説明

金属発泡体およびその製造方法

【課題】 複雑で大きな形状の鋳型を適用する場合であっても、発泡体の製造を容易に行うことのできる金属発泡体の製造方法、およびこうした製造方法によって得られる金属発泡体を提供する。
【解決手段】 金属または合金を溶解して溶湯を作製し、これに増粘剤を添加・混合し、更にこの溶湯内に発泡剤を添加、混合して攪拌して得られた未発泡溶湯または発泡率が4倍以下の発泡未完了溶湯を、三次元複雑形状型に連結された押湯の上部開放部から注湯した後、該押湯の上部開放部を密封し、押湯内から三次元複雑形状型内に溶湯を流入、充填して発泡させ、三次元複雑形状に成形する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、吸音材(遮音材)、衝撃吸収材、触媒担体、電極材料等の他、各種構造材料として広範な分野で利用される発泡体、およびその製造方法に関するものであり、特に、金属または合金を素材とし、薄板、棒材、パイプや複雑な形状の製品を製造する上で有用な金属発泡体(発泡金属)の製造方法、およびこうした製造方法によって製造される金属発泡体に関するものである。
【背景技術】
【0002】
発泡金属は、立体網状構造を有し、気孔率を大きくした金属多孔体であり、表面積が大きいことを利用して各種吸音材(遮音材)、衝撃吸収材、触媒担体、電極材料等の他、各種構造材料として広範な分野で利用されている。こうした発泡金属の素材として、軽量化および高強度を考慮して、AlまたはAl合金が最も汎用されている。
【0003】
こうしたAlまたはAl合金等を素材とした発泡金属を製造する方法として、例えば特許文献1に開示された技術が知られている。この方法は、「溶融金属に増粘剤および発泡材を加えて攪拌することによって、多数の独立気泡よりなる発泡金属を製造する方法において、鋳型全体が発泡金属の融点以上となるように加熱し、かつ攪拌を終了した後に発泡を開始し、気泡が成長する過程で空気抜き用の放出口を有する状態で鋳型を密閉し、発泡材が熱により分解して生じる多数の気泡が膨張することによって鋳型内の空気を鋳型の外部に放出させ、発泡金属が鋳型内部の全体に充満することにより、溶融充満した発泡金属により上記放出口を閉塞して鋳型を密閉状態とし、密閉された鋳型内で多数の気泡の内圧の上昇により気泡相互の圧力均衡の下に均一なセル構造を形成させ、ついで鋳型の加熱を停止して発泡金属を冷却、凝固させる」ものである。
【0004】
上記のような技術の開発によって、均一な気泡を発泡率が高い状態で確保した金属発泡体が実現できたのであるが、その製造条件によっては種々の解決すべき問題が生じることがあった。即ち、上記のような技術によれば、比較的小さな製品を製造する場合にはそれほど問題とならないのであるが、凝固に長時間(例えば、10分以上)を要するような大きな発泡金属製品を製造する場合には、粗大な気泡が多くなって割れ等の欠陥が発生するという問題があった。また、発泡金属中における気泡のバラツキが大きくなり、しかも平均気孔径が大きくなり、製品品質が劣化することもある。
【0005】
上記のような問題を解決するための方法として、例えば特許文献2のような技術も提案されている。この技術では、多数の独立気泡を均一な大きさに形成するとともに、発泡体内部に「引け巣」を発生させないような発泡金属の製造方法に関するものであり、そのために「融点が550〜670℃で且つ固液二相域で固相率が35%となる温度が640℃以下である溶融金属」に対して、増粘剤を添加して大気中若しくは酸化性雰囲気中で攪拌し、これに所定の溶湯温度範囲で発泡剤としての水素化チタンを添加すると共に、この添加量を適切な量とすることによって、上記のような発泡体を得るものである。また、この技術では、増粘剤としてカルシウムが使用できること、およびこのカルシウムの好ましい量、溶湯金属を鋳型に注入する際の好ましい圧力などについても開示されている。更に、溶湯金属としてはAlやAl合金について開示されている。
