説明

量子状態生成方法、量子状態生成装置、及びプログラム

【課題】確率的ゲートを用い、損失の影響を抑えながら所望のエンタングルメント状態にある複数の量子ビットを生成する。
【解決手段】エンタングルメント状態の3個以上の量子ビットからなる第1量子ビット集合に含まれる1個の量子ビットをX測定し、量子状態|η1>|Φ1>|Φ3>|η3>+|η2>|Φ2>|Φ4>|η4>の第2量子ビット集合を生成する。この量子状態との第3量子ビット集合の量子状態|η51>|Φ5>|η52>+|η61>|Φ6>|η62>に対し、γ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|で表される量子操作を行い、エンタングルメント状態にある量子状態|η71>|Φ1>|η72>+|η81>|Φ2>|η82>の第4量子ビット集合を生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、量子計算技術に関し、特に、エンタングルメント状態の量子ビットを生成する技術に関する。
【背景技術】
【0002】
近年、量子力学を用いることで、これまで不可能であった処理を可能にする量子情報処理が提案されている。例えば、非特許文献1等に開示された一方向量子計算では、複数の量子ビットを量子力学的な相関を持ったクラスター状態と呼ばれるエンタングルメント状態にした後、単一量子ビットに対する測定や制御を行うことで量子計算を行う。
【0003】
一方向量子計算を実現するためには、現実的なデバイスによる実装、及び、損失(ロス)や誤り(エラー)に対する対処が必要であり、これまで様々な一方向量子計算の実現方式が提案されている(例えば、非特許文献2−11等参照)。
【0004】
また単一光子生成器、線形光学素子、光子検出器等を用いた線形光学量子計算では原理的に決定的ゲートを実装できず、確率的ゲートしか実装できないことが知られているが、その状況でも量子計算が可能であることは、非特許文献3等に示されている。なお「決定的ゲート」とは、入力に対して出力が一義的に特定されるゲートを意味し、「確率的ゲート」とは、入力に対して出力が確率的に特定されるゲートを意味する。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】Robert Raussendorf and Hans J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188‐5191 (2001).
【非特許文献2】Daniel E. Browne and Terry Rudolph, “Resource-Efficient Linear Optical Quantum Computation,” Phys. Rev. Lett. 95, 010501 (2005).
【非特許文献3】E Knill, R Laflamme, and Gj Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46‐52 (2001).
【非特許文献4】Michael Varnava, Daniel Browne, and Terry Rudolph, “Loss Tolerance in One-Way Quantum Computation via Counterfactual Error Correction,” Physical Review Letters 97, (2006).
【非特許文献5】Michael Varnava, Daniel E. Browne, and Terry Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
【非特許文献6】C M Dawson, H L Haselgrove, and M A Nielsen, “Noise Thresholds for Optical Quantum Computers,” Phys. Rev. Lett. 96020501, (2006).
【非特許文献7】Sean Barrett and Thomas Stace, “Fault Tolerant Quantum Computation with Very High Threshold for Loss Errors,” Phys. Rev. Lett. 105, 200502 (2010).
【非特許文献8】R. Raussendorf, J. Harrington, and K. Goyal, “A fault-tolerant one-way quantum computer,” Annals Of Physics 321, 2242‐2270 (2005).
【非特許文献9】R Raussendorf and J Harrington, “Fault-Tolerant Quantum Computation with High Threshold in Two Dimensions,” Phys. Rev. Lett. 98, 190504 (2007).
【非特許文献10】Keisuke Fujii and Yuuki Tokunaga, “Fault-Tolerant Topological One-Way Quantum Computation with Probabilistic Two-Qubit Gates,” Phys. Rev. Lett. 105, 250503 (2010).
【非特許文献11】Ying Li, Sean Barrett, Thomas Stace, and Simon Benjamin, “Fault Tolerant Quantum Computation with Nondeterministic Gates,” Physical Review Letters 105, 1‐4 (2010).
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述のように、一方向量子計算では、量子計算を行うために所望のクラスター状態にある複数の量子ビットを生成する必要がある。しかしながら、確率的ゲートを用い、損失の影響を抑えながら所望のエンタングルメント状態にある複数の量子ビットを効率的に生成するための具体的な方式は知られていない。このようなことは一方向量子計算を行う場合のみの問題ではなく、所望のエンタングルメント状態にある複数の量子ビットを生成する場合に共通する問題である。
【0007】
本発明はこのような点に鑑みてなされたものであり、確率的ゲートを用い、損失の影響を抑えながら所望のエンタングルメント状態にある複数の量子ビットを生成するための技術を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明では、β01020304が複素数を表し、|η1>,|η2>,|η3>,|η4>のそれぞれが任意の量子状態を表し、|Φ1>,|Φ2>,|Φ3>,|Φ4>のそれぞれが1個の量子ビットの量子状態を表し、|H>,|V>のそれぞれが計算基底の量子状態を表す場合における、(β01|η1>|Φ1>+β02|η2>|Φ2>)|H>(β03|Φ3>|η3>+β04|Φ4>|η4>)+(β01|η1>|Φ1>−β02|η2>|Φ2>)|V>(β03|Φ3>|η3>−β04|Φ4>|η4>)の量子状態にあるエンタングルメント状態の3個以上の量子ビットからなる第1量子ビット集合に含まれる、量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定し、当該X測定された1個の量子ビットを前記第1量子ビット集合から除いた補集合である第2量子ビット集合を生成し、当該X測定された1個の量子ビットとそれぞれ隣接エンタングルメント状態にあった当該第2量子ビット集合に含まれる特定の2個の量子ビットの量子状態を|Φ1>|Φ3>と|Φ2>|Φ4>との重ね合わせ状態にし、前記第2量子ビット集合の量子状態を、β1324が複素数を表す場合における、β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>にし、α56が複素数を表し、|η51>,|η52>,|η61>,|η62>のそれぞれが任意の量子状態を表す場合における、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態とされた1個の量子ビットを含むエンタングルメント状態の3個以上の量子ビットからなる第3量子ビット集合の量子状態α5|η51>|Φ5>|η52>+α6|η61>|Φ6>|η62>又はα5|Φ5>|η52>+α6|Φ6>|η62>と、前記第2量子ビット集合の量子状態β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>とに対し、γ12が複素数を表す場合における、γ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|で表される量子操作を行い、量子状態|Φ3>と量子状態|Φ4>との重ね合わせ状態であった1個の量子ビットを前記第2量子ビット集合から除いた補集合と、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態であった1個の量子ビットを前記第3量子ビット集合から除いた補集合との和集合である第4量子ビット集合を生成し、当該第4量子ビット集合の量子状態を、α78が複素数を表し、|η71>,|η72>,|η81>,|η82>のそれぞれが任意の量子状態を表す場合における、α7|η71>|Φ1>|η72>+α8|η81>|Φ2>|η82>にする。
【発明の効果】
【0009】
本発明では、確率的ゲートを用い、損失の影響を抑えながらエンタングルメント状態にある複数の量子ビットを生成できる。
【図面の簡単な説明】
【0010】
【図1】図1は、実施形態の量子状態生成装置の機能構成を表すブロック図である。
【図2】図2は、第1実施形態の初期状態生成部を表す図である。
【図3】図3Aは、実施形態のX測定部を表す図である。図3Bは、実施形態のZ測定部を表す図である。
【図4】図4は、実施形態の統合ゲート部を表す図である。
【図5】図5は、実施形態の量子状態生成方法を説明するための図である。
【図6】図6A−6Cは、量子状態生成方法の例を説明するための図である。
【図7】図7A及び7Bは、量子状態生成方法の例を説明するための図である。
【図8】図8A及び8Bは、量子状態生成方法の例を説明するための図である。
【図9】図9A−9Cは、量子状態生成方法の例を説明するための図である。
【図10】図10A及び10Bは、量子状態生成方法の例を説明するための図である。
【図11】図11は、量子状態生成方法の例を説明するための図である。
【図12】図12は、量子状態生成方法の例を説明するための図である。
【図13】図13は、量子状態生成方法の例を説明するための図である。
【図14】図14は、量子状態生成方法の例を説明するための図である。
【図15】図15は、量子状態生成方法の例を説明するための図である。
【図16】図16は、3次元クラスター状態の光子を例示した図である。
【図17】図17は、第2実施形態の初期状態生成部を表す図である。
【発明を実施するための形態】
【0011】
以下、図面を参照して本発明の実施形態を説明する。
〔定義〕
実施形態で用いられる記号や用語を定義する。
量子ビット(qubit)とは、量子情報処理における基本単位である。量子ビットの具体例は、光子の偏光や原子の核スピンなどである。量子ビットは、古典的ビットの2値に対応する計算基底(直交基底)の量子状態の重ね合わせ状態をとる。重ね合わせ状態とは、量子力学的に複数の量子状態が同時に存在することを意味する。量子ビットが光子の偏光である場合、計算基底は光子の互いに直交する偏光方向である。例えば、光子の進行方向に直交する特定の直線に沿った偏光方向(0°の偏光方向/水平偏光方向(「第1偏光方向」に相当))と、光子の進行方向及び水平偏光方向に直交する偏光方向(90°の偏光方向/垂直偏光方向(「第2偏光方向」に相当))とが計算基底とされる。
【0012】
量子状態はケットベクトル|Φ>を用いて表記され、それに対する双対なブラベクトルを<Φ|と表記する。検出器による光子の測定はブラベクトル<σ|で表記される。計算基底の量子状態を|H>及び|V>とすると、1個の量子ビットの量子状態φは、以下のような|H>と|V>の線形結合で表現できる。
φ=c1|H〉+c2|V〉 (|c1|2+|c2|2=1) ...(1)
ここでc1, c2は、複素数で表される各量子状態の係数(「振幅」という)であり、それらの絶対値の2乗値がそれぞれに対応する量子状態をとる確率を示す。
<γ|δ>は|γ>と|δ>との内積を表す。(×)はテンソル積を表し、|γ>(×)|δ>は|γ>と|δ>とのテンソル積を表し、ときに|γ>(×)|δ>は|γ>|δ>と簡略表示される。いかなる|γ>及び|δ>を用いても|γ>(×)|δ>で表現することのできない複数の量子ビットの量子状態をエンタングルメント状態と呼ぶ。量子ビットの対に対する制御ユニタリ演算(制御NOT演算、制御Z演算等)で得られるエンタングルメント状態を隣接エンタングルメント状態と呼び、隣接エンタングルメント状態にある量子ビットの対を隣接する量子ビット(隣接量子ビット)と呼ぶ。
【0013】
収縮とは、複数の量子状態の重ね合わせ状態が、それ以下の数の量子状態の重ね合わせ状態となること、或いは、いずれか1つの量子状態となることをいう。
【0014】
Z測定とは、パウリZ操作を表す行列Zの固有ベクトル(1,0)及び(0,1)のそれぞれを振幅とした2個の量子状態、すなわち|H>及び|V>を基底とした測定を行うことを意味する。なお行列Zは以下のようになる。
【数1】

量子状態が|Φ>の量子ビットをZ測定した結果、|H>が観測される確率は|<H|Φ>|2であり、|V>が観測される確率は|<V|Φ>|2である。
【0015】
X測定とは、パウリX操作を表す以下の行列Xの固有ベクトル(1/√2,1/√2)及び(1/√2,−1/√2)のそれぞれを振幅とした以下の2個の量子状態、すなわち|+>及び|−>を基底とした測定を行うことを意味する。
【数2】

なお、行列Xは以下のようになる。
【数3】

量子状態が|Φ>の量子ビットをX測定した結果、|+>が観測される確率は|<+|Φ>|2であり、|−>が観測される確率は|<−|Φ>|2である。
【0016】
GHZ状態とは、以下のように表わされる3個の量子ビットのエンタングルメント状態、及び、このエンタングルメント状態にある量子ビットに対して量子ビットごとに個別な(局所的な)ユニタリ変換操作(ユニタリ変換で表される量子操作)を施して得られる量子状態を意味する。
【数4】

