本明細書に全て参考として援用されている)。
従って、本発明は、(a)HPV 52 L1タンパク質をコードする核酸を含むベクターを酵母宿主細胞内に導入すること;および(b)酵母宿主細胞を前記HPV 52 L1タンパク質を発現させる条件下で培養すること:を含む、組み換え宿主細胞でのHPV 52 L1タンパク質の発現方法に関する。
【0047】
本発明はさらに、(a)HPV 52 L1タンパク質をコードする核酸を含むベクターを酵母宿主細胞内に導入すること(ここで、その核酸分子は酵母宿主細胞内で最適な発現をするようコドン最適化されている。);および(b)酵母宿主細胞を前記HPV 52 L1タンパク質を発現させる条件下で培養すること:を含む、組み換え宿主細胞でのHPV 52 L1タンパク質の発現方法に関する。
【0048】
本発明はさらに、(a)SEQ ID NO:1に規定される核酸を含むベクターを酵母宿主細胞内に導入すること;および(b)酵母宿主細胞を前記HPV 52 L1タンパク質を発現させる条件下で培養すること:を含む、組み換え宿主細胞でのHPV 52 L1タンパク質の発現方法に関する。
【0049】
本発明の合成遺伝子は、宿主細胞内でHPV 52 L1タンパク質の効率的な発現を提供するよう設計された配列を含む発現カセット中にアセンブリされることが可能である。カセットは、望ましくは合成遺伝子を、作動可能なようにそれと連結された、関連する転写および翻訳制御配列、例えばプロモーター、および終結配列とともに含む。当業者はGAL10、GAL7、ADH1、TDH3またはPGKプロモーター、または他の真核性の遺伝子プロモーターのような多数の他の周知の任意の酵母のプロモーターが使用されうることを認識しているであろうが、好ましい実施形態においては、プロモーターはS.cerevisiaeのGAL1プロモーターである。他の周知の転写ターミネーターも使用されうるが、好ましい転写ターミネーターはS.cerevisiaeのADH1ターミネーターである。GAL1プロモーター‐ADH1ターミネーターの組み合わせが特に好ましい。
【0050】
本発明のもう1つの態様は、酵母細胞内でHPV 52 L1またはL1+L2遺伝子を組み換え発現することによって産生されるHPV 52ウイルス様粒子(VLP)、HPV 52 VLPsを産生する方法、およびHPV 52 VLPsを使用する方法である。VLPsは、ヒトおよび動物パピローマウイルスの主要なカプシドタンパク質であるL1が酵母、昆虫細胞、哺乳類の細胞または細菌内で発現された場合、自己アセンブリしうる(Schiller and Roden,Papillomavirus Reviews内:Current Research on Papillomaviruses;Lacey編,Leeds,UK:Leeds Medical Information,pp 101‐12(1996)参照)。L1とL2カプシドタンパク質の組み合わせを発現することによって形態学的に不明瞭なHPV VLPsも産生される可能性がある。VLPsはT=7の二十面体構造であるL1の72の五量体から構成される(Bakerら,Biophys.J.60(6):1445‐56(1991))。
【0051】
VLPsは形態学的に真正なビリオンに似ており、動物に投与すると高力価の中和抗体を誘導する能力がある。VLPsでのウサギの免疫化(Breitburdら,J.Virol.69(6):3959‐63(1995))およびイヌの免疫化(Suzichら,Proc.Natl.Acad.Sci.USA 92(25):11553‐57(1995))は中和抗体を誘導し、且つ実験的なパピローマウイルス感染から守ることを示した。加えて、成人女性のHPV 16 VLPsによる免疫化は、HPV 16感染およびHPV 16子宮頚管上皮内腫瘍から守ることを示した(Koutskyら N.Engl.J. Med.347:1645‐51(2002))。VLPsは潜在的に腫瘍形成性のウイルスゲノムを含んでおらず、単一の遺伝子から発現された時、自己アセンブリしうるため、それらはHPVワクチン開発における生きたウイルス使用に対する安全な選択肢を示している(Schiller and Hidesheim,J.Clin.Virol.19:67‐74(2000)参照)。
【0052】
従って、本発明はHPV 52の組み換えL1タンパク質または組み換えL1+L2タンパク質からなるウイルス様粒子に関し、ここで組み換えタンパク質は酵母細胞内で発現される。
【0053】
上に述べたように、本発明の好ましい実施形態においては、HPV 52 VLPsは酵母内で産生される。さらに好ましい実施形態においては、酵母はSaccharomyces cerevisiae,Hansenula polymorpha,Pichia pastoris,Kluyvermyces fragilis,Kluyveromyces lactis,およびSchizosaccharomyces pombe:からなる群から選択される。