【特許文献1】特開昭62−20846号 「特許請求の範囲」の請求項1など
【特許文献2】特開2002−371327号 「特許請求の範囲」の請求項1〜7など
【発明の開示】
【発明が解決しようとする課題】
【0006】
上記各技術の開発によって、均一気泡が形成され、製品品質の良好な金属発泡体が実現できたのであるが、製造面において改良されるべきいくつかの問題が指摘される。即ち、上記特許文献1では、製品を形成するために、円筒状、角型状等の単純な形状の鋳型内で発泡剤の添加・混合が行われ、そのまま鋳型内で発泡が行われてきたのであるが、こうした構造で発泡金属の製造を行うと、必然的に溶湯の攪拌に必要な羽式攪拌機が装入可能である単純形状の鋳型が必要となること、羽根式攪拌機の装入が必要なため複雑な製品形状のものには対応できないなど、形状や大きさに制限があった。
【0007】
また上記特許文献2には、第1の鋳型内で発泡させた溶湯を40mmφの比較的小さな鋳型(第2の鋳型)に注湯することが示されているが(例えば、実施例2)、実際問題として発泡剤添加後の溶湯では、短時間の間に発泡を開始する結果、溶湯が早期に高粘度化してしまい、流動性が低下するので、発泡した溶湯の取り扱いは容易ではなく、第2の鋳型への溶融金属の注湯は時間的余裕がなく極めて困難である。特に、複雑な形状で大型の製品を製造するための鋳型においては、こうした問題が顕在化する。即ち、発泡を開始し始めた溶湯を別の第2の鋳型に移湯するためには、発泡剤の添加・混合用の攪拌機の撤去、同溶湯を第2の鋳型に移湯するための第1の鋳型の吊り上げや傾動等の作業を短時間に行う必要があるが、このような作業は事実上困難である。
【0008】
本発明はこうした状況の下でなされたものであって、その目的は、複雑で大きな形状の鋳型を適用する場合であっても、金属発泡体の製造を容易に行うことのできる金属発泡体の製造方法、およびこうした製造方法によって得られる金属発泡体を提供することにある。
【課題を解決するための手段】
【0009】
上記課題を解決することのできた本発明の製造方法とは、金属または合金を溶解して溶湯を作製し、これに増粘剤を添加・混合し、更にこの溶湯内に発泡剤を添加、混合して攪拌して得られた未発泡溶湯または発泡率が4倍以下の発泡未完了溶湯を、三次元複雑形状型に連結された押湯の上部開放部から注湯した後、該押湯の上部開放部を密封し、押湯内から三次元複雑形状型内に溶湯を流入、充填して発泡させ、三次元複雑形状に成形する点に要旨を有するものである。尚、上記「発泡率」とは、通常の金属溶湯の体積に対する発泡金属溶湯の体積の比率である。
【0010】
本発明方法においては、発泡に用いる金属または合金は、前述のアルミニウムの他、マグネシウム、亜鉛、鉄、鉛または銅、或いはこれらの合金が挙げられる。また本発明方法においては、下記(a)〜(e)のいずれかの要件を満足させることが好ましい。
【0011】
(a)押湯側と反対側にガス抜き孔が設けられた三次元複雑形状型を用いること、
(b)上記(a)の場合に、型内に注入された溶湯が前記ガス抜き孔に到達した後、ガス抜き孔近傍を急冷して当該近傍での発泡、および成長を停止させること、
(c)押湯の上部開放部を密封するに際して、少なくとも上部開放部側に断熱材を設けた蓋で上部開放部を覆い、押湯内に注入された溶湯を保温すること、
(d)上記(c)の代わりに、押湯の上部開放部を密封するに際して、冷却能を有する蓋によって上部開放部を覆い、押湯内に注入された溶湯の上部開放部付近を冷却・凝固させること、
(e)前記三次元複雑形状型を加熱炉内で予熱すると共に、当該型内の溶湯温度を640〜700℃として3〜5分間保持した後、型を加熱炉外に取り出し、凝固させること、
本発明によれば、第1の鋳型からの攪拌機の撤去や移湯のための第1の鋳型の吊り上げや傾動等の作業が回避できるので、複雑で大型の金属発泡体を容易に製造することができ、こうして得られた金属発泡体は均一な気泡を有する特性の良好なものとなる。