すなわちGHZ状態の3個の量子ビットは、当該3個の量子ビットそれぞれの量子状態がすべて|H>である量子状態とすべて|V>である量子状態との重ね合わせ状態にあるか、又は、この重ね合わせ状態に対してさらに量子ビットに個別なユニタリ変換操作を施して得られる量子状態にある。
【0017】
クラスター状態とは、エンタングルメント状態の一種であり、複数個の量子ビットに含まれる量子ビットの対(論理的に隣接する量子ビットの対)のそれぞれが隣接クラスター状態にある状態を意味する。隣接クラスター状態とは、それぞれの量子状態が|+>である量子ビットの対(2個の量子ビット)の量子状態|+>|+>に対して制御パウリZ操作CZを施して得られる量子状態、及び、隣接クラスター状態にある量子ビットの対の量子状態に対して制御パウリZ操作CZを施して得られる量子状態、及び、隣接クラスター状態にある量子ビットの対の量子状態に対してさらに量子ビットごとに個別なユニタリ変換操作を施して得られる量子状態を意味する。制御パウリZ操作は以下の行列CZで表現される。
【数5】

【0018】
言い換えると、制御パウリZ操作は、|H>|H>を|H>|H>に、|H>|V>を|H>|V>に、|V>|H>を|V>|H>に、|V>|V>を−|V>|V>にする操作である。さらに言い換えると、量子ビットの対Q,Qの量子状態に対する制御パウリZ操作は、量子ビットQの量子状態が|V>のときに量子ビットQの量子状態に対してパウリZ操作を施し、量子ビットQの量子状態が|H>のときに量子ビットQの量子状態を操作しないものである。パウリZ操作は|H>を|H>にし、|V>を−|V>にする。ただし以下が満たされる。
【数6】

【0019】
なお、GHZ状態の3個の量子ビットはクラスター状態にある。それぞれの量子状態が|+>である3個の量子ビットQ,Q,Qの量子状態|+>|+>|+>は以下のように表現できる。記載の簡略化のため、これ以降の式(5)-(7)の表記からは振幅が省略されている。
|+>|+>|+>
=|H+V>|H+V>|H+V>
=|H>|H>|H>+|H>|H>|V>+|H>|V>|H>+|H>|V>|V>+|V>|H>|H>+|V>|H>|V>+|V>|V>|H>+|V>|V>|V> ...(5)
量子ビットQ,Qの対と量子ビットQ,Qの対のそれぞれに制御パウリZ操作を施すと、以下のようになる。
|H>|H>|H>+|H>|H>|V>+|H>|V>|H>−|H>|V>|V>+|V>|H>|H>+|V>|H>|V>−|V>|V>|H>+|V>|V>|V>
=(|H>+|V>)|H>(|H>+|V>)+(|H>−|V>)|V>(|H>−|V>)
=|+>|H>|+>+|−>|V>|−> ...(6)
さらに式(6)で表される量子状態の量子ビットQ及びQに量子ビットごとのユニタリ変換操作であるアダマールゲート操作σを施す、言い換えると、式(6)で表される3個の量子ビットQ,Q,Qに対してσ(×)I(×)σの操作を施す。すると、量子ビットQ,Q,Qの量子状態は以下のようになる。ただし、Iは1個の量子ビットに対して量子操作がなされないこと(無操作)を表す。
|H>|H>|H>+|V>|V>|V>=|GHZ> ...(7)
これより、GHZ状態の3個の量子ビットはクラスター状態にあることが分かる。なお、アダマールゲート操作は以下のように表現される。
【数7】

【0020】
3次元クラスター状態とは、複数の量子ビットからなる集合に含まれる6個以上の各量子ビットが当該集合に含まれる何れか4個の量子ビットとそれぞれ隣接クラスター状態にある状態を意味する。3次元クラスター状態にある量子ビット集合の例は、量子ビットQ(n) (n=0,...,17)を含み、量子ビットQ(1)が量子ビットQ(7),Q(8),Q(9),Q(10)と隣接クラスター状態にあり、量子ビットQ(2)が量子ビットQ(8),Q(11),Q(12),Q(15)と隣接クラスター状態にあり、量子ビットQ(3)が量子ビットQ(15),Q(16),Q(17),Q(18)と隣接クラスター状態にあり、量子ビットQ(4)が量子ビットQ(10),Q(13),Q(14),Q(17)と隣接クラスター状態にあり、量子ビットQ(5)が量子ビットQ(9),Q(12),Q(13),Q(16)と隣接クラスター状態にあり、量子ビットQ(6)が量子ビットQ(7),Q(11),Q(14),Q(18)と隣接クラスター状態にあるものである(図16参照)。
【0021】
光子が光学素子(偏光ビームスプリッタ、偏光回転素子、偏光板、検出器など)に入射するとは、光子の量子状態が当該光学素子に入力されるという意味である。光子が光学素子から出射するとは、光子の量子状態が当該光学素子から出力されるという意味である。ここで光子の量子状態とは、光子の単一の量子状態だけではなく重ね合わせの状態をも含む概念である。言い換えると、光子が光学素子に入射するとは光子の波動関数が当該光学素子に入力することを意味し、光子が光学素子から出射するとは光子の波動関数が当該光学素子から出力されることを意味する。
【0022】
〔原理〕
次に実施形態の原理を説明する。
実施形態では、確率的ゲートで実現される測定ステップと連結ステップとによって、損失の影響を抑えながら所望のエンタングルメント状態を生成する。
【0023】
測定ステップでは、ψ=(β01|η1>|Φ1>+β02|η2>|Φ2>)|H>(β03|Φ3>|η3>+β04|Φ4>|η4>)+(β01|η1>|Φ1>−β02|η2>|Φ2>)|V>(β03|Φ3>|η3>−β04|Φ4>|η4>)の量子状態にあるエンタングルメント状態の3個以上の量子ビットからなる第1量子ビット集合に含まれる、量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定し、当該X測定された1個の量子ビットを第1量子ビット集合から除いた補集合である第2量子ビット集合を生成し、当該X測定された1個の量子ビットとそれぞれ隣接エンタングルメント状態にあった当該第2量子ビット集合に含まれる特定の2個の量子ビットの量子状態を|Φ1>|Φ3>と|Φ2>|Φ4>との重ね合わせ状態にし、第2量子ビット集合の量子状態をβ13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>にする。ただし、β010203041324が複素数を表し、|η1>,|η2>,|η3>,|η4>のそれぞれが任意の量子状態を表し、|Φ1>,|Φ2>,|Φ3>,|Φ4>のそれぞれが1個の量子ビットの量子状態を表し、|H>,|V>のそれぞれが計算基底の量子状態を表す。「任意の量子状態」とは、1個若しくは複数個の量子ビットの何らかの量子状態、又は、量子ビットが存在しない状態を意味する。
【0024】
連結ステップでは、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態とされた1個の量子ビットを含むエンタングルメント状態の3個以上の量子ビットからなる第3量子ビット集合の量子状態α5|η51>|Φ5>|η52>+α6|η61>|Φ6>|η62>又はα5|Φ5>|η52>+α6|Φ6>|η62>と、第2量子ビット集合の量子状態β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>とに対し、γ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|で表される量子操作を行い、量子状態|Φ3>と量子状態|Φ4>との重ね合わせ状態であった1個の量子ビットを第2量子ビット集合から除いた補集合と、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態であった1個の量子ビットを第3量子ビット集合から除いた補集合との和集合である第4量子ビット集合を生成し、当該第4量子ビット集合の量子状態をα7|η71>|Φ1>|η72>+α8|η81>|Φ2>|η82>にする。ただし、α567812が複素数を表し、|η51>,|η52>,|η61>,|η62>,|η71>,|η72>,|η81>,|η82>のそれぞれが量子状態を表す。またi=jの場合に<Φi|Φj>≠0が満たされ、i≠jの場合に<Φi|Φj>=0が満たされる。例えば、i=jの場合に<Φi|Φj>=εが満たされ、i≠jの場合に<Φi|Φj>=0が満たされる。εは定数であり、例えばε=1である。
【0025】
測定ステップで、上記第1量子ビット集合に含まれる|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定すると、何れかの計算基底|H>又は|V>が観測される。このX測定は、上記の量子状態ψを(β01|η1>|Φ1>+β02|η2>|Φ2>)|H+V>(β03|Φ3>|η3>+β04|Φ4>|η4>)+(α0(β01|η1>|Φ1>−β02|η2>|Φ2>)|H―V>(β03|Φ3>|η3>−β04|Φ4>|η4>)にしてから、上記の1個の量子ビットの量子状態を基底|H>又は|V>で測定することに相当する。
ここで、計算基底|H>が観測されたとすると、X測定された1個の量子ビットを第1量子ビット集合から除いた補集合の量子状態は以下のようになる。
β01β03|η1>|Φ1>|Φ3>|η3>+β02β04|η2>|Φ2>|Φ4>|η4
=β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4> ...(8)
一方、計算基底|V>が観測されたとすると、X測定された1個の量子ビットを第1量子ビット集合から除いた補集合の量子状態は以下のようになる。
β01|η1>|Φ1>β04|Φ4>|η4>+β02|η2>|Φ2>β03|Φ3>|η3
=β14|η1>|Φ1>|Φ4>|η4>+β23|η2>|Φ2>|Φ3>|η3> ...(9)
【0026】
計算基底|H>が観測された場合には、式(8)の量子状態がそのまま最終的な第2量子ビット集合の量子状態となっている。一方、計算基底|V>が観測された場合には、さらに式(9)の量子状態に対して量子ビットごとのユニタリ変換操作が施されて最終的な第2量子ビット集合の量子状態(式(8)の量子状態)とされる。このユニタリ変換操作は、式(9)の量子状態の|Φ3>と|Φ4>の重ね合わせ状態の量子ビットに対して行われる。そのため、実際の物理系でこのユニタリ変換操作を行った場合には、この量子状態の|Φ3>と|Φ4>の重ね合わせ状態にあった量子ビットが損失する可能性がある。例えば、光子の偏光を量子ビットとする光学系の場合、このユニタリ変換操作は|Φ3>と|Φ4>の重ね合わせ状態にあった光子を波長板に入射して通過させることに相当し、この波長板によって光子が損失する可能性がある。しかしながら、次の連結ステップでは、損失する可能性がある|Φ3>と|Φ4>の重ね合わせ状態にあった量子ビットに対してγ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|で表される量子操作がなされる。i=jの場合に<Φi|Φj>≠0であり、i≠jの場合に<Φi|Φj>=0であるため、当該|Φ3>と|Φ4>の重ね合わせ状態にあった量子ビットはこの量子操作によって除外され、エンタングルメント状態の第4量子ビット集合が生成される。すなわち、i=jの場合に<Φi|Φj>≠0であり、i≠jの場合に<Φi|Φj>=0であるため、連結ステップで(α5|η51>|Φ5>|η52>+α6|η61>|Φ6>|η62>)(β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>)(γ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|)の操作、又は、(α5|Φ5>|η52>+α6|Φ6>|η62>)(β13|Φ1>|Φ3>|η3>+β24|Φ2>|Φ4>|η4>)(γ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|)の操作で得られる量子状態はα7|η7>|Φ1>|η52>+α8|η8>|Φ2>|η62>のエンタングルメント状態となり、上述のように損失し得る|Φ3>と|Φ4>の重ね合わせ状態にあった量子ビットはこのエンタングルメント状態の量子ビット集合から除外される。
以上のように損失し得る|Φ3>と|Φ4>の重ね合わせ状態にあった量子ビットが除外されることで、損失の影響を抑制しつつエンタングルメント状態の第4量子ビット集合が生成される。
【0027】
また測定ステップで、量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定して得られた結果が計算基底|H>であった場合にのみ、第2量子ビット集合が生成されてもよい。このような第2量子ビット集合は式(8)の量子状態にあるため、損失を生じさせる可能性がある上記のユニタリ変換操作を行うことなく、その後の連結ステップを実行できる。これによっても損失の影響を抑制しつつエンタングルメント状態の第4量子ビット集合を生成できる。
【0028】
また、測定ステップで量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定した結果、計算基底|H>又は|V>の測定結果が得られた場合に測定ステップで第2量子ビット集合が生成されてもよい。すなわち、上記のX測定した場合には必ず何れかの計算基底|H>又は|V>が観測されるはずであるが、実際の物理系での測定では検出器の性能等によっては観測結果が得られない場合がある。このような場合にはX測定後の量子状態が式(8)(9)の何れであるかが不明となり、最終的に所望のエンタングルメント状態にある量子ビットを生成することができなくなる。このような場合、第2量子ビット集合を生成しないことが望ましい。
【0029】
さらに、測定ステップで量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定しても計算基底|H>又は|V>の測定結果が得られなかった場合、少なくとも第1量子ビット集合に含まれる量子ビットのうち量子状態|Φ3>と|Φ4>との重ね合わせ状態であった1個の量子ビットを基底|Φ3>,|Φ4>で測定(例えば、計算基底|H>,|V>で測定する場合にはZ測定)し、それによって量子状態が|η3>又は|η4>に収縮した量子ビットの集合、又は当該子状態が|η3>又は|η4>に収縮した量子ビットの集合に対して量子ビットごとのユニタリ変換操作を施して得られる量子ビットの集合を、新たな第1量子ビット集合とするか第3量子ビット集合としてもよい。
この測定によってΦ3が観測された場合の量子状態は以下の何れかである。
|η1>|Φ1>|η3> ...(10)
|η2>|Φ2>|η3> ...(11)
一方、Φ4が観測された場合の量子状態は以下の何れかである。
|η2>|Φ2>|η4> ...(12)
|η1>|Φ1>|η4> ...(13)