【0054】
本発明のもう1つの態様は、コドン最適化されたHPV 52 L1遺伝子により産生されたHPV 52 L1タンパク質を含むHPV 52 VLPである。本発明のこの態様の好ましい実施形態においては、コドン最適化されたHPV 52 L1遺伝子はSEQ ID NO:1に規定されるヌクレオチド配列を含む。
【0055】
さらに本発明のもう1つの態様は、(a)HPV 52 L1タンパク質またはHPV 52 L1+L2タンパク質をコードする組み換えDNA分子で酵母を形質転換すること;(b)組み換えHPV 52タンパク質を産生するために、組み換えDNA分子の発現を可能にする条件下で、形質転換された酵母を培養すること;および(c)HPV 52 VLPsを産生するために、組み換えHPV 52タンパク質を単離すること:を含む、HPV 52 VLPsの産生方法である。
【0056】
本発明のこの態様の好ましい実施形態においては、酵母は、HPV 52 VLPsを産生するようにコドン最適化されたHPV 52 L1遺伝子で形質転換される。特に好ましい実施形態においては、コドン最適化されたHPV 52 L1遺伝子はSEQ ID NO:1に規定されるヌクレオチド配列を含む。
【0057】
本発明は、動物にHPV 52ウイルス様粒子を投与することを含む、動物における免疫応答を誘起する方法も提供する。好ましい実施形態においては、HPV 52 VLPsはHPV 52 L1またはHPV 52 L1+L2をコードするコドン最適化された遺伝子を組み換え発現することによって産生される。
【0058】
さらに、本発明のもう1つの態様は、HPV 52 VLPsを含むワクチンを哺乳動物に投与することを含む、HPV関連性の子宮頚癌の予防および/または治療方法である。本発明のこの態様の好ましい実施形態においては、HPV 52 VLPsは酵母内で産生される。
【0059】
本発明は、HPV 52ウイルス様粒子(VLPs)を含むワクチンにも関する。
【0060】
本発明のこの態様のもう1つの実施形態においては、ワクチンはさらに少なくとも1つの追加のHPV型のVLPsを含む。好ましい実施形態においては、少なくとも1つの追加のHPV型はHPV 6、HPV 11、HPV 16、HPV 18、HPV 31、HPV 33、HPV 35、HPV 39、HPV 45、HPV 51、HPV 55、HPV 56、HPV 58、HPV 59、およびHPV 68:からなる群から選択される。
【0061】
本発明のこの態様の好ましい実施形態においては、ワクチンはさらにHPV 16 VLPsを含む。
【0062】
本発明のもう1つの好ましい実施形態においては、ワクチンはさらにHPV 16 VLPsおよびHPV 18 VLPsを含む。
【0063】
本発明のさらにもう1つの好ましい実施形態においては、ワクチンはさらにHPV 6 VLPs、HPV 11 VLPs、HPV 16 VLPsおよびHPV 18 VLPsを含む。
【0064】
本発明は、HPV 52ウイルス様粒子を含む医薬組成物にも関する。さらに、本発明はHPV 52 VLPsおよび少なくとも1つの追加のHPV型のVLPsを含む医薬組成物に関する。好ましい実施形態においては、少なくとも1つの追加のHPV型はHPV 6、HPV 11、HPV 16、HPV 18、HPV 31、HPV 33、HPV 35、HPV 39、HPV 45、HPV 51、HPV 55、HPV 56、HPV 58、HPV 59、およびHPV 68:からなる群から選択される。
【0065】
本発明のワクチン組成物は、起こりうる毒性を最小限にしてHPV 52感染を最適に妨げるよう適切な用量で単独で使用されうる。加えて、他の薬剤を併用投与または連続投与することが望ましい可能性がある。
【0066】
ワクチンレシピエントへ導入されるウイルス様粒子の量は、発現された遺伝子産物の免疫原性に依存するであろう。一般に、免疫学的または予防的に効果的な用量である約10μg〜100μg、好ましくは約20〜60μgのVLPsが筋肉組織に直接投与される。皮下注射、皮内導入、皮膚を通しての圧入、および腹腔内、静脈内、または吸入送達のような他の投与方法も検討される。追加免疫ワクチン接種が供給されることも検討される。ミョウバンやメルク社のミョウバンアジュバントのようなアジュバントを、本発明ワクチンの非経口的な導入と同時にまたは続けて、静脈内、筋肉内、皮下または他の投与方法のような非経口投与することも有利である。
【0067】
本明細書で挙げられた全ての公開文献は、本発明と関連して使用されるかも知れない方法論および原料を記述および開示する目的で本明細書に参考として援用されている。本明細書において、本発明が先の発明によってそのような開示に先行する権利がないという承認として解釈されるべきものは何もない。