【発明の効果】
【0012】
本発明によれば、未発泡溶湯または発泡率が4倍以下の発泡率を有する発泡体を、三次元複雑形状型に連結された押湯の上部開放部から注湯した後、該押湯の上部開放部を密封し、押湯内から三次元複雑形状型内に溶湯を流入、充填して発泡させ、三次元複雑形状に成形する構成を採用したので、三次元複雑形状の金属発泡体を容易に製造することができるようになった。
【発明を実施するための最良の形態】
【0013】
本発明者らは、上記目的を達成する為に様々な角度から検討した。その結果、金属または合金を溶解して溶湯を作製し、これに増粘剤を添加・混合し、更にこの溶湯内に発泡剤を添加、混合して攪拌することによって得られた未発泡溶湯または発泡率が4倍以下の発泡未完了溶湯の状態で、三次元複雑形状型に連結された押湯の上部開放部から注湯した後、該押湯の上部開放部を密封し、押湯内から三次元複雑形状型内に溶湯を流入、充填して発泡させれば、型内に注入された未発泡溶湯または発泡未完了溶湯が鋳型の後端部に向って自発的に発泡、成長し、型内を充填して、三次元複雑形状の型であっても十分高い充填率が実現できることを見出し、本発明を完成した。
【0014】
本発明を実施するに当り、単に、押湯の上部解放部に注湯して、これを放置しておくと、溶湯は注湯されたその領域で発泡を開始し、押湯の上部開放部に向って溶湯が発泡、流出し、型内への流入が起こらず、型での充填度が低い状態となる。特に、型内形状が三次元の複雑形状である場合には、こうしたな傾向が顕著になる。
【0015】
そこで、本発明では、溶湯を型内に十分に充填する方法について検討したところ、溶湯を押湯の上部開放部から注入した後、この上部開放部を、蓋等を用いて密封してから充填、発泡させれば、未発泡溶湯または発泡未完了溶湯は自発的に発泡、成長するエネルギーを保有しているので、型全体への充填が容易に行えることが判明したのである。
【0016】
溶湯を上部開放部から注湯するときの溶湯は、未発泡状態または発泡率が4倍以下の状態であることが必要である。溶湯の発泡率が4倍を超えると粘度が高くなって流動性が悪くなり、押湯の上部開放部への注湯が困難になるため、型内に溶湯を十分充填することが困難になる。型に注入するときの溶湯の発泡率は、好ましくは3倍以下(未発泡状態も含む)とするのが良い。
【0017】
図1は、本発明を実施するための装置構成の例を示す概略説明図である。この装置においては、攪拌機2を備えた反応容器1内に発泡体製造用金属溶湯3が注入され、この溶湯中に増粘剤および発泡剤が添加されて攪拌機2によって攪拌された後、反応容器1の側壁に設けられた出湯口4から、未発泡溶湯または発泡未完了溶湯(発泡率が4倍以下のもの)が押湯6の上部開放部から注入される。この注入に際しては、出湯口4に付随して設けられた流量制御用栓5によって、出湯口4の開度が調整できるように構成されている。
【0018】
押湯6はその一方側には、型7が連結されており、この型7の上面は押湯の上方開放部よりも低いところに位置するように配設され、鋳物製造等で用いられる通常の押湯と同様に押湯6に溶湯を注湯したときに溶湯の圧力が型7の方向に掛かるように構成されている。
【0019】
本発明で用いる型7では、押湯6と連結される側と反対側にガス抜き孔8が設けられており、注湯前に型7内に存在している空気が、溶湯3が型7内を充填するときにガス抜き孔を通して逃げることができるような構成となっており、これによって溶湯3の型7内への充填が十分なものとなる。
【0020】
上記のよう装置構成において、反応容器1内で増粘剤および発泡剤が添加・混合された溶湯3は、図2に示すように、押湯6の上部開放部6aから注入される。その後、図3に示すように、押湯6の上部開放部6aが蓋10によって密封されることになる。この蓋10は、例えば図4に示すように、少なくとも溶湯側(図4の下方側)に断熱保温材12が配設されており、押湯6に注湯された溶湯(未発泡溶湯または発泡未完了溶湯)を保温し、当該溶湯に内在する発泡、成長力を極力持続させるようされる。これによって、型7内への充填性をより一層高めることができるものとなる。但し、この蓋10は、密封性を確保するという観点から、上方から圧力が掛かった状態にしておく必要がある。前記図3は、上部開放部6aを密封して溶湯3が型内全体に充填されている状態を示したものである。