すなわち、測定結果がΦ3であったかΦ4によって、量子状態|η3>と|η4>との重ね合わせ状態にあった複数又は単数の量子ビットの量子状態が|η3>に収縮したのか|η4>に収縮したのかを知ることができる。よって、式(10)-(13)の量子状態にある量子ビットの集合のうち、さらに|Φ1>と|Φ2>との重ね合わせ状態にある1個の量子ビットをZ測定して|η3>又は|η4>に収縮した量子ビットの集合を得て、|η3>又は|η4>に収縮した量子ビットの集合、又は、当該子状態が|η3>又は|η4>に収縮した量子ビットの集合に対して量子ビットごとのユニタリ変換操作を施して得られる量子ビットの集合を、所望のエンタングル状態を生成するために利用することができる。
【0030】
また、量子ビットが光子であり、量子ビット集合が光子集合であり、量子状態が光子の偏光方向であり、量子状態|H>が第1偏光方向であり、量子状態|V>が第2偏光方向であり、|Φ1>,|Φ3>,|Φ5>のそれぞれが第1偏光方向であり、|Φ2>,|Φ4>,|Φ6>のそれぞれが第2偏光方向である場合、連結ステップは、例えば、次のような統合ゲート部を用いて実行される。この統合ゲート部は、第1,2入射部及び第1,2出射部を含む偏光ビームスプリッタと、入射した量子ビットの偏光方向を45°変化させて出射する第1,2の偏光回転素子と、偏光方向が第1偏光方向である量子ビットを通過させ、偏光方向が第1偏光方向に直交する第2偏光方向である量子ビットを遮断する第1,2偏光板と、第1,2検出器とを含む。第1出射部が第1入射部に入射した第1偏光方向の量子ビット及び第2入射部に入射した第2偏光方向の量子ビットを出射し、第2出射部が第1入射部に入射した第2偏光方向の量子ビット及び第2入射部に入射した第1偏光方向の量子ビットを出射し、第1の偏光回転素子に第1出射部から出射された量子ビットが入射し、第2の偏光回転素子に第2出射部から出射された量子ビットが入射し、第1偏光板に第1の偏光回転素子から出射された量子ビットが入射し、第2偏光板に第2の偏光回転素子から出射された量子ビットが入射し、第1検出器に第1偏光板を透過した量子ビットが入射し、第2検出器に第2偏光板を透過した量子ビットが入射する。この例の連結ステップでは、統合ゲート部の第1入射部に、特定の2個の量子ビットに含まれる、量子状態|Φ3>と量子状態|Φ4>との重ね合わせ状態とされた1個の量子ビットを入射させ、第2入射部に、第3量子ビット集合に含まれる、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態とされた1個の量子ビットを入射させ、第1,2検出器の両方で量子ビットが検出されたかを判定する。第1,2検出器の両方で量子ビットが検出されたと判定された場合の第2量子ビット集合から第1入射部に入射された量子ビットを除いた補集合と、第1,2検出器の両方で量子ビットが検出されたと判定された場合の第3量子ビット集合から第2入射部に入射された量子ビットを除いた補集合との和集合を第4量子ビット集合とする。
【0031】
このような統合ゲート部を用いた処理において、第1,2検出器の何れかで量子ビットが検出されなかったと判定された場合、第1入射部に入射された量子ビットと隣接エンタングルメント状態にあった量子ビットである第1隣接量子ビットと隣接エンタングルメント状態にあった量子ビットである第2隣接量子ビットをZ測定し、第2入射部に入射された量子ビットと隣接エンタングルメント状態にあった量子ビットである第3隣接量子ビットと隣接エンタングルメント状態にあった量子ビットである第4隣接量子ビットをZ測定し、第1入射部に入射された量子ビットと第1隣接量子ビットと第2隣接量子ビットとを第2量子ビット集合から除いた第1補集合の部分集合、第2入射部に入射された量子ビットと第3隣接量子ビットと第4隣接量子ビットとを第3量子ビット集合から除いた第2補集合の部分集合、第1補集合の部分集合に対して量子ビットごとのユニタリ変換操作を施して得られる量子ビットの集合、及び、第2補集合の部分集合に対して量子ビットごとのユニタリ変換操作を施して得られる量子ビットの集合の少なくとも一部を、新たな第1量子ビット集合とするか新たな第3量子ビット集合としてもよい。これにより、統合ゲート部の処理が失敗した量子ビットを再利用することができる。
【0032】
好ましくは、|η1>と|η2>の重ね合わせ状態がエンタングルメント状態であり、|η3>と|η4>の重ね合わせ状態がエンタングルメント状態であり、|η51>と|η61>の重ね合わせ状態がエンタングルメント状態であり、|η52>と|η62>の重ね合わせ状態がエンタングルメント状態であり、|η72>と|η82>の重ね合わせ状態がエンタングルメント状態である。この場合、上述のような測定ステップ及び連結ステップを繰り返し実行することで、所望のエンタングルメント状態の複数の量子ビットを生成することができる。その際には例えば、エンタングルメント状態の複数個の量子ビットからなる第5量子ビット集合に含まれる何れかの特定の量子ビットを測定することで、第5量子ビット集合から当該特定の量子ビットを除いた第6量子ビット集合を生成する除去ステップが実行されてもよい。そして、第4量子ビット集合又は第6量子ビット集合が所望の量子ビット集合となるまで、第4量子ビット集合又は第6量子ビット集合が新たな第1量子ビット集合又は新たな第3量子ビット集合とされて測定ステップ及び連結ステップが再び実行される処理、何れかの連結ステップで得られた第4量子ビット集合が第5量子ビット集合とされて除去ステップが実行される処理、及び第6量子ビット集合が新たな第5量子ビット集合とされて除去ステップが再び実行される処理、の少なくとも一部が繰り返し実行されてもよい。除去ステップで実行される測定の例はX測定やZ測定である。
【0033】
上述したエンタングルメント状態の複数個の量子ビットの例はクラスター状態の複数個の量子ビットであり、隣接エンタングルメント状態にある量子ビットの対の例は隣接クラスター状態である。これにより、所望のクラスター状態にある複数個の量子ビットを生成することができる。これにより、確率的ゲートを用いて、3次元クラスター状態にある量子ビットを生成することも可能になる。非特許文献7の方式は、決定的ゲートを用いて3次元クラスター状態にある量子ビットを生成し、それを用いて一方向量子計算を行う方式である。非特許文献7の方式では、3次元クラスター状態にある量子ビットを生成する際に生じる損失の影響を抑制する手段を持たない。本形態の方式では、光学系の量子コンピュータ等で実現可能な確率的ゲートを用い、生成過程で生じる損失の影響を抑制しつつ、3次元クラスター状態にある量子ビットを生成することができ、このように生成した3次元クラスター状態にある量子ビットを非特許文献7の一方向量子計算に適用することもできる。これにより、非特許文献7の一方向量子計算方式を拡張及び改善できる。
【0034】
〔第1実施形態〕
次に、本発明の第1実施形態を説明する。第1実施形態では、量子ビットが光子であり、量子状態が光子の偏光方向であり、量子状態|H>が水平偏光方向であり、量子状態|V>が垂直偏光方向Vあり、|H>,|V>が計算基底であり、|Φ1>,|Φ3>,|Φ5>のそれぞれが|H>であり、|Φ2>,|Φ4>,|Φ6>のそれぞれが|V>であり、β01=β02=β03=β04=β13=β14=β23=β24=α5=α6=α7=α8=γ1=γ2=1/√2である。また本形態では、|η1>と|η2>の重ね合わせ状態がエンタングルメント状態であり、|η3>と|η4>の重ね合わせ状態がエンタングルメント状態であり、|η51>と|η61>の重ね合わせ状態がエンタングルメント状態であり、|η52>と|η62>の重ね合わせ状態がエンタングルメント状態であり、|η72>と|η82>の重ね合わせ状態がエンタングルメント状態である。さらに第1量子ビット集合の量子状態であり、第4量子ビット集合の量子状態がクラスター状態である。さらにクラスター状態の定義より、|η4>=(σz・I・,...,・I)|η3>を満たす。ただしσzは1個の量子ビットに対するパウリZ操作を表す。また、i=jの場合に<Φi|Φj>=1が満たし、i≠jの場合に<Φi|Φj>=0が満たすとする。しかしながらこれらは本発明を限定するものではない。また記載の簡略化のため、本形態の量子状態の表記からは振幅が省略される。
【0035】
<全体構成>
図1に例示するように、第1実施形態の量子状態生成装置1は、初期状態生成部11、測定部12、連結部13、再利用部14,15、削除部16、制御部17、及び量子メモリ18を有する。
【0036】
<初期状態生成部11>
図2に例示するように、本形態の初期状態生成部11は、光子生成部111a−111f、偏光ビームスプリッタ112a−112e、偏光回転素子113ac,113ad,113bc,113bd,113cc,113cd,113dd,113ec,113ed、偏光板114dd,114ec,114ed、及び検出器115dd,115ec,115edを有する。
【0037】
[光子生成部111a−111f]
光子生成部111a−111fのそれぞれは、単一光子生成器を含み、45°の偏光方向(量子状態|+>)の単一光子を生成して出射する装置である。単一光子生成器は量子状態|+>の単一光子を生成して出射するものであってもよいし、|+>以外の偏光方向の単一光子を生成して出射するものであってもよい。単一光子生成器が|+>以外の偏光方向の単一光子を生成する場合、さらに波長板等を用いて量子状態|+>が生成される。
単一光子生成器の例は、単一原子や人工単一原子(量子ドット、ダイヤモンド中の窒素空孔中心など)からの光子の自然放出を制御することで単一光子を出射する装置、パラメトリックダウンコンバージョン(PDC)(例えば、「P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. ,75:4337-4341, 1995.(参考文献1)」「P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A, 60:R773-R776, 1999. (参考文献2)」等参照。)を用いて単一光子を出射する装置、弱いコヒーレント光(レーザ光)を出射する装置などである(例えば「G S Buller and R J Collins, “Single-photon generation and detection,” Measurement Science and Technology 21, 012002 (2010). (参考文献3)」等参照。)
【0038】
[偏光ビームスプリッタ112a−112e]
偏光ビームスプリッタ112a−112eのそれぞれは、入射した光子の偏光方向が0°(H:水平偏光方向)であった場合に当該光子を真っ直ぐに透過させ、光子の偏光方向が90°(V:垂直偏光方向)であった場合に当該光子を反射する光学素子である。
【0039】
[偏光回転素子]
偏光回転素子113ac,113ad,113bc,113bd,113cc,113cd,113dd,113ec,113edのそれぞれは、入射した光子の偏光方向を45°変化させて出射する光学素子である。偏光回転素子113a−113cの具体例は、入射した光子の偏光方向を45°回転させる1/2波長板、電気光学効果変調器(例えば、ファラデーローテータ、LiNbO3などの結晶の電気光学効果を利用した変調器等)、音響素子、液晶による素子などである。
【0040】
[偏光板114dd,114ec,114ed]
偏光板114dd,114ec,114edのそれぞれは、偏光方向が0°(H:水平偏光方向)である光子を通過させ、偏光方向が90°(V:垂直偏光方向)である光子を遮断又は反射する光学素子である。偏光方向が90°である入射光子を反射する偏光ビームスプリッタが、偏光板114dd,114ec,114edとして用いられてもよい。
【0041】
[検出器115dd,115ec,115ed]
検出器115dd,115ec,115edのそれぞれは、光子計数領域で用いることのでき、検出した光子数を識別することが可能な光子検出器である。検出器115dd,115ec,115edの具体例は超電導転移端センサなどである(参考文献3等参照)。
【0042】
[配置構成]
図2に例示するように、光子生成部111a−111f及び偏光ビームスプリッタ112a−112cは、光子生成部111a−111fから出射された単一光子が、偏光ビームスプリッタ112aの入射部aa、偏光ビームスプリッタ112bの入射部ba、偏光ビームスプリッタ112aの入射部ab、偏光ビームスプリッタ112cの入射部ca、偏光ビームスプリッタ112bの入射部bb、及び偏光ビームスプリッタ112cの入射部cbに、それぞれ入射する位置に配置される。ただし、偏光ビームスプリッタ112a−112cは、入射部aaと入射部abに同時に光子が入射し、入射部baと入射部bbに同時に光子が入射し、入射部caと入射部cbに同時に光子が入射するように配置される。偏光ビームスプリッタ112aは、入射部aaに入射された偏光方向が水平偏光方向Hの光子を出射部acから出射し、入射部aaに入射された偏光方向が垂直偏光方向Vの光子を出射部adから出射し、入射部abに入射された偏光方向が水平偏光方向Hの光子を出射部adから出射し、入射部abに入射された偏光方向が垂直偏光方向Vの光子を出射部acから出射するように構成される。偏光ビームスプリッタ112bは、入射部baに入射された偏光方向が水平偏光方向Hの光子を出射部bcから出射し、入射部baに入射された偏光方向が垂直偏光方向Vの光子を出射部bdから出射し、入射部bbに入射された偏光方向が水平偏光方向Hの光子を出射部bdから出射し、入射部bbに入射された偏光方向が垂直偏光方向Vの光子を出射部bcから出射するように構成される。偏光ビームスプリッタ112cは、入射部caに入射された偏光方向が水平偏光方向Hの光子を出射部ccから出射し、入射部caに入射された偏光方向が垂直偏光方向Vの光子を出射部cdから出射し、入射部cbに入射された偏光方向が水平偏光方向Hの光子を出射部cdから出射し、入射部cbに入射された偏光方向が垂直偏光方向Vの光子を出射部ccから出射するように構成される。
【0043】
偏光回転素子113ac,113adのそれぞれは、偏光ビームスプリッタ112aの出射部ac,adから出射された光子がそれぞれ入射する位置に配置され、偏光回転素子113bc,113bdのそれぞれは、偏光ビームスプリッタ112bの出射部bc,bdから出射された光子がそれぞれ入射する位置に配置され、偏光回転素子113cc,113cdのそれぞれは、偏光ビームスプリッタ112cの出射部cc,cdから出射された光子がそれぞれ入射する位置に配置される。
【0044】