【0068】
添付の図面を参照して本発明の好ましい実施形態を記述したが、本発明がそれらの正確な実施形態に制限されず、様々な変化と改変は添付の請求項で定義される本発明の範囲または精神から逸脱することなしに当業者により実施され得ることを理解すべきである。
【0069】
(実施例)
以下の実施例は、例示としての説明であるが、本発明を制限するものではない。
【実施例1】
【0070】
代表的HPV 52 L1配列の決定
HPV 52 L1配列は既に記載されている(Genbank Accession # NC 001592)。しかしながら、臨床的分離物から得られたDNA間で僅かな配列の変化を見つけることは珍しいことではない。代表的なHPV 52 L1野生型配列を決定するため、あらかじめHPV 52 DNAを含むことが示されている3つの臨床的サンプルからDNAを単離した。HPV 52 L1配列は、Taq DNAポリメラーゼおよび以下のプライマー:5’L1 5’ ‐ A T G T C C G T G T G G C G G C C T A G T ‐ 3’(SEQ ID NO:4)および3’52 Bgl II 5’ ‐ G A G A T C T C A A T T A C A C A A A G T G ‐ 3’(SEQ ID NO:5)を使用してポリメラーゼ連鎖反応(PCR)で増幅した。増幅産物はアガロースゲルで電気泳動し、エチジウムブロマイド染色で視覚化した。〜1500 bpのL1バンドを切り出し、DNAをGeneclean Spin Kit(Q‐Bio Gene,Carlsbad,CA)を使用して精製した。DNAを、ついでTAクローニングベクターであるpCR2.1(Invitrogen)に連結した。TOP10F’という大腸菌細胞をライゲーションミクスチャーを用いて形質転換し、青/白コロニー選択用のカナマイシン+IPTGおよびX‐gal入りのLB寒天でプレート培養した。プレートを反転し、16時間37℃でインキュベートした。
【0071】
増幅した3つの臨床的分離物それぞれに由来する5つの白コロニーについてコロニーPCRを行った。1段階目が96℃、15秒(変性)、55℃、30秒(アニーリング)および68℃、2分(伸長)の10サイクルを含み、二段階目がアニーリング段階が50℃で30秒行われることを除いては本質的に類似したプログラムの35サイクルを含む、2ステップPCRで5’L1および3’52 Bgl IIプライマーを使用した。PCR産物はアガロースゲルで電気泳動し、エチジウムブロマイド染色で視覚化した。各臨床分離物からの幾つかのコロニーは〜1500 bpのバンドの増幅産物を含んでいた。コロニーは37℃で16時間振とうしながら、カナマイシン入りのLB培地で培養した。プラスミドDNAを抽出するためにミニプレップを行い、プラスミド中のL1遺伝子の存在を証明するためそれらを制限酵素で消化した。生じた制限フラグメントはアガロースゲル電気泳動およびエチジウムブロマイド染色で視覚化した。
【0072】
3つの臨床分離物それぞれからのクローンのL1挿入物を含むプラスミドについてDNA配列決定を行った。DNAおよび翻訳されたアミノ酸配列を、互いにおよび既に公表されているGenbankのHPV 52 L1配列と比較した。3つの臨床分離物の配列解析で、Genbankの配列と同一の配列はないことが明らかになった(Accession No.NC 001592)。pCR2.1 HPV 52L1 clone #2Cを代表的なHPV 52 L1配列として選択し、それを本明細書では「52 L1 野生型配列」(SEQ ID NO:3、図1参照)と呼ぶ。52 L1 野生型(wt)として選択した配列は、Genbank配列と比較すると1点の変異を含んでおり、これは1308番目のヌクレオチドのサイレント変異からなっていた(アデニン→グアニン)。HPV 52 L1 wt配列のアミノ酸配列は52 L1のGenbankの配列と同一であった。
【0073】
HPV 52 L1野生型配列は、Bgl IIの伸長を加えるため前記5’L1 Bgl IIプライマー(5’ ‐ G A G A T C T C A C A A A A C A A A A T G T C C G T G T G G C ‐ 3’(SEQ ID NO:6))および前記の3’52 Bgl IIプライマーを使用して増幅した。PCRはTaqポリメラーゼを使用して行った。PCR産物はアガロースゲルで電気泳動し、エチジウムブロマイド染色で視覚化した。〜1500 bpのバンドを切り出し、DNAはGeneclean Spin Kit(Q‐Bio Gene,Carlsbad,CA)を使用して精製した。PCR産物を、ついでpCR2.1ベクターに連結し、TOP10F’細胞をライゲーションミクスチャーを用いて形質転換した。