【0021】
上記のように、押湯6の上部開放部6aを蓋10で覆って密封することによって、溶湯が型7の内部に十分充填された状態となるのであるが、上部開放部を蓋で覆わずに密封しない状態では、図5に示すように、押湯6に注入された溶湯3は上部開放部に向かって発泡、流出し、型7内への充填が不十分になる。
【0022】
尚、前記図4に示した構成では、前記断熱保温材12は溶湯側だけに設けたものを示したが、保温性を高めるために蓋の両面(溶湯側および蓋の上面側)に設けた構成としても良い。
【0023】
押湯6の上部開放部を密封する手段としては、上記図3、4に示した構成に限らず、例えば冷却能を有する蓋を用いて上部開放部を覆い、例えば図6に示すように、押湯6内の溶湯3の上面側(蓋10の溶湯側近傍)を冷却・凝固させ、生成した凝固殻11の自己シール機能によって、押湯6内の溶湯3(未発泡溶湯または発泡未完了溶湯)の押湯上方への発泡、成長を阻止することができる。こうした構成を採用することによって、押湯6内の溶湯3が潜在的に有する発泡、成長力を型後端側(押湯6と反対側)に導くことによって、型7内への充填性を更に向上させることができる。
【0024】
こうした構成では、生成した凝固殻11自体が押湯6内の溶湯3の上方への発泡、成長を阻止できるので、密封を行うための蓋上方からの荷重の負荷等の作業が不要となり、より好ましい密封状態を達成することができる。このとき用いる「冷却能を有する蓋」としては、鉄鋼、銅、チタン等の金属製で、押湯上部開放部に設置する前に室温に保持されているものでも採用できるが、生成する凝固殻11が不十分で、密封効果が不十分となることが予想される場合には、蓋10に水冷構造を設けて蓋10自体を積極的に冷却できるものとすることもできる。
【0025】
上記のような装置を用いて、発泡体を製造するに当っては、溶湯の型への充填性を確保するという観点から、型は加熱(予熱)しておくことが好ましい。このときの予熱温度は、溶湯の種類によって異なるが、金属または合金の融点以上であることが好ましい。例えば、溶湯としてAlまたはAl合金を用いる場合には、640〜700℃程度となる。この型の予熱温度があまり低くなると、鋳型内での発泡の途中で溶湯が凝固してしまうので、鋳型内への溶湯(若しくは発泡体)の充填が不十分なものとなる。
【0026】
また、型への注湯後、型内の溶湯(若しくは発泡体)の温度は、金属の種類によって異なるが、AlまたはAl合金を用いる場合には、概ね640〜700℃で3〜5分間保持後、型を炉外に取り出して凝固させることが好ましい。こうした工程を経ることによって、型内への発泡体の充填が更に十分なものとなるが、温度が低い場合や時間が足りない場合には型内への発泡体の充填が不十分となる。
【0027】
上記のようなガス抜き孔8を設けた場合には、型後端部のガス抜き孔8の部分を急冷して型後端部での発泡、成長を停止させることによって、密度の高い発泡体を得ることが可能となる。こうした急冷をしないときには、型内を発泡しながら成長してきた溶湯は、ガス抜き孔8より一部流出し、型取り出し後の発泡体の密度は低いものとなるが、低密度の製品を得たいときには適用可能である。
【0028】
気泡が均一な発泡体を得るため、および鋳型への充填性を良好にするためには、金属または合金溶湯の粘度も適切に調製する必要がある。溶湯の粘度調整のために増粘剤としては、金属カルシウム、シリコンカーバイド(SiC)、アルミナ(Al)等、様々なものが挙げられるが、このうち金属カルシウムが最も好ましい。溶湯の粘度を適切な範囲に調整するためには、増粘剤の添加量も適切に制御するのが良い。こうした観点から、増粘剤として金属カルシウムを用いる場合には、その添加量は0.5〜4.0質量%とすることが好ましい。金属カルシウムの添加量が0.5%未満となると、溶湯の粘度が不十分なために反応容器から溶湯を取出した後の発泡が不十分となって良好な発泡体が得られない。また金属カルシウムの添加量が4.0質量%を超えると、溶湯の粘度が高くなり過ぎて、反応容器からの溶湯の取り出しが困難になる。