偏光ビームスプリッタ112dは、偏光回転素子113acから出射された光子が入射部daに入射し、偏光回転素子113bdから出射された光子が入射部dbに入射する位置に配置される。偏光ビームスプリッタ112dは、入射部daに入射された偏光方向が水平偏光方向Hの光子を出射部dcから出射し、入射部daに入射された偏光方向が垂直偏光方向Vの光子を出射部ddから出射し、入射部dbに入射された偏光方向が水平偏光方向Hの光子を出射部ddから出射し、入射部dbに入射された偏光方向が垂直偏光方向Vの光子を出射部dcから出射する。偏光ビームスプリッタ112eは、偏光ビームスプリッタ112dの出射部dcから出射された光子が入射部eaに入射し、偏光回転素子113cdから出射された光子が入射部ebに入射する位置に配置される。偏光ビームスプリッタ112eは、入射部eaに入射された偏光方向が水平偏光方向Hの光子を出射部ecから出射し、入射部eaに入射された偏光方向が垂直偏光方向Vの光子を出射部edから出射し、入射部ebに入射された偏光方向が水平偏光方向Hの光子を出射部edから出射し、入射部ebに入射された偏光方向が垂直偏光方向Vの光子を出射部ecから出射する。偏光ビームスプリッタ112d,112eは、入射部daと入射部dbに同時に光子が入射し、入射部eaと入射部ebに同時に光子が入射するように配置される。
【0045】
偏光回転素子113ddは、偏光ビームスプリッタ112dの出射部ddから出射された光子が入射する位置に配置され、偏光板114ddは、偏光回転素子113ddから出射された光子が入射する位置に配置され、検出器115ddは、偏光板114ddから出射された光子が入射する位置に配置される。偏光回転素子113edは、偏光ビームスプリッタ112eの出射部edから出射された光子が入射する位置に配置され、偏光板114edは、偏光回転素子113edから出射された光子が入射する位置に配置され、検出器115edは、偏光板114edから出射された光子が入射する位置に配置される。偏光回転素子113ecは、偏光ビームスプリッタ112eの出射部ecから出射された光子が入射する位置に配置され、偏光板114ecは、偏光回転素子113ecから出射された光子が入射する位置に配置され、検出器115ecは、偏光板114ecから出射された光子が入射する位置に配置される。
【0046】
<測定部12>
測定部12は、X測定部121、判定部122、及びユニタリ変換部123を含む。
[X測定部121]
X測定部121は、パウリX操作をオブザーバブルとした測定を行う光学素子であり、入射された光子の量子状態をX測定する。
図3Aに例示するように、X測定部121は、偏光回転素子121a、偏光ビームスプリッタ121b、及び検出器121c,121dを有する。偏光回転素子121aの構成は前述の偏光回転素子113ac等と同じであり、偏光ビームスプリッタ121bの構成は前述の偏光ビームスプリッタ112a−112eと同じであり、検出器121c,121dは、光電子増倍管、ストリークカメラ、フォトダイオード、アバランシェフォトダイオード、超電導転移端センサ等の光子計数領域での検出が可能な検出器である。偏光回転素子121a、偏光ビームスプリッタ121b、及び検出器121c,121dは、X測定部121に入射された光子が偏光回転素子121aに入射され、偏光回転素子121aから出射された光子が偏光ビームスプリッタ121bに入射され、入射された当該光子が偏光ビームスプリッタ121bを透過した場合には当該光子が検出器121cに入射し、入射された当該光子が偏光ビームスプリッタ121bで反射した場合には当該光子が検出器121dに入射する位置に配置される。
【0047】
3個以上の光子を含むクラスター状態の光子集合の量子状態は以下のように表すことができる。
(|η1>|H>+|η2>|V>)|H>(|H>|η3>+|V>|η4>)+(|η1>|H>−|η2>|V>)|V>(|H>|η3>−|V>|η4>)
この量子状態の|H>と|V>との重ね合わせ状態にある1個の光子がX測定され、計算基底|H>が観測されたとすると、X測定された1個の量子ビットを第1量子ビット集合から除いた補集合の量子状態は以下のようになる(式(8)参照)。
β13|η1>|H>|H>|η3>+β24|η2>|V>|V>|η4
一方、計算基底|V>が観測されたとすると、X測定された1個の量子ビットを第1量子ビット集合から除いた補集合の量子状態は以下のようになる(式(9)参照)。
|η1>|H>|V>|η4>+|η2>|V>|H>|η3
このように、量子状態が|H>|H>+|V>|V>又は|H>|V>+|V>|H>である隣接量子ビット(量子ビットの対)を含み、当該隣接量子ビットが当該隣接量子ビット以外の他の量子ビットとクラスター状態にある量子ビットの集合の量子状態を「冗長なクラスター状態」と呼ぶ。
【0048】
[判定部122]
判定部122は、X測定部121での測定結果が入力され、入力された測定結果に応じた判定処理を行う処理部である。判定部122は、例えば、集積回路によって構成されてもよいし、古典コンピュータや量子コンピュータに所定のプログラムが読み込まれて構成されてもよい。
【0049】
[ユニタリ変換部123]
ユニタリ変換部123は、判定部122での判定処理に基づいて量子ビットごとのユニタリ変換装置を行う処理部である。ユニタリ変換部123は、例えば、(1/2,1/4)波長板、音響素子、液晶による素子などの偏光回転素子、制御電圧によって通過光の偏光角度・位相を制御できる電気光学効果変調器(例えば、ファラデーローテータ、LiNbOなどの結晶の電気光学効果を利用した変調器等)、集積回路や古典コンピュータや量子コンピュータに所定のプログラムが読み込まれて構成される制御部などから構成される。
【0050】
<連結部13>
連結部13は、前述した連結ステップを実行する。連結部13は、混合ゲート測定部(FG)131、及び判定部132を含む。
[混合ゲート測定部131]
図4に例示するように、混合ゲート測定部131(「統合ゲート部」に相当)は、入射部a,b(「第1,2入射部」に相当)及び出射部c,d(「第1,2出射部」に相当)を含む偏光ビームスプリッタ131a、入射した光子(「量子ビット」に相当)の偏光方向を45°変化させて出射する偏光回転素子131b,131c(「第1,2の偏光回転素子」に相当)と、偏光方向が水平偏光方向(「第1偏光方向」に相当)である光子を通過させ、偏光方向が垂直偏光方向(「第2偏光方向」に相当)である光子を遮断する偏光板131d,131e(「第1,2偏光板」に相当)、及び検出器131f,131g(「第1,2検出器」に相当)を含む。偏光ビームスプリッタ131aの構成は、前述の偏光ビームスプリッタ112a−112eと同じであり、偏光回転素子131b、131cの構成は前述の偏光回転素子113ac等と同じであり、偏光板131d,131eの構成は前述の偏光板114ddと同じであり、検出器131f,131gの構成は前述の検出器115dd,115ec,115edと同じである。
偏光ビームスプリッタ131aの出射部cは入射部aに入射した垂直偏光方向の光子及び入射部bに入射した垂直偏光方向の光子を出射し、出射部dは入射部aに入射した垂直偏光方向の光子及び入射部bに入射した水平偏光方向の光子を出射する。偏光回転素子131bには、出射部cから出射された光子が入射し、偏光回転素子131cには、出射部dから出射された光子が入射する。偏光板131dには、偏光回転素子131bから出射された光子が入射し、偏光板131eには、偏光回転素子131cから出射された光子が入射し、検出器131fに偏光板131dを透過した光子が入射し、検出器131gに偏光板131eを透過した光子が入射する。
【0051】
偏光ビームスプリッタ131aの入射部aに量子状態|η1>|Φ1>|Φ3>|η3>+|η2>|Φ2>|Φ4>|η4>の第2光子集合(「第2量子ビット集合」に相当)に含まれる光子のうち、量子状態|Φ3>と量子状態|Φ4>との重ね合わせ状態とされた1個の光子を入射させ、入射部bに量子状態|η51>|Φ5>|η52>+|η61>|Φ6>|η62>の第3光子集合(「第3量子ビット集合」に相当)に含まれる光子のうち、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態とされた1個の量子ビットを入射させ、検出器131f,131gの両方で光子が検出された場合、混合ゲート測定部131は、これらの量子状態に対して<Φ3|<Φ5|+<Φ4|<Φ6|で表される量子操作を行い、エンタングルメント状態の量子状態|η7>|Φ1>|η52>+|η8>|Φ2>|η62>を生成することになる。以下にこの理由を説明する。
【0052】
本形態では、|Φ3>,|Φ5>のそれぞれが|H>であり、|Φ4>,|Φ6>のそれぞれが|V>であるため、偏光ビームスプリッタ131aに光子が入射される前の第2,3光子集合の量子状態は、以下のように表現される。
(|η1>|Φ1>|H>|η3>+|η2>|Φ2>|V>|η4>)(|η51>|H>|η52>+|η61>|V>|η62>)
=|η1>|Φ1>|H>|η3>|η51>|H>|η52>+|η1>|Φ1>|H>|η3>|η61>|V>|η62>+|η2>|Φ2>|V>|η4>|η51>|H>|η52>+|η2>|Φ2>|V>|η4>|η61>|V>|η62> ...(14)
ただし、|Φ>は入射部aに入射される光子の量子状態を表し、|Φ>は入射部bに入射される光子の量子状態を表す。
【0053】
偏光ビームスプリッタ131aの出射部c,dから光子が出射された後の量子状態は以下のようになる。
|η1>|Φ1>|H>|η3>|η51>|H>|η52>+|η1>|Φ1>|H>|η3>|η61>|V>|η62>+|η2>|Φ2>|V>|η4>|η51>|H>|η52>+|η2>|Φ2>|V>|η4>|η61>|V>|η62> ...(15)
ただし、|Φ>は出射部cから出射される光子の量子状態を表し、|Φ>は出射部dから出射される光子の量子状態を表す。
【0054】
出射部c,dから出射した光子が偏光回転素子131b,131cを通過した後の量子状態は以下のようになる。
|η1>|Φ1>|H+V>|η3>|η51>|H+V>|η52>+|η1>|Φ1>|H+V>|η3>|η61>|H−V>|η62>+|η2>|Φ2>|H−V>|η4>|η51>|H+V>|η52>+|η2>|Φ2>|H−V>|η4>|η61>|H−V>|η62> ...(16)
【0055】
偏光回転素子131b,131cを通過した光子が偏光板131d,131eを通過した後の量子状態は以下のようになる。
|η1>|Φ1>|H>|η3>|η51>|H>|η52>+|η1>|Φ1>|H>|η3>|η61>|H>|η62>+|η2>|Φ2>|H>|η4>|η51>|H>|η52>+|η2>|Φ2>|H>|η4>|η61>|H>|η62> ...(17)
【0056】
その後、検出器131f,131gの両方で光子が1個ずつ検出されたとすると、式(17)の量子状態は以下のように収縮する。
|η1>|Φ1>|η3>|η51>|η52>+|η2>|Φ2>|η4>|η61>|η62
...(18)
以上より、|η1>=|η71>,|η2>=|η81>,|η72>=|η3>|η51>|η52>,|η82>=|η4>|η61>|η62>とおくと、検出器131f,131gの両方で光子が1個ずつ検出された場合には、以下の量子操作がなされたことが分かる。
(|η1>|Φ1>|Φ3>|η3>+|η2>|Φ2>|Φ4>|η4>)(|η51>|Φ5>|η52>+|η61>|Φ6>|η62>)(<Φ3|<Φ5|+<Φ4|<Φ6|)
=|η71>|Φ1>|η72>+|η81>|Φ2>|η82
この点、|η51>|Φ5>|η52>+|η61>|Φ6>|η62>が|Φ5>|η52>+|Φ6>|η62>に置換された場合でも、|η72>=|η3>|η52>,|η82>=|η4>|η62>とおけば同様に理解できる。
|η71>|Φ1>と|η81>|Φ2>の重ね合わせ状態がクラスター状態にあり、|Φ1>|η72>と|Φ2>|η82>の重ね合わせ状態がクラスター状態にあるため、|η71>|Φ1>|η72>+|η81>|Φ2>|η82>の量子状態もクラスター状態である。
【0057】
[判定部132]
判定部132は、混合ゲート測定部131での測定結果が入力され、入力された測定結果に応じた判定処理を行う処理部である。判定部132は、例えば、集積回路によって構成されてもよいし、古典コンピュータや量子コンピュータに所定のプログラムが読み込まれて構成されてもよい。
【0058】
<再利用部14>
再利用部14は、測定部12で量子状態|H>と|V>との重ね合わせ状態とされた1個の光子をX測定しても計算基底|H>又は|V>の測定結果が得られなかった場合、少なくとも、第1光子集合(「第1量子ビット集合」に相当)に含まれる光子のうち量子状態|Φ3>と|Φ4>との重ね合わせ状態であった1個の光子を基底|Φ3>,|Φ4>で測定し、それによって量子状態が|η3>又は|η4>に収縮した光子の集合を、新たな第1光子集合とするか第3光子集合とする。本形態では|Φ3>=|H>及び|Φ4>=|V>であるため、再利用部14はZ測定を行う。
本形態の再利用部14は、Z測定部141、判定部142、及びユニタリ変換部143を含む。
【0059】
[Z測定部141]
Z測定部141は、パウリZ操作をオブザーバブルとした測定を行う光学素子であり、入射された光子の量子状態をZ測定する。
図3Bに例示するように、Z測定部141は、偏光ビームスプリッタ141b、及び検出器141c,141dを有する。偏光ビームスプリッタ141bの構成は前述の偏光ビームスプリッタ112a−112eと同じであり、検出器141c,141dは前述の検出器121c,121dと同じである。偏光ビームスプリッタ141b、及び検出器141c,141dは、Z測定部141に入射された光子が偏光ビームスプリッタ141bに入射され、入射された当該光子が偏光ビームスプリッタ141bを透過した場合には当該光子が検出器141cに入射し、入射された当該光子が偏光ビームスプリッタ141bで反射した場合には当該光子が検出器141dに入射する位置に配置される。
【0060】
3個以上の光子を含むクラスター状態の光子集合の量子状態は以下のように表すことができる。
(|η1>|H>+|η2>|V>)|H>(|H>|η3>+|V>|η4>)+(|η1>|H>−|η2>|V>)|V>(|H>|η3>−|V>|η4>)
この量子状態の|H>と|V>との重ね合わせ状態にある1個の光子がZ測定され、計算基底|H>が観測されたとすると、Z測定された1個の量子ビットを第1量子ビット集合から除いた補集合の量子状態は以下のようになる。
(|η1>|H>+|η2>|V>)(|H>|η3>+|V>|η4>)
一方、計算基底|V>が観測されたとすると、Z測定された1個の量子ビットを第1量子ビット集合から除いた補集合の量子状態は以下のようになる。