白コロニーを37℃で16時間振とうしながら、カナマイシン入りのLB培地で培養した。プラスミドDNAを抽出するためにミニプレップを行った。HPV 52 L1遺伝子をBgl IIという制限酵素による消化でベクター配列から解放した。消化されたDNAをアガロースゲル電気泳動にかけ、エチジウムブロマイド染色で視覚化した。L1バンドはGeneclean Kitを使用して精製し、脱リン酸化されBamHIで消化したpGAL110ベクターに連結した。TOP10F’という大腸菌細胞をライゲーションミクスチャーを用いて形質転換した。正しい配向のHPV 52 L1挿入物を選別するため、コロニーからのプラスミドDNAをPCRで増幅した。挿入物の配列と配向を確認するためにDNA配列決定を行った。選択したクローンをpGAL110‐HPV 52L1 #5と名付けた。選択したクローンからのマキシプレップDNAを調製した。Saccharomyces cerevisiae細胞はグルスラーゼでスフェロプラストにすることによってコンピテントな状態にし、pGAL110−HPV 52L1 #5を用いて形質転換した。酵母の形質転換体ミクスチャーをLeuのソルビトールプレート上のLeuのソルビトールトップアガーでプレート培養し、反転して30℃で3〜5日間インキュベートした。コロニーを突付き、単離のためLeuのソルビトールプレート上で筋をつけた。単離したコロニーはその後HPV 52 L1転写とタンパク質発現を誘導するために回転チューブ培養で、1.6%グルコースおよび4%ガラクトース入りの5mlの5×LeuAdeのソルビトール中で30℃で増殖させた。
【実施例2】
【0074】
酵母のコドン最適化
酵母で優先されるコドンは記述されている(Sharp,Paul M and Cowe,Elizabeth. Synonymous Codon Usage in Saccharomyces cerevisiae YEAST 7:657‐678(1991))。HPV 52 L1 wtタンパク質の発現は検出可能であった;しかし転写レベルは非常に低く、ノーザンブロットでは検出できなかった。未成熟な転写終結がHPV 52 L1遺伝子の低発現レベルの原因である可能性があると仮定された。この遺伝子の転写を増加し完全長の転写産物が産生されることを確実にするために、HPV 52 L1遺伝子を酵母で優先されるコドンを利用して再構築した。酵母に認識される酵母の転写終結シグナルの存在について配列を調べ、これらの配列を代替コドンで置換することによって除去し、一方で同じアミノ酸配列を保存した。再構築したHPV 52 L1配列(これは酵母のコドン最適化された配列を含む)は、HPV 52 L1 wt配列と比較して379のヌクレオチド改変を含んだ。生じた配列を本明細書では「52 L1 R」(R=再構築、図1参照)と呼ぶ。52 L1 wt(SEQ ID NO:3)と52 L1 R(SEQ ID NO:1)との配列間のヌクレオチド改変を図1に示す。58 L1 Rの翻訳されたアミノ酸配列は改変されなかった(SEQ ID NO:2、図2参照)。再構築された配列は、増加したHPV 52 L1タンパク質の発現をもたらし、これはワクチン開発における使用のための野生型にまさる重要な前進である。
【0075】
最適化された遺伝子を生産するために用いられたストラテジーは、アミノ酸配列を維持しながらヌクレオチドを酵母で優先されるコドン配列で置換することによる、遺伝子をスパンする長いオーバーラップするセンスおよびアンチセンスのオリゴマーを設計することであった。これらのオリゴマーを、Pfu DNAポリメラーゼを用いるPCR反応において鋳型のDNAの代わりに使用した。追加の増幅プライマーを、鋳型のオリゴマーから再構築された配列を増幅するために設計し使用した。
【0076】
増幅に最適な条件はセクション特異的であった;しかし、大部分の反応は94℃、5分(変性)、ついで95℃、30秒を25サイクル(変性)、50〜55℃、30秒(アニーリング)、72℃、1.5分(伸長)、ついで72℃、7分の最終の伸長および4℃でホールドに類似するプログラムを使用した。PCR産物はアガロースゲル電気泳動により調べた。適切なサイズのバンドを切り出し、DNAをゲルのスライスから精製した。次に、増幅フラグメントを1512 ntの再構築されたHPV 52 L1遺伝子をアセンブリするための鋳型として使用した。
【0077】