【0029】
本発明方法では、上記のような溶湯に発泡剤を添加することによって、溶湯内に多数の気泡を形成するものであるが、このとき用いる発泡剤としては、水素化チタン(TiH2)、水素化ジルコニウム(ZrH2)、炭酸カルシウム(CaCO3)等、様々なものが挙げられるが、これら発泡剤の分解温度を考慮すると、水素化チタンを用いることが好ましい。この水素化チタンを発泡剤として用いる場合には、その添加量は0.5〜2.0質量%(溶湯全質量に対する割合)であることが好ましい。水素化チタンの添加量が0.5%未満となると、反応容器から溶湯を取出した後の発泡が不十分となって良好な発泡体が得られない。また水素化チタンの添加量が2.0質量%を超えると、溶湯の粘度が高くなり過ぎて、反応容器からの溶湯の取り出しが困難になる。
【0030】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【実施例】
【0031】
大気中にてAl:20.0kgを溶解し、これにCa:300g(1.5%)を添加し、5分間攪拌を行った。この段階で溶湯温度を680〜690℃に設定し、水素化チタンを300g(1.45%)添加し、30秒間攪拌を行った。そして、反応容器の側壁に配設した出湯口4(前記図1)を開口することによって、未発泡溶湯または発泡未完了溶湯を取り出し、加熱炉内に設置された690℃に加熱した型に流し込み(注湯)、押湯の上部開放部を蓋(保温材を有するものまたは有さないもの)で密封し、型内で発泡させて3分保持した後、鋳型ごと炉内から取り出し、空冷した。このとき、室温に保持することによって冷却能を有するようにした蓋(前記図6)によって密封した場合についても実験した(後記表1のNo.4)。
【0032】
このとき用いた型の形状を図7に示す。尚、図7(a)は型7の全体形状を示したものであり、図7(b)は図7(a)のA−A線矢視断面図、図7(c)は図7(a)のB−B線矢視断面図、図7(d)は図7(a)のC−C線矢視断面図を夫々示す。また図7に示した型は、図示しないが、押湯6側(図7の左側)において押湯6部が連結される構成となっているものである。また、この鋳型には、必要によって、押湯とは反対側(図3の右側)の先端部にガス抜き孔を備えた構成とした。
【0033】
上記の条件を基本とし、Caの添加量、水素化チタンの添加量、注湯温度、押湯密封の有無、ガス抜き孔の有無、鋳型温度、および型内での溶湯の保持時間(型内保持時間)、等を様々に変えて同様の実験を行った。各条件における溶湯の充填率によって、その良否を判断した。このときの評価基準は、下記で求められる充填度が95%以上を良(○)とし、それ未満を不良(×)とした。その結果を製造条件と共に、一括して下記表1に示す。但し、実験No.6,7については、Al−10%Zn−1%Mg合金:20kgを溶解した。
【0034】
[充填度の測定方法]
充填度=[鋳型左端から測定した充填長さ(mm)]/[鋳型全長さ(950mm)]
×100
によって充填度(充填長さの割合)を求めた。
【0035】
【表1】

【0036】
この結果から、次のように考察できる。まず、注湯後、押湯上部開放部を、蓋等を用いて密封することによって、型内への充填が十分になっていることが分かる(実験No.1〜6)。押湯上部開放部を、断熱保温性を有する蓋で覆った場合、或いは冷却能を有する蓋によって覆い、押湯内での溶湯上面に凝固殻を形成して密封したものでは、鋳型内への発泡体の充填度は100%と良好な結果となった(実験No.3、4)。また実験No.7の結果から、鋳型後端部のガス抜き孔を設けることが好ましいことが分かる。