(|η1>|H>−|η2>|V>)(|H>|η3>−|V>|η4>)
このように、どのような観測結果が得られてもZ測定された光子の部分でクラスター状態が解除され、(|η1>|H>+|η2>|V>)と(|H>|η3>+|V>|η4>)のテンソル積、又は、(|η1>|H>−|η2>|V>)と(|H>|η3>−|V>|η4>)とのテンソル積で表される状態となる。
【0061】
[判定部142]
判定部142は、測定部12やZ測定部141での測定結果が入力され、入力された測定結果に応じた判定処理を行う処理部である。判定部142は、例えば、集積回路によって構成されてもよいし、古典コンピュータや量子コンピュータに所定のプログラムが読み込まれて構成されてもよい。
【0062】
[ユニタリ変換部143]
ユニタリ変換部143は、判定部142での判定処理に基づいて光子ごとのユニタリ変換装置を行う処理部である。ユニタリ変換部143は、例えば、(1/2,1/4)波長板、音響素子、液晶による素子などの偏光回転素子、制御電圧によって通過光の偏光角度・位相を制御できる電気光学効果変調器、集積回路や古典コンピュータや量子コンピュータに所定のプログラムが読み込まれて構成される制御部などから構成される。
【0063】
<再利用部15>
再利用部15は、連結部13の判定部132での判定結果が入力される。再利用部15は、混合ゲート測定部131(図4)の検出器131f,131gの何れかで光子が検出されなかったと判定された場合、偏光ビームスプリッタ131aの入射部aに入射された光子と隣接クラスター状態(「隣接エンタングルメント状態」相当)にあった光子である第1隣接光子(「第1隣接量子ビット」に相当)と隣接クラスター状態にあった光子である第2隣接光子(第2隣接量子ビット」に相当)をZ測定し、入射部bに入射された光子と隣接クラスター状態にあった光子である第3隣接光子(第3隣接量子ビット」に相当)と隣接クラスター状態にあった光子である第4隣接光子(第4隣接量子ビット」に相当)をZ測定する。これにより、入射部aに入射された光子と第1隣接光子と第2隣接光子とを第2光子集合から除いた補集合の部分集合、及び、入射部bに入射された光子と第3隣接光子と第4隣接光子とを第3光子集合から除いた補集合の部分集合の少なくとも一部を、新たな第1光子集合とするか新たな第3光子集合とする。
再利用部15は、Z測定部151、判定部152、及びユニタリ変換部153を含む。
【0064】
[Z測定部151]
Z測定部151は、パウリZ操作をオブザーバブルとした測定を行う光学素子であり、入射された光子の量子状態をZ測定する。
図3Bに例示するように、Z測定部151は、偏光ビームスプリッタ151b、及び検出器151c,151dを有する。偏光ビームスプリッタ151bの構成は前述の偏光ビームスプリッタ112a−112eと同じであり、検出器151c,151dは前述の検出器121c,121dと同じである。偏光ビームスプリッタ151b、及び検出器151c,151dは、Z測定部151に入射された光子が偏光ビームスプリッタ151bに入射され、入射された当該光子が偏光ビームスプリッタ151bを透過した場合には当該光子が検出器151cに入射し、入射された当該光子が偏光ビームスプリッタ151bで反射した場合には当該光子が検出器151dに入射する位置に配置される。
【0065】
[判定部152]
判定部152は、連結部13やZ測定部151での測定結果が入力され、入力された測定結果に応じた判定処理を行う処理部である。判定部152は、例えば、集積回路によって構成されてもよいし、古典コンピュータや量子コンピュータに所定のプログラムが読み込まれて構成されてもよい。
【0066】
[ユニタリ変換部153]
ユニタリ変換部153は、判定部152での判定処理に基づいて光子ごとのユニタリ変換装置を行う処理部である。ユニタリ変換部153は、ユニタリ変換部143と同様に構成される。
【0067】
<削除部16>
削除部16は、X測定部161、Z測定部162、判定部163、及びユニタリ変換部164を含む。
[X測定部161]
X測定部161は、パウリX操作をオブザーバブルとした測定を行う光学素子であり、入射された光子の量子状態をX測定する。
図3Aに例示するように、X測定部161は、偏光回転素子161a、偏光ビームスプリッタ161b、及び検出器161c,161dを有する。偏光回転素子161aの構成は前述の偏光回転素子113ac等と同じであり、偏光ビームスプリッタ161bの構成は前述の偏光ビームスプリッタ112a−112eと同じであり、検出器161c,161dの構成は前述の検出器121c,121dと同じである。偏光回転素子161a、偏光ビームスプリッタ161b、及び検出器161c,161dは、X測定部161に入射された光子が偏光回転素子161aに入射され、偏光回転素子161aから出射された光子が偏光ビームスプリッタ161bに入射され、入射された当該光子が偏光ビームスプリッタ161bを透過した場合には当該光子が検出器161cに入射し、入射された当該光子が偏光ビームスプリッタ161bで反射した場合には当該光子が検出器161dに入射する位置に配置される。
[Z測定部162]
Z測定部162は、パウリZ操作をオブザーバブルとした測定を行う光学素子であり、入射された光子の量子状態をZ測定する。
図3Bに例示するように、Z測定部162は、偏光ビームスプリッタ162b、及び検出器162c,162dを有する。偏光ビームスプリッタ162bの構成は前述の偏光ビームスプリッタ112a−112eと同じであり、検出器162c,162dは前述の検出器121c,121dと同じである。偏光ビームスプリッタ162b、及び検出器162c,162dは、Z測定部162に入射された光子が偏光ビームスプリッタ162bに入射され、入射された当該光子が偏光ビームスプリッタ162bを透過した場合には当該光子が検出器162cに入射し、入射された当該光子が偏光ビームスプリッタ162bで反射した場合には当該光子が検出器162dに入射する位置に配置される。
【0068】
[判定部163]
判定部163は、X測定部161やZ測定部162での測定結果が入力され、入力された測定結果に応じた判定処理を行う処理部である。判定部163は、例えば、集積回路によって構成されてもよいし、古典コンピュータや量子コンピュータに所定のプログラムが読み込まれて構成されてもよい。
【0069】
[ユニタリ変換部164]
ユニタリ変換部164は、判定部163での判定処理に基づいて光子ごとのユニタリ変換装置を行う処理部である。ユニタリ変換部164は、ユニタリ変換部143と同様に構成される。
【0070】
<制御部17>
制御部17は、量子状態生成装置1の全体を制御する。制御部17は、記憶部を含む集積回路によって構成されてもよいし、記憶部を含む古典コンピュータや量子コンピュータに所定のプログラムが読み込まれて構成されてもよい。
【0071】
<量子メモリ18>
量子メモリ18は、量子状態を保存する装置である。以下では説明を省略するが、各部の処理で得られた量子状態は必要に応じて量子メモリ18に記録され、各部で必要とされた際に量子メモリ18から読みだされる。量子メモリ18としては、例えば、光ファイバーによって光子の量子状態を保存する装置、導波路による遅延を利用して量子状態を保存する装置、共振器で量子状態を保存する装置、電磁誘起透明化やフォトンエコーなどを用いて原子のエネルギー準位へ量子状態を保存する装置などを利用できる(例えば、「A.I. Lvovsky, B.C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Photonics, vol. 3, 2009, pp. 706-714.」参照)。
【0072】
<量子状態生成方法>
本形態では、量子状態生成装置1が図5に沿った処理を行ってクラスター状態の光子の集合を生成する。本形態の例では、以下に例示するステップS102,S103,S105及びS106が「測定ステップ」に相当し、ステップS107及びS108が「連結ステップ」に相当し、ステップS104が「第1再利用ステップ」に対応し、ステップS109が「第2再利用ステップ」に相当し、ステップS111が「削除ステップ」に相当する。以下、図5を用いて本形態の量子状態生成方法を説明する。
【0073】
ステップS101では、初期状態生成部11(図2)でクラスター状態の3個の光子からなる集合を生成し、それを第2光子集合(「第2量子ビット集合」に相当)とするか(ステップS101−1)、ψ=(|η1>|Φ1>+|η2>|Φ2>)|H>(|Φ3>|η3>+|Φ4>|η4>)+(|η1>|Φ1>−β02|η2>|Φ2>)|V>(|Φ3>|η3>−|Φ4>|η4>)の量子状態にあるクラスター状態の3個以上の光子からなる第1光子集合(「第1量子ビット集合」に相当)に含まれる、量子状態|H>と|V>との重ね合わせ状態とされた1個の光子をX測定する(ステップS101−2)。
【0074】
ステップS101−1が実行されるかステップS101−2が実行されるかは、すでに第1光子集合が存在するか否か、最終的にどのようなクラスター状態の光子の集合を生成するのかなどに依存する。一例としては、第1光子集合が存在しない場合にはステップS101−1が実行され、第1光子集合が存在する場合にはステップS101−2が実行される。この際、存在する光子集合に対して光子ごとのユニタリ変換操作を行ったものを第1光子集合としてもよい。或いは、既に第1光子集合が存在していたとしても、新たな第1光子集合を生成する必要がある場合にはステップS101−1が実行されてもよい。
【0075】
ステップS101−1が実行される場合、制御部17の制御のもと、初期状態生成部11(図2)の光子生成部111a−111fがそれぞれ量子状態|+>の単一光子を1個ずつ生成して出射する。制御部17は、検出器115dd,115ec,115edのそれぞれで1個ずつの光子が観測されたか否かを判定する。これらの量子状態|+>の単一光子の生成・出射、観測及び判定の処理は、検出器115dd,115ec,115edのそれぞれで1個ずつの光子が観測されるまで繰り返される。検出器115dd,115ec,115edのそれぞれで1個ずつの光子が観測された場合、初期状態生成部11の偏光回転素子113ad,113bc,113ccからそれぞれ出射された合計3個の光子1001,1002,1003はGHZ状態にあり(例えば、非特許文献5参照)、なおかつ、前述のようにクラスター状態にある。このように生成された3個の光子又はさらに光子ごとのユニタリ変換操作がなされた3個の光子は第2光子集合とされ、ステップS107に進む(ステップS102)。
【0076】
ステップS101−2が実行される場合、量子状態ψのクラスター状態にある3個以上の光子からなる第1光子集合に含まれる量子状態|H>と|V>との重ね合わせ状態とされた1個の光子をX測定する。すなわち、制御部17の制御のもと、この1個の光子が測定部12のX測定部121(図3A)の偏光回転素子121aに入射され、検出器121c及び121dで測定される。この場合(ステップS102)、次に測定部12の判定部122が、検出器121c又は121dで光子が観測されたか(計算基底|H>又は|V>の測定結果が得られたか)を判定する(ステップS103)。
【0077】
何れの検出器121c又は121dでも光子が観測されなかった場合(失敗)、再利用部14のZ判定部141が、第1光子集合に含まれる光子のうち当該X測定前に量子状態|Φ3>=|H>と|Φ4>=|V>の重ね合わせ状態であった1個の光子をZ測定する。すなわち、制御部17の制御のもと、この1個の光子が再利用部14のZ測定部141(図3B)の偏光ビームスプリッタ141bに入射され、検出器141c及び141dで測定される。判定部142は、検出器141c又は141dで光子が観測されたか否かを判定する。
検出器141c又は141dで光子が観測された場合、それによって量子状態が|η3>又は|η4>に収縮した光子の集合、又は、当該量子状態が|η3>又は|η4>に収縮した光子の集合に対してユニタリ変換部143で光子ごとのユニタリ変換操作を施して得られる光子の集合のうち、第1光子集合又は第3光子集合とできるものを、新たな第1光子集合とするか第3光子集合とし、ステップS101に戻る。第1光子集合又は第3光子集合とできるものが存在しない場合には、新たな第1光子集合や第3光子集合が生成されることなく、ステップS101に戻る。
いずれの検出器141c及び141dでも光子が観測されなかった場合には、Z測定部141が当該Z測定前に当該Z測定された光子と隣接クラスター状態にあった光子それぞれをZ測定し、判定部142が検出器141c又は141dで光子が観測されたか否かを判定する処理を、Z測定した各光子が検出器141c又は141dで観測されたと判断されるまで繰り返す。Z測定した光子が検出器141c又は141dで観測された場合には、第1光子集合に含まれる光子のうちX測定又はZ測定されなかったクラスター状態にある光子の集合、又は、当該光子の集合に対してユニタリ変換部143で光子ごとのユニタリ変換操作を施して得られる光子の集合のうち、第1光子集合又は第3光子集合とできるものを、新たな第1光子集合とするか第3光子集合とし、ステップS101に戻る。第1光子集合又は第3光子集合とできるものが存在しない場合には、新たな第1光子集合や第3光子集合が生成されることなく、ステップS101に戻る(ステップS104)。
【0078】
一方、ステップS103で検出器121c又は121dで光子が観測されたと判定された場合(成功)、判定部122は検出器121cで光子が観測されたのか(計算基底|H>が観測されたのか)、検出器121dで光子が観測されたのか(計算基底|V>が観測されたのか)を判定する(ステップS105)。検出器121cで光子が観測された(計算基底|H>が観測された)と判定された場合には、X測定された1個の光子を第1光子集合から除いた補集合の量子状態が|η1>|Φ1>|Φ3>|η3>+|η2>|Φ2>|Φ4>|η4>に収縮している。よって、この補集合をそのまま第2光子集合としてステップS107に進む。一方、検出器121dで光子が観測された(計算基底|V>が観測された)と判定された場合には、X測定された1個の光子を第1光子集合から除いた補集合の量子状態が|η1>|Φ1>|Φ4>|η4>+|η2>|Φ2>|Φ3>|η3>に収縮している。そのため、ユニタリ変換部123が、この量子状態に対して光子ごとのユニタリ変換操作を施して|η1>|Φ1>|Φ3>|η3>+|η2>|Φ2>|Φ4>|η4>の量子状態とした補集合を第2光子集合とし(ステップS106)、ステップS107に進む。
【0079】