再構築に続いて、1512 ntのバンドをゲル精製し、pCR4 Bluntベクター(Invitrogen,Carlsbad,CA)に連結した。ライゲーションに続いて、コンピテントな大腸菌TOP10細胞をライゲーションミクスチャーを用いて形質転換した。コロニーをアンピシリン入りの4mlのLB培地で培養し、ミニプレップ技術によってコロニーからプラスミドDNAを抽出した。プラスミドDNAを望まれるHPV 52 L1の再構築の変化の存在を確認するために配列決定した。両端にBamHIの伸長を加えるため、52 L1 R(再構築)をpCR4Blunt‐52 L1 Rから再度増幅した。増幅フラグメントを前記のようにクローニングし、生じたプラスミドDNAを配列決定した。そのプラスミドpCR4 Blunt‐52 L1 R(Bam)をBamHIで消化し、生じたDNAフラグメント挿入物をアガロースゲルで電気泳動した。〜1530 bpのHPV 52 L1 R(Bam)フラグメントをゲル精製し、BamHIで消化したpGAL110に連結した。TOP10F’大腸菌細胞(Invitrogen)をライゲーションミクスチャーを用いて形質転換した。
【0078】
生じたコロニーを正しい配向のHPV 52 L1 R挿入物についてPCRでスクリーニングした。配列と配向をDNA配列決定によって確認した。マキシプレップでプラスミドDNAを調製した。S. cerevisiae細胞をスフェロプラストにすることによってコンピテント状態にし、形質転換した。酵母の形質転換物をLeuのソルビトールアガープレート上のLeuのソルビトールトップアガーでプレート培養し、反転して7日間培養した。コロニーを突付き、クローン単離のためLeuのソルビトールアガープレート上で筋をつけた。単離したコロニーはついでL1の転写とタンパク質発現を誘導するために回転チューブ培養で1.6%グルコースおよび4%ガラクトース入りの5mlの5×LeuAdeのソルビトール中で30℃で増殖させた。48および/または72時間後、OD600=10に等価な培養量をペレット化し、上清を除去し、ペレットを凍結し−70℃で保存した。
【実施例3】
【0079】
RNA調製
ガラクトース誘導によりHPV 52 L1を発現するよう誘導した形質転換した酵母の細胞ペレットを氷上で解凍し、0.8 mlのTrizol試薬(Life Technologies,Gibco BRL)中に懸濁し、室温で5分間インキュベートした。5分の1量のクロロホルムをバイアルに添加した。ついでそれを撹拌するため15秒間勢いよく振とうし、室温で3分間インキュベートした。13 k rpmsで5分間遠心分離した後、上層を回収し、新しいバイアルに移した。0.4 mlのイソプロパノールをバイアルに添加した。混合物を室温で10分間インキュベートした。RNAをペレット化するため、13 k rpmsで10分間遠心分離を行った。上清をデカントし、RNAペレットを75% EtOHで洗浄し、遠心分離の工程を繰り返した。上清を静かに移し、RNAのペレットを15分間空気乾燥し、ついでRNaseを含まない水に懸濁した。A260/280が1.7‐2.0の時、A260が1=40μg/mlのRNAという仮定を使用して、サンプル中のRNA濃度を測定するために分光測光法を行った。
【実施例4】
【0080】
ノーザンブロット解析
1.1 %アガロースホルムアルデヒドゲルをキャストした。5および10マイクログラムのRNAを変性バッファーと混合し(最終濃度:6% ホルムアルデヒド、50%ホルムアミド、0.1×MOPS)、65℃まで10分間熱した。10分の1量のゲルローディングバッファーを添加し、サンプルをゲルにロードした。電気泳動は75ボルトで1×MOPSバッファー中で〜3時間行った。ゲルを10×SSC中で60分間洗浄した。
【0081】
RNAを10×SSC中で16時間にわたって毛管現象によりHybond‐N+ナイロンメンブレン(Amersham Biosciences,Piscataway,NJ)に移した。ついでRNAをStratagene UV Stratalinkerの自動架橋機能(Stratagene,La Jolla,CA)を使用した架橋によってナイロンメンブレンに固定した。固定後、ナイロンメンブレンを空気乾燥した。
【0082】
Roche DIG High Prime DNA Labeling and Detection Kit I(Hoffmann‐La Roche Ltd., Basel,Switzerland)をノーザンブロット上の52 L1 wtおよび52 L1 R RNAを検出するためのプローブとして使用すべく、52 L1 wtおよび52 L1 R DNA配列をDIGで標識するために使用した。プレハイブリダイゼーション、ハイブリダイゼーション、およびアルカリフォスファターゼ標識抗DIG抗体を使用した免疫学的現像をメーカーの推奨に従って行った。要約すると、ブロットを37℃で30分間緩やかに振とうしてプレハイブリダイゼーションした。プローブは95℃まで5分間熱し、ついで氷上で急冷することにより変性させた。プローブをハイブリダイゼーション溶液に添加し、4時間44.6℃で緩やかに振とうしてメンブレンに作用させた。ついでハイブリダイゼーション溶液を除去し、ブロットを室温で0.1%SDSの2×SSCで5分間2回洗浄し、ついで65℃で0.5×SSC、0.1%SDSで追加洗浄した。ついでブロットを30分間ブロッキングし、抗DIGアルカリフォスファターゼ結合抗体を1:5000の希釈率で30分間作用させた。ブロットを洗浄し、プローブが結合したRNAの存在をアルカリフォスファターゼ結合抗DIG結合抗体のNBT/BCIP基質検出によって測定した。
【0083】
HPV 52 L1 wtを発現している酵母の最初の解析によって、HPV 52 L1タンパク質が発現されることが示唆された;しかし、レベルは低かった。HPV 52 L1 wtを発現するよう誘導された培養液の酵母抽出物からのRNAのノーザンブロット解析は、検出可能なHPV 52 L1 RNAを全く示さなかった。適切なサイズの幾らかのタンパク質が検出されたので、幾つかの完全長のRNA転写産物が作られることは明らかであった。HPV 52 L1遺伝子を酵母で優先されるコドン配列で再構築し、安定した転写を確実にするため、全ての可能性のある未成熟な転写終結部位を除外するよう設計した。HPV 52 L1 Rの転写産物のノーザンブロット解析によって、完全長の転写産物が生成され、ノーザンブロット解析によって検出可能であることが明らかにされた(図3)。
【実施例5】
【0084】
HPV 52 L1タンパク質の発現
ガラクトースで誘導したOD600=10と等価の培養液の凍結された酵母細胞ペレットを氷上で解凍し、2mMのPMSF入り300μlのPCバッファー(100 mM NaHP0および0.5 M NaCI,pH 7.0)中に懸濁させた。酸で洗浄した0.5mmのガラスビーズを〜0.5g/チューブ濃度で添加した。チューブを1分間の中断を入れて4℃で5分の3サイクルでボルテックスした。7.5μlの20% TritonX100を添加し、ボルテックス工程を4℃で5分繰り返した。チューブを15分間氷上に置き、ついで4℃で10分間遠心分離した。上清を滅菌されたマイクロ遠心管に移し、全酵母タンパク質抽出物のラベルと日付を付け、−70℃で保存した。
【実施例6】
【0085】
ウエスタンブロット解析
各HPV 52 L1構築物に関する20の単離された酵母コロニーからの全酵母タンパク質抽出物をガラクトース誘導後のHPV 52 L1タンパク質発現を確認するためにウェスタンブロットで解析した。
【0086】
10、5、および2.5マイクログラムの全酵母タンパク抽出物をSDS‐PAGEローディングバッファーと混合し、95℃まで10分間熱した。およそ55 kDaのHPV 16 L1タンパク質をポジティブコントロールとし、HPV L1を含まない全酵母タンパク質抽出物をネガティブコントロール(データは示されていない)として含めた。タンパク質を10% SDS‐PAGEゲルに供し、トリス‐グリシンバッファー中で電気泳動した。タンパク質分離後、タンパク質をゲルからニトロセルロースにウエスタン移動し、生じたブロットは1×希釈バッファー(Kirkegaard and Perry Laboratories,Gaithersburg,MD)中で1時間室温で振とうしながらブロックした。ブロットを3回洗浄し、HPV 16およびHPV 52 L1タンパク質と交差反応する酵母吸収処理ヤギ抗‐trpE‐HPV 31 L1抗血清を室温で16時間適用した。ついでブロットを3回洗浄し、1:2500の希釈率の抗‐ヤギ‐HRP結合抗体で1時間インキュベートした。ついでブロットを再度3回洗浄し、NBT/BCIP検出基質を適用した(Kirkegaard and Perry Laboratories)。免疫反応性のタンパク質をブロット上で紫色バンドとして検出した。
【0087】
全ての事例において、HPV 52 L1タンパク質はおよそ55 kDaに対応してニトロセルロース上に明瞭な免疫反応性バンドとして検出された(図4)。HPV 52 L1 Rバンド(2.5 μgのレーン)の強度はHPV 52 L1 wtバンド(10 μg)よりも有意に強く見えた。ウエスタンブロット上の直接的な比較の限界ではあるが、再構築によって、コドン最適化されたHPV 52 L1 Rの発現レベルが4倍以上増加したことは明らかであり、これはウエスタンブロット上の直接的比較の限界である。
【実施例7】
【0088】
透過型電子顕微鏡研究
52 L1タンパク質が、実際に5量体性L1カプソメア(これは順次ウイルス様粒子に自己アセンブリする)を形成するために自己アセンブリしていることを証明するために、部分的に精製したHPV 52 L1 Rタンパク質の抽出物を透過型電子顕微鏡研究(TEM)に供した。
【0089】
酵母を小スケール発酵で増殖させ、ペレット化した。生じたペレットを精製処理にかけた。ペレット化および浄化した酵母抽出物をHPV 52 L1タンパク質の発現および精製手順を通しての保持を実証するために免疫ブロット法により解析した。ついで浄化した酵母の抽出物を45%‐スクロース緩衝剤の上で遠心分離にかけ、生じたペレットをTEMによるHPV 52 L1 VLPs解析ためのバッファー中に懸濁させた。
【0090】
産生したHPV 52 L1 R VLPsの代表的なサンプルを図5に示す。この粗標本中の球形粒子の直径は、幾つかの粒子がカプソメアの規則的アレイを示している状態で、40〜70nmの範囲であった。
【図面の簡単な説明】
【0091】
【図1A−1】本発明の合成HPV 52 L1遺伝子中で改変されたヌクレオチドを比較する配列アラインメントを示す図である(SEQ ID NO:1、「52 L1 R」と示される)(実施例2参照)。参照配列は52 L1野生型配列(SEQ ID NO:3、「52 L1 wt」と示される;実施例1を参照)である。改変されたヌクレオチドはその対応する位置で示される。ヌクレオチド番号はカッコ内に入っている。52 L1再構築配列内の同一のヌクレオチドは点で示されている。
【図1A−2】本発明の合成HPV 52 L1遺伝子中で改変されたヌクレオチドを比較する配列アラインメントを示す図である(SEQ ID NO:1、「52 L1 R」と示される)(実施例2参照)。参照配列は52 L1野生型配列(SEQ ID NO:3、「52 L1 wt」と示される;実施例1を参照)である。改変されたヌクレオチドはその対応する位置で示される。ヌクレオチド番号はカッコ内に入っている。52 L1再構築配列内の同一のヌクレオチドは点で示されている。
【図1C】本発明の合成HPV 52 L1遺伝子中で改変されたヌクレオチドを比較する配列アラインメントを示す図である(SEQ ID NO:1、「52 L1 R」と示される)(実施例2参照)。参照配列は52 L1野生型配列(SEQ ID NO:3、「52 L1 wt」と示される;実施例1を参照)である。改変されたヌクレオチドはその対応する位置で示される。ヌクレオチド番号はカッコ内に入っている。52 L1再構築配列内の同一のヌクレオチドは点で示されている。
【図2A】再構築した合成HPV 52 L1二本鎖核酸(SEQ ID NO:1および7)および個々にコードするアミノ酸配列(SEQ ID NO:2)を示す図である。ヌクレオチド番号は左に示される。
【図2B】再構築した合成HPV 52 L1二本鎖核酸(SEQ ID NO:1および7)および個々にコードするアミノ酸配列(SEQ ID NO:2)を示す図である。ヌクレオチド番号は左に示される。
【図2C】再構築した合成HPV 52 L1二本鎖核酸(SEQ ID NO:1および7)および個々にコードするアミノ酸配列(SEQ ID NO:2)を示す図である。ヌクレオチド番号は左に示される。
【図3】HPV 52 L1 wtおよびHPV 52 L1 Rの転写産物のノーザンブロットを示す図である(実施例4参照)。ブロットは52 L1 wtおよび52 L1 R配列の両方に対して生成されたDNAプローブの混合物でプローブされた。右の矢印は完全長の52 L1転写産物の予測位置を示している。52 L1 wt RNAの5および10μgのレーンでは、どの長さの転写産物も検出されなかった。完全長の転写産物は52 L1 Rの、5および10μgのレーン両方で見られた。
【図4】HPV 52 L1 wt(52 wt)および52 L1 R(52R)タンパク質のウエスタンブロットを示す図である。HPV 16 L1は参考として含めた(16)。10、5および2.5マイクログラムの全酵母タンパク質抽出物を変性し、10% SDS‐PAGEゲルに適用した。タンパク質はウエスタンで移動させた。HPV 52 L1タンパク質はHPV 52 L1およびHPV 16 L1と交差反応する酵母吸収処理抗‐trpE‐HPV 31 L1ヤギポリクローナル抗血清を使用して結果のブロット上で検出した。分子量マーカーは左にkDaで指示されている。矢印はHPV 52 L1タンパク質の〜55 kDaの位置を示す。
【図5】HPV 52 L1 Rタンパク質分子からなるHPV 52 VLPsの代表的な実例を示す図であり、本明細書では透過型電子顕微鏡研究で視覚化されたものとして記載されている(実施例7を参照)。この粗標本内の球形粒子の直径は、幾つかの粒子がカプソメアの規則的な配列を示している状態で、40〜70nmの範囲であった。横棒はおよそ0.1μmを表す。

【特許請求の範囲】
【請求項1】
SEQ ID NO:2に規定される、HPV 52 L1タンパク質をコードするヌクレオチド配列を含む核酸分子であって、その核酸配列が酵母細胞内での高レベル発現のためにコドン最適化されている核酸分子。
【請求項2】
請求項1に記載の核酸分子を含むベクター。
【請求項3】
請求項2に記載のベクターを含む宿主細胞。
【請求項4】
宿主細胞が酵母細胞である、請求項3に記載の宿主細胞。
【請求項5】
酵母細胞がSaccharomyces cerevisiae,Hansenula polymorpha,Pichia pastoris,Kluyveromyces fragilis,Kluyveromyces lactis,およびSchizosaccharomyces pombeからなる群から選択される、請求項4に記載の宿主細胞。
【請求項6】
宿主細胞がSaccharomyces cerevisiaeである、請求項4に記載の宿主細胞。
【請求項7】
ヌクレオチド配列がSEQ ID NO:1に規定されるヌクレオチド配列を含む、請求項1に記載の核酸分子。
【請求項8】
組み換えL1タンパク質または組み換えL1+L2タンパク質が酵母内で産生されるものである、HPV52の組み換えL1タンパク質または組み換えL1+L2タンパク質を含むウイルス様粒子(VLPs)。
【請求項9】
組み換えL1タンパク質または組み換えL1+L2タンパク質がコドン最適化されたHPV52 L1核酸分子にコードされている、請求項8に記載のVLPs。
【請求項10】
コドン最適化された核酸分子がSEQ ID NO:1に規定されるヌクレオチド配列を含む、請求項9に記載のVLPs。
【請求項11】
(a)HPV52 L1タンパク質またはHPV52 L1+L2タンパク質をコードするコドン最適化されたDNA分子で酵母を形質転換すること;
(b)組み換えパピローマウイルスタンパク質を産生するために、コドン最適化されたDNA分子の発現を可能にする条件下で、形質転換された酵母を培養すること;および
(c)請求項9に記載のVLPsを産生するために、組み換えパピローマウイルスタンパク質を単離すること
を含む、請求項9に記載のVLPsを産生する方法。
【請求項12】
請求項9に記載のVLPsを含むワクチン。
【請求項13】
請求項9に記載のVLPsを含む医薬組成物。
【請求項14】
請求項12に記載のワクチンを哺乳動物に投与することを含む、HPV感染の予防方法。
【請求項15】
請求項11に記載のVLPsを動物に投与することを含む、動物における免疫応答の誘起方法。
【請求項16】
酵母がSaccharomyces cerevisiae,Hansenula polymorpha,Pichia pastoris,Kluyveromyces fragilis,Kluyveromyces lactis,およびSchizosaccharomyces pombeからなる群から選択される、請求項9に記載のウイルス様粒子。
【請求項17】
酵母がSaccharomyces cerevisiaeである、請求項16に記載のウイルス様粒子。
【請求項18】
さらに少なくとも1つの追加のHPV型のVLPsを含む、請求項12に記載のワクチン。
【請求項19】
少なくとも1つの追加のHPV型がHPV6、HPV11、HPV16、HPV18、HPV31、HPV33、HPV35、HPV39、HPV45、HPV51、HPV55、HPV56、HPV58、HPV59、およびHPV68からなる群から選択される、請求項18に記載のワクチン。
【請求項20】
少なくとも1つのHPV型がHPV16を含む、請求項19に記載のワクチン。
【請求項21】
さらにHPV18 VLPsを含む、請求項20に記載のワクチン。
【請求項22】
さらにHPV6 VLPsおよびHPV11 VLPsを含む、請求項21に記載のワクチン。
【請求項23】
さらにHPV31 VLPsを含む、請求項22に記載のワクチン。
【請求項24】
さらにHPV31 VLPsを含む、請求項21に記載のワクチン。
【請求項25】
さらにHPV45 VLPsを含む、請求項23に記載のワクチン。
【請求項26】
さらにHPV45 VLPsを含む、請求項24に記載のワクチン。
【請求項27】
さらにHPV58 VLPsを含む、請求項26に記載のワクチン。
【請求項28】
さらにHPV58 VLPsを含む、請求項25に記載のワクチン。

【図1A−1】
image rotate

【図1A−2】
image rotate

【図1C】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2007−530040(P2007−530040A)
【公表日】平成19年11月1日(2007.11.1)
【国際特許分類】
【出願番号】特願2007−505032(P2007−505032)
【出願日】平成17年3月18日(2005.3.18)
【国際出願番号】PCT/US2005/009199
【国際公開番号】WO2005/097821
【国際公開日】平成17年10月20日(2005.10.20)
【出願人】(390023526)メルク エンド カムパニー インコーポレーテッド (924)
【氏名又は名称原語表記】MERCK & COMPANY INCOPORATED
【Fターム(参考)】