【0037】
これに対して、押湯上方開口部を密封しない場合(実験No.8)や、密封の状態が不完全な場合(実験No.9)には、充填度が低い値となっている。また、溶湯の押湯部への注湯から炉外取り出しまでの時間(型内保持時間)が短くなると、充填度は低くなる(実験No.10)。更に、型温度が低い場合(実験No.11)、型内への溶湯の充填率が低いものとなっていた。
【図面の簡単な説明】
【0038】
【図1】本発明方法を実施するための製造構成の一例を示す概略説明図である。
【図2】溶湯3を上部開口部6aから押し湯に注入される状態を示す説明図である。
【図3】鋳型に注湯後、押湯6の上部開放部6aを密封したときの溶湯の充填状態を示す説明図である。
【図4】押湯上部開放部6aを密封するための蓋の構成例を示す概略説明図である。
【図5】鋳型に注湯後、押湯6の上部開放部6aを密封しないときの溶湯の充填状態を示す説明図である。
【図6】押湯上方開放部を密封するための蓋の他の構成例を示す概略説明図である。
【図7】実施例で用いた鋳型(三次元複雑形状型)の構成を示す概略説明図である。
【符号の説明】
【0039】
1 反応容器
2 攪拌機
3 溶湯
4 出湯口
5 流量制御用栓
6 押湯
7 型
8 ガス抜き孔
10 蓋
11 凝固殻
12 断熱保温材


【特許請求の範囲】
【請求項1】
金属または合金を溶解して溶湯を作製し、これに増粘剤を添加・混合し、更にこの溶湯内に発泡剤を添加、混合して攪拌して得られた未発泡溶湯または発泡率が4倍以下の発泡未完了溶湯を、三次元複雑形状型に連結された押湯の上部開放部から注湯した後、該押湯の上部開放部を密封し、押湯内から三次元複雑形状型内に溶湯を流入、充填して発泡させ、三次元複雑形状に成形することを特徴とする金属発泡体の製造方法。
【請求項2】
金属または合金は、アルミニウム、マグネシウム、亜鉛、鉄、鉛または銅、或いはこれらの合金である請求項1に記載の製造方法。
【請求項3】
押湯側と反対側にガス抜き孔が設けられた三次元複雑形状型を用いる請求項1または2に記載の製造方法。
【請求項4】
型内に注入された溶湯が前記ガス抜き孔に到達した後、ガス抜き孔近傍を急冷して当該近傍での発泡、および成長を停止させる請求項3に記載の製造方法。
【請求項5】
押湯の上部開放部を密封するに際して、少なくとも上部開放部側に断熱材を設けた蓋で上部開放部を覆い、押湯内に注入された溶湯を保温するようにした請求項1〜4のいずれかに記載の製造方法。
【請求項6】
押湯の上部開放部を密封するに際して、冷却能を有する蓋によって上部開放部を覆い、押湯内に注入された溶湯の上部開放部付近を冷却・凝固させるようにした請求項1〜4のいずれかに記載の製造方法。
【請求項7】
前記三次元複雑形状型を加熱炉内で予熱すると共に、当該型内の溶湯温度を640〜700℃として3〜5分間保持した後、型を加熱炉外に取り出し、凝固させる請求項1〜6のいずれかに記載の製造方法。
【請求項8】
請求項1〜7のいずれかに記載の方法によって製造されたものである金属発泡体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−61865(P2007−61865A)
【公開日】平成19年3月15日(2007.3.15)
【国際特許分類】
【出願番号】特願2005−252134(P2005−252134)
【出願日】平成17年8月31日(2005.8.31)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成17年度 経済産業省 新エネルギー・産業技術総合開発機構(NEDO)からの委託研究、産業活力再生特別措置法第30条の適用を受ける特許出願
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【出願人】(000192626)神鋼鋼線工業株式会社 (44)