ステップS107では、連結部13が量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態とされた1個の光子を含むクラスター状態の3個以上の光子からなる第3光子集合の量子状態α5|η51>|Φ5>|η52>+α6|η61>|Φ6>|η62>又はα5|Φ5>|η52>+α6|Φ6>|η62>と、上述した第2光子集合の量子状態β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>とに対し、γ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|で表される量子操作を行う。第3光子集合は、上述したステップS101−1と同様に初期状態生成部11で生成されたものであってもよいし、上述したステップS104の処理や後述するステップS109の処理で生成されたものであってもよいし、過去に行われたステップS107の処理で得られたものであってもよいし、別途与えられたものであってもよい。この量子操作により、連結部13は、量子状態|Φ3>と量子状態|Φ4>との重ね合わせ状態であった1個の光子を第2光子集合から除いた補集合と、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態であった1個の光子を第3光子集合から除いた補集合との和集合である第4光子集合の量子状態を|η71>|Φ1>|η72>+|η81>|Φ2>|η82>にする。
【0080】
本形態のステップS107では、混合ゲート測定部131(図4)の偏光ビームスプリッタ131aの入射部aに、第2光子集合に含まれる量子状態|Φ3>と|Φ4>の重ね合わせ状態とされた1個の光子を入射させ、偏光ビームスプリッタ131aの入射部bに、第3光子集合に含まれる量子状態|Φ5>と|Φ6>との重ね合わせ状態とされた1個の光子を入射させる。これらの光子は入射部aと入射部bとに同時に入射される(ステップS107)。判定部132は、検出器131f及び131gの両方でそれぞれ光子が検出されたかを判定する(ステップS108)。
【0081】
何れの検出器121c又は121dでも光子が観測されなかった場合(失敗)、再利用部15のZ測定部151が、偏光ビームスプリッタ131aの入射部aに入射された光子と隣接クラスター状態にあった光子である第1隣接光子と隣接クラスター状態にあった光子である第2隣接光子をZ測定し、偏光ビームスプリッタ131aの入射部bに入射された光子と隣接クラスター状態にあった光子である第3隣接光子と隣接クラスター状態にあった光子である第4隣接光子をZ測定する。そして、必要に応じて光子ごとのユニタリ演算操作を行って新たな前記第1量子ビット集合や新たな前記第3量子ビット集合を生成する。
すなわち、制御部17の制御のもと、第2隣接光子が再利用部15のZ測定部151(図3B)の偏光ビームスプリッタ151bに入射され、検出器151c及び151dで測定される。判定部152は、検出器151c又は151dで光子が観測されたか否かを判定する。検出器141c又は141dで光子が観測された場合、偏光ビームスプリッタ131aの入射部aに入射された光子と第1隣接光子と第2隣接光子とを第2光子集合から除いた第1補集合の部分集合、及び、第1補集合の部分集合に対してユニタリ変換部153で光子ごとのユニタリ変換操作を施して得られる光子の集合のうち、第1光子集合又は第3光子集合とできるものを、新たな第1光子集合とするか新たな第3光子集合とする。
同様に、第4隣接光子が再利用部15のZ測定部151(図3B)の偏光ビームスプリッタ151bに入射され、検出器151c及び151dで測定される。判定部152は、検出器151c又は151dで光子が観測されたか否かを判定する。検出器141c又は141dで光子が観測された場合、入射部bに入射された光子と第3隣接光子と第4隣接光子とを第3光子集合から除いた第2補集合の部分集合、及び、第2補集合の部分集合に対してユニタリ変換部153で光子ごとのユニタリ変換操作を施して得られる光子の集合のうち、第1光子集合又は第3光子集合とできるものを、新たな第1光子集合とするか新たな第3光子集合とする。
一方、これらのZ測定においていずれの検出器151c及び151dでも光子が観測されなかった場合、Z測定部151が当該Z測定前に当該Z測定された光子と隣接クラスター状態にあった光子それぞれをZ測定し、判定部152が検出器151c又は151dで光子が観測されたか否かを判定する処理を、Z測定した各光子が検出器151c又は151dで観測されたと判断されるまで繰り返す。Z測定した光子が検出器151c又は151dで観測された場合には、上述の第1補集合又は第2補集合からこのようにZ測定された光子を除いた第3補集合、又は、第3補集合に対してユニタリ変換部143で光子ごとのユニタリ変換操作を施して得られる光子の集合のうち、第1光子集合又は第3光子集合とできるものを、新たな第1光子集合とするか第3光子集合とする。
第1光子集合又は第3光子集合とできるものが存在しない場合には、新たな第1光子集合や第3光子集合は生成されない。
以上の処理(ステップS109)の後、ステップS101に戻る。
【0082】
一方ステップS108で、検出器131f及び131gの両方で光子が検出されたと判定された場合(成功)、入射部aに入射された光子を第2光子集合から除いた補集合と、入射部bに入射された光子を第3光子集合から除いた補集合との和集合を第4光子集合とする。前述のように、この第4光子集合の量子状態は|η71>|Φ1>|η72>+|η81>|Φ2>|η82>となっている。次に、所望のクラスター情報を生成するために第4光子集合に含まれる何れかの光子を当該集合から除外する場合にはステップS111に進み、除外しない場合にはステップS112に進む。
【0083】
ステップS111では、削除部16がクラスター状態の複数個の光子からなる第5光子集合(「第5量子ビット集合」に相当)に含まれる何れかの特定の光子を測定することで、第5光子集合から当該特定の光子を除いた第6光子集合(「第6量子ビット集合」に相当)を生成する。ステップS111での第5光子集合の初期値は第4光子集合である。複数の光子を除去する場合には、第6光子集合が新たな第5光子集合とされて同様な処理が繰り返し実行される。
【0084】
測定後に、当該測定する光子と隣接クラスター状態にあった光子間のクラスター状態を維持する場合には、X測定部161がX測定を行う。測定後に、当該測定する光子と隣接クラスター状態にあった光子間のクラスター状態をなくす場合には、Z測定部162がZ測定を行う。X測定を行うのかZ測定を行うのかは、測定後に必要とされる量子状態によって異なる。X測定部161によるX測定の詳細は、偏光回転素子121a、偏光ビームスプリッタ121b、及び検出器121c,121dが、偏光回転素子161a、偏光ビームスプリッタ161b、及び検出器161c,161dに置き換わり、測定対象の光子が置き換わる以外、前述したX測定部121によるX測定と同様である。Z測定部162によるZ測定の詳細は、偏光ビームスプリッタ141b、及び検出器141c,141dが、偏光ビームスプリッタ162b、及び検出器162c,162dに置き換わり、測定対象の光子が置き換わる以外、前述したZ測定部141によるZ測定と同様である。
【0085】
X測定部161でX測定が行われた場合、判定部163は検出器161c又は161dで光子が観測されたか否かを判定する。検出器161c又は161dで光子が観測された場合、第5光子集合から当該X測定された光子が除かれた第6光子集合が生成される。当該X測定の後、ユニタリ変換部164で光子ごとのユニタリ変換操作がなされたものが第6光子集合とされてもよい。Z測定部162でZ測定が行われた場合、判定部163は検出器162c又は162dで光子が観測されたか否かを判定する。検出器162c又は162dで光子が観測された場合、第5光子集合から当該Z測定された光子が除かれた第6光子集合が生成される。当該Z測定の後、ユニタリ変換部164で光子ごとのユニタリ変換操作がなされたものが第6光子集合とされてもよい。
一方、X測定時にいずれの検出器161c及び161dでも光子が観測されなかった場合や、Z測定時にいずれの検出器162c及び162dでも光子が観測されなかった場合、Z測定部162が当該X測定や当該Z測定された光子と隣接クラスター状態にあった光子それぞれをZ測定し、判定部163が検出器161c又は161dで光子が観測されたか否かを判定する処理を、Z測定した各光子が検出器161c又は161dで観測されたと判断されるまで繰り返す。Z測定した光子が検出器161c又は161dで観測された場合には、第5光子集合からX測定やZ測定された光子を除いた補集合、又は、当該補集合に対してユニタリ変換部164で光子ごとのユニタリ変換操作がなされたものが第6光子集合とされる。
以上の処理によって所望の第6光子集合が得られた場合にはステップS112に進む。
【0086】
ステップS112での処理は、第4光子集合又は第6光子集合が最終的に生成しようとする所望の量子状態であるか否かによって異なる(ステップS112)。第4光子集合又は第6光子集合が最終的に生成しようとする所望の量子状態でない場合には、当該第4光子集合若しくは第6光子集合、又は、当該第4光子集合若しくは第6光子集合に対して光子ごとのユニタリ変換操作を施して得られる光子集合が、新たな第1量子ビット集合又は新たな第3量子ビット集合とされ、ステップS101に進む。一方、第4光子集合又は第6光子集合が最終的に生成しようとする所望の量子状態である場合には、当該所望の量子状態である第4光子集合又は第6光子集合が量子状態生成装置1から出力される(ステップS113)。
【0087】
<量子状態生成方法の実例>
次に、量子状態生成方法の実例を示す。
図6A及び図6Bの例では、クラスター状態の第1光子集合1010に対してステップS101−2が実行され、光子1013及び1011と隣接クラスター状態にある光子1012がX測定される(ステップS102)。
【0088】
X測定が成功し(ステップS103)、検出器121cで光子が観測(|H>が観測)された場合(ステップS105)、光子1013及び1011が|H>|H>と|V>|V>との重ね合わせ状態の光子1023及び1021となり、量子状態が|η1>|H>|H>+|η2>|V>|V>となった第2光子集合1020が得られる(図6A)。
【0089】
X測定が成功し(ステップS103)、検出器121dで光子が観測(|V>が観測)された場合(ステップS105)、光子1013及び1011が|H>|V>と|V>|H>との重ね合わせ状態の光子1023及び1021Xとなり、量子状態が|η1>|H>|V>+|η2>|V>|H>となった光子集合1020Rが得られる(図6B)。ユニタリ変換部123は光子集合1020Rの光子1021Xに対してパウリX操作を施し、光子1021Xが光子1021となり、量子状態が|η1>|H>|H>+|η2>|V>|V>となった第2光子集合1020が得られる(図6C)。この場合、パウリX操作が施された光子1021に損失が生じる可能性がある。
【0090】
X測定が失敗した場合(ステップS103)、量子状態|η1>|H>|H>+|η2>|V>|V>の第2光子集合1020が得られているのか、量子状態|η1>|H>|V>+|η2>|V>|H>の光子集合1020Rが得られているのかが不明となる(図7A)。この場合には、再利用部14のZ測定部141が光子1023を測定し、Z測定が成功することで光子1022及び量子状態が不明な光子1021又は1021Xが除去された光子集合1020Aが得られる(ステップS104)。光子集合1020Aは、第1,3光子集合として再利用され得る(図7B)。
【0091】
図8Aに例示するように、図6A又は図6Cのように得られた第2光子集合1020の光子1021と、光子1031−1033等を含むクラスター状態の第3光子集合1030の光子1031とは、混合ゲート測定部131で測定される(ステップS107)。この測定が成功した場合には、量子状態が|η71>|H>|η72>+|η81>|V>|η82>の第4光子集合1040が得られる(ステップS108)。なお、混合ゲート測定部131での測定によって光子1021が損失していたか否かが特定できる。すなわち、光子1021が損失していた場合にはステップS108で「失敗」であると判定され、光子1021が損失していた場合であっても、その影響は第4光子集合1040に及ばない。
【0092】
混合ゲート測定部131での測定が失敗した場合には、第2光子集合1020から光子1021を除いた光子集合1040Aと、第3光子集合1030から光子1031を除いた光子集合1040Bとが得られる。この場合には、再利用部15のZ測定部151で光子1024及び1033がZ測定され、それらが成功することで、光子集合1040Aから光子1023及び1024を除いた第1補集合と、光子集合1040Bから光子1032及び1033を除いた第2補集合とが得られる(ステップS109)。第1,2補集合及びそれらの光子にユニタリ変換操作を施した集合は第1,3光子集合として再利用され得る(図8B)。
【0093】
図9A及び図9Bの例では、光子1111−1115を含むクラスター状態の第1光子集合1110に対してステップS101−2が実行され、光子1112及び1114と隣接クラスター状態にある光子1113がX測定される(ステップS102)。
【0094】
X測定が成功し(ステップS103)、検出器121cで光子が観測(|H>が観測)された場合(ステップS105)、光子1112及び1114が|H>|H>と|V>|V>との重ね合わせ状態の光子1122及び1124となり、量子状態が|η1>|H>|H>|η3>+|η2>|V>|V>|η4>となった第2光子集合1120が得られる(図9A)。
【0095】
X測定が成功し(ステップS103)、検出器121dで光子が観測(|V>が観測)された場合(ステップS105)、光子1112及び1114が|H>|V>と|V>|H>との重ね合わせ状態の光子1122及び1124Xとなり、光子1115がその量子状態にパウリZ操作を施して得られる量子状態の光子1125Zとなり、量子状態が|η1>|H>|V>|η4>+|η2>|V>|H>|η3>となった光子集合1120Rが得られる(図9B)。ユニタリ変換部123は光子集合1120Rの光子1124Xに対してパウリX操作を施し、光子集合1120Rの光子1125Xに対してパウリZ操作を施し、量子状態が|η1>|H>|H>|η3>+|η2>|V>|V>|η4>となった第2光子集合1120が得られる(図9C)。この場合、パウリX操作が施された光子1124とパウリZ操作が施された光子1125とに損失が生じる可能性がある。
【0096】
X測定が失敗した場合(ステップS103)、量子状態|η1>|H>|H>|η3>+|η2>|V>|V>|η4>の第2光子集合1120が得られているのか、量子状態|η1>|H>|V>|η4>+|η2>|V>|H>|η3>の光子集合1120Rが得られているのかが不明となる(図10A)。この場合には、再利用部14のZ測定部141が光子1122と光子1124又は1124XとをZ測定し、Z測定が成功することで、光子1125であるか光子1125Zであるかが特定され(クラスター状態の定義参照)、光子1121と光子1125又は1125Xとの間がエンタングルメント状態でなくなる。すなわち、光子1124又は1124XをZ測定した結果が|H>であった場合(光子1124であった場合)には、それに論理的に隣接する光子が光子1125であったことが分かり、光子1121を含むクラスター状態の光子集合1120Aと、光子1125を含むクラスター状態の光子集合1120Bとが得られる。光子1124又は1124XをZ測定した結果が|V>であった場合(光子1124Xであった場合)には、それに論理的に隣接する光子が光子1125Zであったことが分かり、光子1121を含むクラスター状態の光子集合1120Aと、光子1125Zを含むクラスター状態の光子集合1120Cとが得られる。光子集合1120A,1120B、光子集合1120C、及びそれらの光子にユニタリ変換操作を施した集合は第1,3光子集合として再利用され得る(図10B)。
【0097】
図11に例示するように、図9A又は図9Cのように得られた第2光子集合1120の光子1124と、光子1131−1135等を含むクラスター状態の第3光子集合1130の光子1133とは、混合ゲート測定部131で測定される(ステップS107)。この測定が成功した場合には、光子1141−1149等を含むクラスター状態にある量子状態|η71>|H>|η72>+|η81>|V>|η82>の第4光子集合1140が得られる(ステップS108)。前述のように、光子1124が損失していた場合であっても、その影響は第4光子集合1140に及ばない。
【0098】
混合ゲート測定部131での測定が失敗した場合には、第2光子集合1120中の光子1122と1125との間がエンタングルメント状態でなくなり、第3光子集合1130中の光子1132と1134との間がエンタングルメント状態でなくなる。これにより、光子1121,1122を含むクラスター状態の光子集合1140Aと、光子1125,1126を含むクラスター状態の光子集合1140Bと、光子1131,1132を含むクラスター状態の光子集合1140Cと、光子1134,1135を含むクラスター状態の光子集合1140Dが得られる。この場合には、再利用部15のZ測定部151で光子1121,1131,1126,1135がZ測定され、それらが成功することで、光子集合1140Aから光子1121及び1122を除いた補集合と、光子集合1140Bから光子1125及び1126を除いた補集合と、光子集合1140Cから光子1131及び1132を除いた補集合と、光子集合1140Dから光子1134及び1135を除いた補集合が得られる(ステップS109)。これらの補集合及びそれらの光子にユニタリ変換操作を施した集合は第1,3光子集合として再利用され得る。Z測定部151での測定によって光子1125が除外されるため、光子1125が損失していた場合(図9C)であっても、その影響は再利用される第1,3光子集合に及ばない。
【0099】
図12に例示するように、同様に第1光子集合1210がX測定されて第2光子集合とされ、第2光子集合の1個の光子と第3光子集合1230の1個の光子とに対して混合ゲート測定部131での測定が行われる。混合ゲート測定部131での測定が失敗すると、その時点での光子集合1240A,1240Bの一部の光子が前述のように再利用部15のZ測定部151で光子が測定されて除去され、クラスター状態の光子集合1260A,1260Bが得られる。光子集合1260A,1260B、及びそれらの光子にユニタリ変換操作を施した集合は第1,3光子集合として再利用され得る。
【0100】
混合ゲート測定部131での測定が成功すると第4光子集合1240が得られ、削除部16のX測定部161でX測定が行われてそれが成功することで不要な光子が除去され、クラスター状態の第6光子集合1260が得られる。ここで第6光子集合1260がクラスター状態であるためには、X測定部161でのX測定の回数が偶数回である必要がある。よって図12に例示した光子集合1210,1230のように、「4個以上の光子と隣接クラスター状態にある光子」と当該「4個以上の光子と隣接クラスター状態にある光子」に対してクラスター状態にある偶数個数の光子とを含む光子集合を第1光子集合1210とし、「4個以上の光子と隣接クラスター状態にある光子」と当該「4個以上の光子と隣接クラスター状態にある光子」に対してクラスター状態にある奇数個数の光子とを含む光子集合を第3光子集合1230とし、第1光子集合1210に含まれる「4個の光子と隣接クラスター状態にある光子」に対してクラスター状態にある偶数個数の光子の一部と、第3光子集合1230に含まれる「4個以上の光子と隣接クラスター状態にある光子」に対してクラスター状態にある奇数個数の光子の一部とに対して、ステップS101でのX測定及びステップS107での測定がなされることが望ましい。これにより、光子集合1240のように、削除すべき不要な光子の個数が偶数となり、第6光子集合1260をクラスター状態とすることができる。図12の例では、4回のX測定によって第4光子集合1240から4個の不要な光子が除去され、クラスター状態の第6光子集合1260が得られる(ステップS111)。図12に例示するように、このように生成された第6光子集合1260は、4個の光子と隣接クラスター状態にある光子を含む。よってさらに不要な光子をZ測定によって削除し、上述したような処理を繰り返していくことで、図16に例示するような3次元クラスター状態の光子集合を生成することもできる。
X測定部161でX測定が失敗した場合にはZ測定部162でZ測定が行われ、それらが成功することでクラスター状態の光子集合1260A,1260Bが得られる。光子集合1260A,1260B、及びそれらの光子にユニタリ変換操作を施した集合は第1,3光子集合として再利用され得る。
【0101】
図13の例では、光子1311−1317を含むクラスター状態にある光子集合1310の光子1414をZ測定したにも拘わらず、測定結果が得られなかった場合も起こりうる。この場合、当該Z測定前に光子1414と近接クラスター状態にあった光子1313及び1315が、当該Z測定後に光子1313及び1315であるのか、それとも光子1313及び1315に対してそれぞれアダマール変換を施して得られる量子状態の光子1313H及び1315Hであるのかが不明となる。よって、このような場合には、光子1313又は1313H、及び、光子1315又は1315HがZ測定され、それらが成功することでこれらの光子が除去される。
【0102】
図14,図15の例では、第1光子集合1610の1個の光子がX測定され、それによって得られた第2光子集合1610’の1個の光子と第3光子集合1630の1個の光子とに対して混合ゲート測定部131での測定が行われる。混合ゲート測定部131での測定が失敗すると、その時点での光子集合1640A,1640Bの一部の光子が前述のように再利用部15のZ測定部151で光子が測定されて除去され、クラスター状態の光子集合1660A,1660Bが得られる。光子集合1660A,1660B、及びそれらの光子にユニタリ変換操作を施した集合は第1,3光子集合として再利用され得る。
【0103】
混合ゲート測定部131での測定が成功すると第4光子集合1640が得られ、削除部16のX測定部161でX測定が行われてそれが成功することで不要な光子が除去され、クラスター状態の第6光子集合1660が得られる。ここで第6光子集合1660がクラスター状態であるためには、X測定部161でのX測定の回数が偶数回である必要がある。よって図14に例示した光子集合1610,1630のように、「4個以上の光子と隣接クラスター状態にある光子」と当該「4個以上の光子と隣接クラスター状態にある光子」に対してクラスター状態にある偶数個数の光子とを含む光子集合を第1光子集合1610とし、「4個以上の光子と隣接クラスター状態にある光子」と当該「4個以上の光子と隣接クラスター状態にある光子」に対してクラスター状態にある奇数個数の光子とを含む光子集合を第3光子集合1630とし、第1光子集合1610に含まれる「4個以上の光子と隣接クラスター状態にある光子」に対してクラスター状態にある偶数個数の光子の一部と、第3光子集合1630に含まれる「4個以上の光子と隣接クラスター状態にある光子」に対してクラスター状態にある奇数個数の光子の一部とに対して、ステップS101でのX測定及びステップS107での測定がなされることが望ましい。これにより、光子集合1640のように、削除すべき不要な光子の個数が偶数となり、第6光子集合1660をクラスター状態とすることができる。図15の例では、4回のX測定によって第6光子集合1640から4個の不要な光子が除去され、クラスター状態の第6光子集合1660が得られる(ステップS111)。図12に例示するように、このように生成された第6光子集合1260は、4個の光子と隣接クラスター状態にある光子を含む。よってさらに不要な光子をZ測定によって削除し、上述したような処理を繰り返していくことで、図16に例示するような3次元クラスター状態の光子集合を生成することもできる。
【0104】
〔第2実施形態〕
第2実施形態は第1実施形態の変形例であり、初期状態生成部の構成のみが第1実施形態と相違する。以下では初期状態生成部の相違点を中心に説明する。
【0105】
図1に例示するように、第2実施形態の量子状態生成装置2は、第1実施形態の量子状態生成装置1の初期状態生成部11が初期状態生成部21に置換されたものである。
図17に例示するように、本形態の初期状態生成部21は、EPR状態生成部212a−212c、偏光ビームスプリッタ112d,112e、偏光回転素子113ac,113ad,113bc,113bd,113cc,113cd,113dd,113ec,113ed、偏光板114dd,114ec,114ed、及び検出器115dd,115ec,115edを有する。EPR状態生成部212a−212cのそれぞれは、以下に示すEPR状態と呼ばれる光子対(EPR光子対)を1個ずつ生成して出力する。
【数8】

EPR光子対は、パラメトリック下方変換によって得られることが知られている(例えば、「Paul G. Kwiat, Klaus Mattle, Harald Weinfurter, and Anton Zeilinge, “New High-Intensity Source of Polarization-Entangled Photon Pairs,”Phys. Rev. Lett. 4337 (1995).」「Paul G. Kwiat, Edo Waks, Andrew G. White, Ian Appelbaum, and Philippe H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).」等参照)。
【0106】
EPR状態生成部212aで生成されたEPR光子対の一方の光子は光子1001とされ、他方の光子は偏光ビームスプリッタ112dの入射部daに入射される。EPR状態生成部212bで生成されたEPR光子対の一方の光子は光子1002とされ、他方の光子は偏光ビームスプリッタ112dの入射部dbに入射される。EPR状態生成部212cで生成されたEPR光子対の一方の光子は光子1003とされ、他方の光子は偏光ビームスプリッタ112eの入射部ebに入射される。
【0107】
制御部17は、検出器115dd,115ec,115edのそれぞれで1個ずつの光子が観測されたか否かを判定する。これらのEPR光子対の生成・出射、観測及び判定の処理は、検出器115dd,115ec,115edのそれぞれで1個ずつの光子が観測されるまで繰り返される。検出器115dd,115ec,115edのそれぞれで1個ずつの光子が観測された場合、EPR状態生成部212a−212cからそれぞれ出射された合計3個の光子1001,1002,1003はGHZ状態にあり(例えば、「Z.-H. Wei, Y.-J. Han, C. H. Oh, and L.-M. Duan, “Improving noise threshold for optical quantum computing with the EPR photon source,” Physical Review A 81, 060301(R) (2010).」等参照)、なおかつ、前述のようにクラスター状態にある。このように生成された3個の光子又はさらに光子ごとのユニタリ変換操作がなされた3個の光子は第2光子集合とされる。その他は第1実施形態と同じである。
【0108】
〔変形例等〕
なお、本発明は上述の実施の形態に限定されるものではない。例えば、第1の実施形態では、X測定で|V>が観測された場合に(ステップS105)、測定後の光子集合に対して光子ごとのユニタリ変換を行って第2光子集合を生成した(ステップS106)。しかしながら、X測定で|H>が観測された場合にのみ第2光子集合を生成してもよい。これにより、第2光子集合を生成する際の損失の発生を抑制できる。また、同一の処理を複数回実行する場合、複数の同一構成の処理部がそれらの処理を実行してもよいし、1個の処理部が同一の処理を複数回実行してもよい。その他、量子メモリを用いることなく、上述の機能が得られる構成であってもよい。
また上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。
【0109】
また、上述の量子状態生成方法の制御処理内容はプログラムによって記述される。このプログラムは、例えば、光子がキュービットに用いられる場合には、量子処理に必要な各光学素子の特性(例えば、ミラーの角度や位相シフタの制御電圧等)の制御をコンピュータに実行させるためのプログラムを意味し、核スピンがキュービットに用いられる場合には、核スピンに当てる電磁波の周波数や時間の制御をコンピュータに実行させるためのプログラムを意味する。このプログラムがコンピュータで実行されることにより、上記制御処理内容がコンピュータ上で実現される。
【0110】
この制御処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよいが、具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto-Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。
【0111】
また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。
【0112】
このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。
【符号の説明】
【0113】
1,2 量子状態生成装置

【特許請求の範囲】
【請求項1】
β01020304が複素数を表し、|η1>,|η2>,|η3>,|η4>のそれぞれが任意の量子状態を表し、|Φ1>,|Φ2>,|Φ3>,|Φ4>のそれぞれが1個の量子ビットの量子状態を表す場合における、|H>,|V>のそれぞれが計算基底の量子状態を表す場合における、(β01|η1>|Φ1>+β02|η2>|Φ2>)|H>(β03|Φ3>|η3>+β04|Φ4>|η4>)+(β01|η1>|Φ1>−β02|η2>|Φ2>)|V>(β03|Φ3>|η3>−β04|Φ4>|η4>)の量子状態にあるエンタングルメント状態の3個以上の量子ビットからなる第1量子ビット集合に含まれる、量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定し、当該X測定された1個の量子ビットを前記第1量子ビット集合から除いた補集合である第2量子ビット集合を生成し、当該X測定された1個の量子ビットとそれぞれ隣接エンタングルメント状態にあった当該第2量子ビット集合に含まれる特定の2個の量子ビットの量子状態を|Φ1>|Φ3>と|Φ2>|Φ4>との重ね合わせ状態にし、前記第2量子ビット集合の量子状態を、β1324が複素数を表す場合における、β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>にする測定ステップと、
α56が複素数を表し、|η51>,|η52>,|η61>,|η62>のそれぞれが任意の量子状態を表す場合における、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態とされた1個の量子ビットを含むエンタングルメント状態の3個以上の量子ビットからなる第3量子ビット集合の量子状態α5|η51>|Φ5>|η52>+α6|η61>|Φ6>|η62>又はα5|Φ5>|η52>+α6|Φ6>|η62>と、前記第2量子ビット集合の量子状態β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>とに対し、i=jの場合に<Φi|Φj>≠0であり、i≠jの場合に<Φi|Φj>=0であり、γ12が複素数を表す場合における、γ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|で表される量子操作を行い、量子状態|Φ3>と量子状態|Φ4>との重ね合わせ状態であった1個の量子ビットを前記第2量子ビット集合から除いた補集合と、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態であった1個の量子ビットを前記第3量子ビット集合から除いた補集合との和集合である第4量子ビット集合を生成し、当該第4量子ビット集合の量子状態を、α78が複素数を表し、|η71>,|η72>,|η81>,|η82>のそれぞれが任意の量子状態を表す場合における、α7|η71>|Φ1>|η72>+α8|η81>|Φ2>|η82>にする連結ステップと、
を有する量子状態生成方法。
【請求項2】
請求項1の量子状態生成方法であって、
前記測定ステップは、
前記量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定した結果、前記計算基底|H>又は|V>の測定結果が得られた場合に前記第2量子ビット集合を生成するステップである、量子状態生成方法。
【請求項3】
請求項1又は2の量子状態生成方法であって、
前記測定ステップは、
前記量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定して得られた結果が前記計算基底|V>であり、前記X測定された1個の量子ビットを前記第1量子ビット集合から除いた補集合の量子状態がβ14|η1>|Φ1>|Φ4>|η4>+β23|η2>|Φ2>|Φ3>|η3>に収縮した場合に、ユニタリ変換で表される量子ビットごとの量子操作を行い、前記第2量子ビット集合の量子状態をβ13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>にするユニタリ変換ステップを含む、量子状態生成方法。
【請求項4】
請求項1又は2の量子状態生成方法であって、
前記測定ステップは、
前記量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定して得られた結果が前記計算基底|H>であった場合にのみ、前記第2量子ビット集合を生成するステップである、量子状態生成方法。
【請求項5】
請求項1から4の何れかの量子状態生成方法であって、
前記測定ステップで前記量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定しても前記計算基底|H>又は|V>の測定結果が得られなかった場合、少なくとも、前記第1量子ビット集合に含まれる量子ビットのうち量子状態|Φ3>と|Φ4>との重ね合わせ状態であった1個の量子ビットを基底|Φ3>,|Φ4>で測定し、それによって量子状態が|η3>又は|η4>に収縮した量子ビットの集合、又は当該子状態が|η3>又は|η4>に収縮した量子ビットの集合に対してユニタリ変換で表される量子ビットごとの量子操作を施して得られる量子ビットの集合を、新たな前記第1量子ビット集合とするか前記第3量子ビット集合とする第1再利用ステップをさらに有する、量子状態生成方法。
【請求項6】
請求項1から5の何れかの量子状態生成方法であって、
前記連結ステップは、
第1,2入射部及び第1,2出射部を含む偏光ビームスプリッタと、入射した量子ビットの偏光方向を45°変化させて出射する第1,2の偏光回転素子と、偏光方向が第1偏光方向である量子ビットを通過させ、偏光方向が前記第1偏光方向に直交する第2偏光方向である量子ビットを遮断する第1,2偏光板と、第1,2検出器とを含み、前記第1出射部が前記第1入射部に入射した前記第1偏光方向の量子ビット及び前記第2入射部に入射した前記第2偏光方向の量子ビットを出射し、前記第2出射部が前記第1入射部に入射した前記第2偏光方向の量子ビット及び前記第2入射部に入射した前記第1偏光方向の量子ビットを出射し、前記第1の偏光回転素子に前記第1出射部から出射された量子ビットが入射し、前記第2の偏光回転素子に前記第2出射部から出射された量子ビットが入射し、前記第1偏光板に前記第1の偏光回転素子から出射された量子ビットが入射し、前記第2偏光板に前記第2の偏光回転素子から出射された量子ビットが入射し、前記第1検出器に前記第1偏光板を透過した量子ビットが入射し、前記第2検出器に前記第2偏光板を透過した量子ビットが入射するように構成された統合ゲート部の前記第1入射部に、前記特定の2個の量子ビットに含まれる、量子状態|Φ3>と量子状態|Φ4>との重ね合わせ状態とされた1個の量子ビットを入射させ、前記第2入射部に、前記第3量子ビット集合に含まれる、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態とされた1個の量子ビットを入射させ、前記第1,2検出器の両方で量子ビットが検出されたかを判定し、前記第1,2検出器の両方で量子ビットが検出されたと判定された場合の前記第2量子ビット集合から前記第1入射部に入射された量子ビットを除いた補集合と、前記第1,2検出器の両方で量子ビットが検出されたと判定された場合の前記第3量子ビット集合から前記第2入射部に入射された量子ビットを除いた補集合との和集合を前記第4量子ビット集合とするステップであり、
前記量子ビットが光子であり、前記量子状態が光子の偏光方向であり、前記量子状態|H>が前記第1偏光方向であり、前記量子状態|V>が前記第2偏光方向であり、|Φ1>,|Φ3>,|Φ5>のそれぞれが前記第1偏光方向であり、|Φ2>,|Φ4>,|Φ6>のそれぞれが前記第2偏光方向である、量子状態生成方法。
【請求項7】
請求項6の量子状態生成方法であって、
前記第1,2検出器の何れかで量子ビットが検出されなかったと判定された場合、前記第1入射部に入射された量子ビットと隣接エンタングルメント状態にあった量子ビットである第1隣接量子ビットと隣接エンタングルメント状態にあった量子ビットである第2隣接量子ビットをZ測定し、前記第2入射部に入射された量子ビットと隣接エンタングルメント状態にあった量子ビットである第3隣接量子ビットと隣接エンタングルメント状態にあった量子ビットである第4隣接量子ビットをZ測定し、前記第1入射部に入射された量子ビットと前記第1隣接量子ビットと前記第2隣接量子ビットとを前記第2量子ビット集合から除いた第1補集合の部分集合、前記第2入射部に入射された量子ビットと前記第3隣接量子ビットと前記第4隣接量子ビットとを前記第3量子ビット集合から除いた第2補集合の部分集合、前記第1補集合の部分集合に対してユニタリ変換で表される量子ビットごとの量子操作を施して得られる量子ビットの集合、及び、前記第2補集合の部分集合に対してユニタリ変換で表される量子ビットごとの量子操作を施して得られる量子ビットの集合の少なくとも一部を、新たな前記第1量子ビット集合とするか新たな前記第3量子ビット集合とする第2再利用ステップをさらに有する、量子状態生成方法。
【請求項8】
請求項1から7の何れかの量子状態生成方法であって、
エンタングルメント状態の複数個の量子ビットからなる第5量子ビット集合に含まれる何れかの特定の量子ビットを測定することで、前記第5量子ビット集合から当該特定の量子ビットを除いた第6量子ビット集合を生成する除去ステップ、をさらに有し、
|η1>と|η2>の重ね合わせ状態がエンタングルメント状態であり、|η3>と|η4>の重ね合わせ状態がエンタングルメント状態であり、|η51>と|η61>の重ね合わせ状態がエンタングルメント状態であり、|η52>と|η62>の重ね合わせ状態がエンタングルメント状態であり、|η72>と|η82>の重ね合わせ状態がエンタングルメント状態であり、
前記第4量子ビット集合又は前記第6量子ビット集合が所望の量子ビット集合となるまで、前記第4量子ビット集合若しくは前記第6量子ビット集合、又は、前記第4量子ビット集合若しくは前記第6量子ビット集合にユニタリ変換で表される量子ビットごとの量子操作を施して得られる量子ビットの集合が、新たな前記第1量子ビット集合又は新たな前記第3量子ビット集合とされて前記測定ステップ及び前記連結ステップが再び実行される処理、何れかの前記連結ステップで得られた前記第4量子ビット集合が前記第5量子ビット集合とされて前記除去ステップが実行される処理、及び前記第6量子ビット集合が新たな前記第5量子ビット集合とされて前記除去ステップが再び実行される処理、の少なくとも一部が繰り返し実行される、量子状態生成方法。
【請求項9】
請求項1から8の何れかの量子状態生成方法であって、
前記第1量子ビット集合がクラスター状態であり、前記第4量子ビット集合の量子状態がクラスター状態であり、
クラスター状態にある量子ビット集合に含まれる複数個の量子ビットのそれぞれは、当該クラスター状態にある量子ビット集合に含まれる複数個の量子ビットに含まれる何れか他の量子ビットと隣接クラスター状態にあり、
前記隣接クラスター状態は、
量子ビットの対の量子状態|+>|+>に対して制御パウリZ操作を施して得られる量子状態、及び、前記隣接クラスター状態にある量子ビットの対の量子状態に対して制御パウリZ操作を施して得られる量子状態、及び、前記隣接クラスター状態にある量子ビットの対の量子状態に対してさらにユニタリ変換で表される量子操作を量子ビットごとに個別に施して得られる量子状態であり、|+>=(|H>+|V>)(1/√2)である、量子状態生成方法。
【請求項10】
β01020304が複素数を表し、|η1>,|η2>,|η3>,|η4>のそれぞれが任意の量子状態を表し、|Φ1>,|Φ2>,|Φ3>,|Φ4>のそれぞれが1個の量子ビットの量子状態を表し、|H>,|V>のそれぞれが計算基底の量子状態を表す場合における、(β01|η1>|Φ1>+β02|η2>|Φ2>)|H>(β03|Φ3>|η3>+β04|Φ4>|η4>)+(β01|η1>|Φ1>−β02|η2>|Φ2>)|V>(β03|Φ3>|η3>−β04|Φ4>|η4>)の量子状態にあるエンタングルメント状態の3個以上の量子ビットからなる第1量子ビット集合に含まれる、量子状態|H>と|V>との重ね合わせ状態とされた1個の量子ビットをX測定し、当該X測定された1個の量子ビットを前記第1量子ビット集合から除いた補集合である第2量子ビット集合を生成し、当該X測定された1個の量子ビットとそれぞれ隣接エンタングルメント状態にあった当該第2量子ビット集合に含まれる特定の2個の量子ビットの量子状態を|Φ1>|Φ3>と|Φ2>|Φ4>との重ね合わせ状態にし、前記第2量子ビット集合の量子状態を、β1324が複素数を表す場合における、β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>にする測定部と、
α56が複素数を表し、|η51>,|η52>,|η61>,|η62>のそれぞれが任意の量子状態を表す場合における、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態とされた1個の量子ビットを含むエンタングルメント状態の3個以上の量子ビットからなる第3量子ビット集合の量子状態α5|η51>|Φ5>|η52>+α6|η61>|Φ6>|η62>又はα5|Φ5>|η52>+α6|Φ6>|η62>と、前記第2量子ビット集合の量子状態β13|η1>|Φ1>|Φ3>|η3>+β24|η2>|Φ2>|Φ4>|η4>とに対し、i=jの場合に<Φi|Φj>≠0であり、i≠jの場合に<Φi|Φj>=0であり、γ12が複素数を表す場合における、γ1<Φ3|<Φ5|+γ2<Φ4|<Φ6|で表される量子操作を行い、量子状態|Φ3>と量子状態|Φ4>との重ね合わせ状態であった1個の量子ビットを前記第2量子ビット集合から除いた補集合と、量子状態|Φ5>と量子状態|Φ6>との重ね合わせ状態であった1個の量子ビットを前記第3量子ビット集合から除いた補集合との和集合である第4量子ビット集合を生成し、当該第4量子ビット集合の量子状態を、α78が複素数を表し、|η71>,|η72>,|η81>,|η82>のそれぞれが任意の量子状態を表す場合における、α7|η71>|Φ1>|η72>+α8|η81>|Φ2>|η82>にする連結部と、
を有する量子状態生成装置。
【請求項11】
請求項1から9の何れかの量子状態生成方法の制御処理をコンピュータに実行させるためのプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate