説明

陽極接合装置用の基板温度測定装置及びその測定装置を用いた陽極接合装置の診断方法

【課題】陽極接合時の環境に近似する環境下でのガラス基板、及び半導体基板の温度変化を測定する。
【解決手段】
陽極接合用ガラス基板10と複数の熱電対16,・・・,16から構成され、ガラス基板10は、熱電対16,・・・,16の測温接点及びその測温接点からガラス基板10の端部まで連続する一部の熱電対素線が埋設された複数の溝12,・・・,12が形成された平坦面を有している。さらに、少なくともその測温接点は、それぞれの溝12,・・・,12の内壁面上を含む内部に無機質の固着剤によって固定され、かつ陽極接合前後において、前述の測温接点、一部の熱電対素線、及び固着剤が、前述の平坦面から突出していない。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、陽極接合装置用の基板温度測定装置及びその測定装置を用いた陽極接合装置の診断方法に関するものである。
【背景技術】
【0002】
陽極接合は、現在ではMEMS(Micro Electro Mechanical Systems)分野などにおいて広く利用されている技術である。しかしながら、その接合条件の最適化は経験的な理解に基づいている場合が少なくない。特に、陽極接合の主たる接合条件因子の一つである接合温度はその最たる例であるといえる。陽極接合は、例えばシリコン基板とガラスとの接合技術として用いられるが、異種の基板を接合するという特殊性により、実際の接合工程における各基板の温度変化を直接的に時系列でモニターすることはこれまで行われていない。従って、実際の生産工程における電圧の印加開始時や電圧印加停止後の冷却時間についても、経験則に基づいて決定されている。
【0003】
他方、基板の温度を直接的に測定することを目的とした技術も幾つか提案されている(例えば、特許文献1〜3参照)。しかしながら、これらの手段は、単体の基板温度を測定するという思想に基づいているため、陽極接合のように異種基板を接合する場合には全く適用できない。
【特許文献1】特開平11−51776号公報
【特許文献2】特開2004−4096号公報
【特許文献3】特開2006−138637号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
一般的に、陽極接合時の温度条件は各基板が載置されているヒーターの温度を管理することによってのみ行われている。従って、上述のとおり、異種基板を接合する陽極接合では、ヒーター自体の温度を監視してもそれが各基板の状態を反映しているとは限らない。すなわち、実際の各基板の温度が直接的に測定されないため、各基板がヒーターの設定温度に到達するまでに必要な時間等を正確に知ることができない。さらに言えば、例えば半導体基板とガラス基板では昇温又は冷却速度が異なるため、ヒーターの温度測定のみによって各基板の温度条件を最適化することは極めて困難である。
【0005】
このため、実際の生産工程では、歩留まりの向上等の理由から、ヒーターの設定温度到達後又は電圧印加停止後も不必要に長い時間待機しなければならなくなる。これはいわゆるタクトタイムの遅延につながるため、生産性が大幅に低下する。
【0006】
また、背景技術として記載した単に基板単体を直接測定するための基板同士を、陽極接合時に似せるべく強引に接触させた状態で測定しても、各基板の間に介在する空間のために正確な温度測定はできない。特に、低圧力の条件下で陽極接合がされる場合は、その空間の熱伝導性が極めて低下するため、たとえヒーターの温度プロファイルが実際の陽極接合条件と同じ条件に設定されても各基板の正確な温度測定は実質的に不可能となる。
【課題を解決するための手段】
【0007】
本発明は、そのような技術課題を解決することにより、これまでは困難と考えられてきた、陽極接合装置内の基板設置環境下における各基板温度の直接計測を可能にし、かつ各基板の昇温又は冷却時間の最適化の実現に大きく貢献するものである。発明者らは、陽極接合の際の各基板の時間的な温度変化を直接的にモニターするためには、陽極接合時の各基板の接合状態とほぼ同様の状態で測定しうる測定装置が必要であると考えた。そこで、発明者らは、実際に接合される予定の2種類の基板のうち少なくとも一方の基板に温度測定手段を設けた状態で陽極接合が可能となるための構造について精力的に研究した。その結果、陽極接合後の基板間に介在するボイドの容積及びその数が実際の製品とほぼ遜色ない程度にまで低減する構造が見出され、本発明が完成した。
【0008】
本発明の1つの陽極接合装置用のガラス基板温度測定装置は、陽極接合用ガラス基板と複数の熱電対から構成され、そのガラス基板は、その熱電対の測温接点及びその測温接点からそのガラス基板の端部まで連続する一部の熱電対素線が埋設された複数の溝が形成された平坦面を有している。さらに、少なくとも前述の測温接点は、それぞれの前述の溝の内壁面上を含む内部に無機質の固着剤によって固定され、かつ陽極接合前後において、前述の測温接点、一部の熱電対素線、及び固着剤が、前述の平坦面から突出していない。
【0009】
このガラス基板温度測定装置によれば、陽極接合という特殊な状況下でのガラス基板の温度変化を測定することが可能になる。具体的には、このガラス基板温度測定装置と半導体基板(例えば、シリコン基板)を、各基板間のボイドの発生を抑えるように陽極接合することができる。その結果、実際の各基板の接合状況に近似した環境下で、ガラス基板の温度プロファイルの測定が可能となる。従って、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、熱電対が組み込まれた接合基板は、例えば、陽極接合装置のメンテナンス時のガラス基板の温度プロファイルの診断手段の一つとして活用することが出来る。
【0010】
本発明の1つの陽極接合装置用の半導体基板温度測定装置は、陽極接合用半導体基板と複数の熱電対から構成され、その半導体基板は、その熱電対の測温接点及びその測温接点からその半導体基板の端部まで連続する一部の熱電対素線が埋設された複数の溝が形成された平坦面を有している。さらに、少なくとも前述の測温接点は、それぞれの前述の溝の内壁面上を除く内部に無機質の固着剤によって固定され、かつ陽極接合前後において、前述の測温接点、一部の熱電対素線、及び固着剤が、前述の平坦面から突出していない。
【0011】
この半導体基板温度測定装置によれば、陽極接合という特殊な状況下での半導体基板の温度変化を測定することが可能になる。具体的には、この半導体基板温度測定装置とガラス基板を、各基板間のボイドの発生を抑えるように陽極接合することができる。その結果、実際の各基板の接合状況に近似した環境下で、半導体基板の温度プロファイルの測定が可能となる。従って、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、熱電対が組み込まれた接合基板は、例えば、陽極接合装置のメンテナンス時の半導体基板の温度プロファイルの診断手段の一つとして活用することができる。尚、測定対象が半導体基板であるため、熱電対の測温接点は、溝の内壁面に接すると測定精度が落ちるか、あるいは測定不能となる。従って、測温接点の位置は溝内壁に接しないように固定される。
【0012】
また、本発明のもう1つの陽極接合装置用のガラス基板温度測定装置は、陽極接合用ガラス基板と複数の熱電対から構成され、そのガラス基板は、複数の溝が形成された接合面と、それぞれの前述の溝に対応する凹部が形成されたその接合面と反対の面と、それぞれの前述の溝の一部からその凹部に貫通する一対の貫通孔を有している。さらに、それぞれの前述の熱電対は、一対の熱電対素線が前述の一対の貫通孔に挿通されることにより前述の熱電対の測温接点が前述の一対の貫通孔の間に位置して前述の凹部の内壁面上を含む内部に無機質の固着剤によって固定されるとともに、それぞれの前述の溝に前述の熱電対素線の一部が前述のガラス基板の端部まで連続して埋設され、かつ、陽極接合前後において、前述の測温接点、一部の熱電対素線、及び固着剤が、前述の接合面から突出していない。
【0013】
このガラス基板温度測定装置によれば、陽極接合という特殊な状況下でのガラス基板の温度変化を測定することが可能になる。具体的には、このガラス基板温度測定装置と半導体基板(例えば、シリコン基板)を、各基板間のボイドの発生を抑えるように陽極接合することができる。その結果、実際の各基板の接合状況に近似した環境下で、ガラス基板の温度プロファイルの測定が可能となる。従って、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、熱電対が組み込まれた接合基板は、例えば、陽極接合装置のメンテナンス時のガラス基板の温度プロファイルの診断手段の一つとして活用することができる。さらに、一対の熱電対素線が上述の一対の貫通孔に挿通されるため、その測温接点及び一対の熱電対素線が溝内部に固定されやすくなり、陽極接合時の安定性が向上する。
【0014】
また、本発明のもう1つの陽極接合装置用の半導体基板温度測定装置は、陽極接合用半導体基板と複数の熱電対から構成され、その半導体基板は、複数の溝が形成された接合面と、それぞれの前述の溝に対応する凹部が形成されたその接合面と反対の面と、それぞれの前述の溝の一部からその凹部に貫通する一対の貫通孔を有している。さらに、それぞれの前述の熱電対は、一対の熱電対素線が前述の一対の貫通孔に挿通されることにより前述の熱電対の測温接点が前述の一対の貫通孔の間に位置して前述の凹部の内壁面上を除く内部に無機質の固着剤によって固定されるとともに、それぞれの前述の溝に前述の熱電対素線の一部が前述の半導体基板の端部まで連続して埋設され、かつ、陽極接合前後において、前述の測温接点、一部の熱電対素線、及び固着剤が、前述の接合面から突出していない。
【0015】
この半導体基板温度測定装置によれば、陽極接合という特殊な状況下での半導体基板の温度変化を測定することが可能になる。具体的には、この半導体基板温度測定装置とガラス基板を、各基板間のボイドの発生を抑えるように陽極接合することができる。その結果、実際の各基板の接合状況に近似した環境下で、半導体基板の温度プロファイルの測定が可能となる。従って、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、熱電対が組み込まれた接合基板は、例えば、陽極接合装置のメンテナンス時の半導体基板の温度プロファイルの診断手段の一つとして活用することができる。尚、測定対象が半導体基板であるため、熱電対の測温接点は、溝の内壁面に接すると測定精度が落ちるか、あるいは測定不能となる。従って、測温接点の位置は溝内壁に接しないように固定される。さらに、一対の熱電対素線が上述の一対の貫通孔に挿通されるため、その測温接点及び一対の熱電対素線が溝内部に固定されやすくなり、陽極接合時の安定性が向上する。
【0016】
本発明の陽極接合装置の診断方法は、上述のいずれかのガラス基板温度測定装置と上述のいずれかの半導体基板温度測定装置を陽極接合した基板温度測定装置に対して、試作用又は生産用の電圧印加を除く陽極接合プロセスと同じ条件で処理を行うとともに、前述の処理する前、処理の間、及び処理した後の群から選ばれる少なくも1つの期間に、前述のガラス基板及び前述の半導体基板のそれぞれの温度を定期的、又は不定期的に複数回測定する。
【0017】
この診断方法によれば、陽極接合装置のヒーターの温度変化に伴う、陽極接合済みの2種類の基板のそれぞれの温度変化を直接的に計測することが可能となるため、その装置の不具合等の把握が容易になる。例えば、本診断方法によれば、陽極接合された各基板がヒーターの設定温度に到達するまでに必要な時間などを知ることができるため、陽極接合装置の温度プロファイルの異状の把握や管理が極めて容易になる。尚、この診断方法では、陽極接合の際の電圧印加は行われない。これは、各基板の温度が測定されているときに数百ボルトという高い電圧が印加されると、電気的ノイズにより正確な温度測定ができないという問題が生じる可能性があるからである。
【0018】
ところで、陽極接合される2種類の基板の双方の温度を同時に測定可能にするために、上述のガラス基板温度測定装置のいずれかと、上述の半導体基板温度測定装置のいずれかを陽極接合することは好ましい一態様である。このとき、各基板の溝が形成された平坦面同士を陽極接合することが好ましい。これは、溝から熱電対素線が離れてしまったり、基板表面から突出して各基板の平坦性が損なわれたりすると、ヒーターと各基板との間に空間が形成されてしまう危険性が生じるからである。換言すれば、本発明の各基板温度測定装置を用いれば溝が形成された平坦面同士を陽極接合することができるため、各基板に埋設された熱電対の一部を各基板間に閉じ込めることができる。そのような測定装置は、構造的に安定して複数回の測定にも耐えることができるため、メンテナンス時における装置状態の診断等に広く利用することができる。
【発明の効果】
【0019】
本発明の1つの陽極接合装置用のガラス基板温度測定装置によれば、陽極接合という特殊な状況下でのガラス基板の温度変化を測定することが可能になる。具体的には、このガラス基板温度測定装置と半導体基板(例えば、シリコン基板)を、各基板間のボイドの発生を抑えるように陽極接合することができる。その結果、実際の各基板の接合状況に近似した環境下で、ガラス基板の温度プロファイルの測定が可能となる。また、本発明の1つの陽極接合装置用の半導体基板温度測定装置によれば、陽極接合という特殊な状況下での半導体基板の温度変化を測定することが可能になる。具体的には、この半導体基板温度測定装置とガラス基板を、各基板間のボイドの発生を抑えるように陽極接合することができる。その結果、実際の各基板の接合状況に近似した環境下で、半導体基板の温度プロファイルの測定が可能となる。上記のいずれの発明であっても、陽極接合時のヒーターの温度条件を最適化することが容易になる。また、熱電対が組み込まれた接合基板は、例えば、陽極接合装置のメンテナンス時のガラス基板の温度プロファイルの診断手段の一つとして活用することが出来る。さらに、本発明の陽極接合装置の診断方法によれば、陽極接合装置のヒーターの温度変化に伴う、陽極接合済みの2種類の基板のそれぞれの温度変化を直接的に計測することが可能となるため、その装置の不具合等の把握が容易になる。
【発明を実施するための最良の形態】
【0020】
つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしもスケール通りに示されていない。また、各図面を見やすくするために、一部の構成部材又は符号が省略され得る。
【0021】
<第1の実施形態>
図1は、本実施形態における1つの陽極接合装置用のガラス基板温度測定装置100の平面図であり、図2は、図1に示すX部分の拡大図である。また、図3は、図2におけるA−A断面図である。
【0022】
図1乃至図3に示す本実施形態の陽極接合装置用のガラス基板温度測定装置100は、予め形成されたガラス基板10の溝12,12,・・・,12の中に、熱電対16,16,・・・,16の一部が埋設された状態で固定されている。ここで、図1に示すように、溝12,12,・・・,12のそれぞれが、測定の対象となる領域からガラス基板10のオリフラとなる当該基板の端部まで連続して形成されている。また、埋設された熱電対16,16,・・・,16は、ガラス基板10における溝12,12,・・・,12が形成されていない平坦面から突出しないように固定されている。
【0023】
図2に示すように、1つの熱電対16は、一対の熱電対素線16a,16aと測温接点16bとで構成されている。また、熱電対素線16a,16aは、好ましい一態様として、耐熱性の被覆材17によって覆われている。ここで、被覆材17が用いられているときは、埋設された熱電対16のみならず、被覆材17もガラス基板10における溝12,12,・・・,12が形成されていない平坦面から突出しないように固定されている。また、図3に示すように、1つの溝12は、先端部がそれ以外の領域よりも深く掘り込まれており、その深い溝12aの内部に測温接点16bが位置するように固着剤14によって固定されている。より具体的には、測定接点16bが、溝12の内壁面上に接しないように固定されている。
【0024】
ここで、固着剤14は、無機質の固着剤であり、より具体的には公知のアルミナシリカ系耐火性固着剤である、尚、本実施形態では、ガラス基板10の厚みは、約2mmであり、1つの溝12の幅は約2mmである。また、1つの溝12の深さのうち、測温接点16bが埋設されている領域は約1.8mmであり、それ以外の領域の溝12の深さは約1.5mmである。また、図1に示すとおり、本実施形態ではガラス基板10の周辺部に4つ及び中央に1つの測定領域が点在して形成されている。
【0025】
本実施形態のガラス基板10の溝12,12,・・・,12は、公知のエッチングプロセスによって形成される。例えば、本実施形態では、公知のスパッタリング技術及び公知のフォトリソグラフィ技術により、ガラス基板10上にメタルマスクが形成された後、公知のガラスエッチング溶液を用いたウェットエッチングプロセスによって本実施形態の溝12,12,・・・,12が形成される。また、公知のサンドブラスト処理によっても溝12,12,・・・,12は形成される。
【0026】
本実施形態のガラス基板温度測定装置100は、適宜選定される公知の条件によって市販のシリコン基板と陽極接合される。このとき、ガラス基板温度測定装置100の溝が形成されていないガラス基板10の表面は平坦性を備えており、かつ、埋設された熱電対16の一部及び被覆材17は、当該平坦面から突出していない。従って、熱電対16の一部及び被覆材17が埋設された側のガラス基板10の表面とシリコン基板の表面を陽極接合しても、陽極接合後の基板間に介在するボイドの容積及びその数が実際の製品とほぼ遜色ない程度にまで低減される。尚、仮に、充填された固着剤14の量が少ない等の理由により、陽極接合後に熱電対16が固着剤14によって固定されなくなっても、シリコン基板との間に挟まれた熱電対16の固定が事実上維持されるため、熱電対16及び被覆材17が埋設された側のガラス基板10の表面が接合されることが好ましい。
【0027】
図4は、本実施形態における1つの陽極接合装置600の概略構成図である。この陽極接合装置600は、熱電対の一部を外部に取り出すためのポート35を備えている。また、密閉空間であるチャンバー30内には、第1ヒーター兼電極部31、第2ヒーター兼電極部32が設けられている。直流電源37は、第1ヒーター兼電極部31と第2ヒーター兼電極部32に対して直流電圧を印加し、第1ヒーター兼電極部31、第2ヒーター兼電極部32のそれぞれの制御部34a,34bがヒーターの温度を制御する。さらに、陽極接合装置600は、チャンバー30内を低圧にするための排気ポンプ36が接続されている。
【0028】
ここで、例えば、シリコン基板33と接合されたガラス基板温度測定装置100の複数の熱電対16,16,・・・,16の端子部又はコネクタ部は、陽極接合装置600に設けられたポート35から引き出されて公知の測温データ表示部(及び/又は記録部)38に接続される。
【0029】
このように、シリコン基板と接合されたガラス基板温度測定装置100は、陽極接合装置における加熱又は冷却時のガラス基板温度の測定、あるいはガラス基板の温度プロファイルの異状の有無の診断のために利用されうる。より具体的には、ガラス基板温度測定装置100を用いれば、実際の各基板の接合状況に近似した環境下で、ガラス基板10の温度プロファイルの測定が可能となる。その結果、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、プロセス前、プロセス間、及びプロセス後のうち、少なくも1つの期間に、ガラス基板10の温度を定期的、又は不定期的に複数回測定することにより、陽極接合装置を適切にメンテナンスすることができる。つまり、プロセス前又はプロセス後の測定は、陽極接合装置の稼動前後の異状の有無の確認に役立つ。また、プロセス間に測定することは、ガラス基板の加熱時の温度プロファイルや、保温時の安定性、又は冷却時の温度プロファイルの異状の有無を確認することができるという利点がある。
【0030】
ここで、陽極接合条件のうち、電圧印加条件を除く全ての条件(例えば、チャンバー圧力、ヒーターによる加熱条件)を、実際の試作又は生産条件に一致させる。他方、前述の診断の際に電圧は印加されない。ガラス基板の温度が測定されているときに数百ボルトという高い直流電圧が印加されると、電気的ノイズにより正確な温度測定ができないという問題が生じる可能性があるからである。
【0031】
他方、本実施形態における1つの陽極接合装置用の半導体基板温度測定装置は、図1乃至図3に示すガラス基板温度測定装置100と同様の構造を有している。従って、図1乃至図3に示された構造及び構成部材は、本実施形態の半導体基板温度測定装置の構造及び構成部材と一部を除いて実質的に等しい。熱電対の一部が埋設されるシリコン基板の溝は、公知のウェットエッチングプロセス、又は公知のドライエッチングプロセスによって形成されうる。ドライエッチングの例としては、プラズマプロセスによる公知の異方性エッチング技術が適用される。
【0032】
本実施形態の半導体基板温度測定装置と上述のガラス基板温度測定装置100との構造及び構成部材における相違点は、基板の材質と固着剤の材質である。本実施形態の半導体基板温度測定装置に使用される基板の材質はシリコンであり、固着剤はシリカ系耐火性固着剤である。尚、各装置の製造方法の相違点は上述の通りである。
【0033】
また、本実施形態の半導体基板温度測定装置は、市販のガラス基板と陽極接合される。このとき、半導体基板温度測定装置の溝が形成されていない半導体基板の表面は平坦性を備えており、かつ、埋設された熱電対の一部及び被覆材は、当該平坦面から突出していない。従って、熱電対の一部及び被覆材が埋設された側の半導体基板の表面とガラス基板の表面を陽極接合しても、陽極接合後の基板間に介在するボイドの容積及びその数が実際の製品とほぼ遜色ない程度にまで低減される。尚、仮に、充填された固着剤の量が少ない等の理由により、陽極接合後に熱電対が固着剤によって固定されなくなっても、ガラス基板との間に挟まれた熱電対の固定が事実上維持されるため、熱電対及び被覆材が埋設された側の半導体基板の表面が接合されることが好ましい。
【0034】
ガラス基板と接合された半導体基板温度測定装置は、例えば、上述の陽極接合装置600における加熱又は冷却時の半導体基板温度の測定、あるいは半導体基板の温度プロファイルの異状の有無の診断のために利用されうる。より具体的には、これらの条件を採用すれば、実際の各基板の接合状況に近似した環境下で、半導体基板の温度プロファイルの測定が可能となる。その結果、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、プロセス前、プロセス間、及びプロセス後のうち、少なくも1つの期間に、半導体基板の温度を定期的、又は不定期的に複数回測定することにより、陽極接合装置を適切にメンテナンスすることができる。尚、陽極接合条件のうち、電圧印加条件を除く全ての条件(例えば、チャンバー圧力、ヒーターによる加熱条件)を、実際の試作又は生産条件に一致させる。他方、電圧印加は実施されない。半導体基板の温度が測定されているときに数百ボルトという高い直流電圧が印加されると、電気的ノイズにより正確な温度測定ができないという問題が生じる可能性があるからである。
【0035】
<第2の実施形態>
図5は、本実施形態における1つの陽極接合装置用のガラス基板温度測定装置200の平面図であり、図6は、図5に示すY部分の拡大図である。また、図7は、図6におけるB−B断面図である。本実施形態は、図5又は図6のY部分に代表される、溝12,12・・・,12の端部の構造の除き、第1の実施形態と同じ構成である。また、その製造方法の一部も第1の実施形態と同じである。従って、第1の実施形態と重複する説明は省略される。
【0036】
図5乃至図7に示すとおり、ガラス基板10は、溝12,12・・・,12が形成されている面と反対面に円形の凹部19,19,・・・,19が形成されている。また、貫通孔18a,18bは、互いに間隔をあけて1つの溝12の一部と1つの凹部19の一部をつないでいる。一対の熱電対素線16a,16aは、ガラス基板10の凹部19,19・・・,19が形成されている面から一対の貫通孔18a,18bに挿入されている。挿入された一対の熱電対素線16a,16aの大部分は、好ましくは被覆材17によって覆われた状態で、ガラス基板10の端部まで溝12,12・・・,12の内部に埋設されている。尚、本実施形態では、ガラス基板10の厚みは、約2mmであり、1つの溝12の幅は約2mmである。また、1つの溝12の深さは全域に渡って約1.5mmであり、1つの凹部19の深さは約0.2mmである。また、本実施形態では、ガラス基板10の周辺部に4つ及び中央に1つの測定領域が点在して形成されている。
【0037】
また、熱電対素線16a,16aと測温接点16bは、固着剤14によって溝12,12・・・,12及び凹部19,19・・・,19の内部に固定されている。第1の実施形態と同様、被覆材17が用いられているときは、埋設された熱電対16のみならず、被覆材17もガラス基板10における溝12,12,・・・,12又は凹部19,19・・・,19が形成されていない平坦面から突出しないように固定されている。尚、ガラス基板温度測定装置200とシリコン基板とを陽極接合することを考慮すれば、たとえ比較的弾性が強い固着剤14であっても、熱電対16及び被覆材17と同様、ガラス基板10における溝12,12,・・・,12又は凹部19,19・・・,19が形成されていない平坦面から突出していないことが好ましい。これは、本実施形態以外にも当てはまる。
【0038】
本実施形態のガラス基板10の凹部19,19,・・・,19は、公知のエッチングプロセスによって形成される。例えば、本実施形態では、公知のスパッタリング技術及び公知のフォトリソグラフィ技術により、ガラス基板10上にメタルマスクが形成された後、公知のガラスエッチング溶液を用いたウェットエッチングプロセスによって本実施形態の凹部19,19,・・・,19が形成される。また、公知のサンドブラスト処理によっても凹部19,19,・・・,19は形成される。
【0039】
本実施形態のガラス基板温度測定装置200は、市販のシリコン基板と陽極接合される。このとき、ガラス基板温度測定装置200の溝が形成されていないガラス基板10の表面は平坦性を備えており、かつ、埋設された熱電対16の一部及び被覆材17は、当該平坦面から突出していない。従って、熱電対16の一部及び被覆材17が埋設された側のガラス基板10の表面とシリコン基板の表面を陽極接合しても、陽極接合後の基板間に介在するボイドの容積及びその数が実際の製品とほぼ遜色ない程度にまで低減される。尚、仮に、充填された固着剤14の量が少ない等の理由により、陽極接合後に熱電対16が固着剤14によって固定されなくなっても、シリコン基板との間に挟まれた熱電対16の固定が事実上維持されるため、熱電対16及び被覆材17が埋設された側のガラス基板10の表面が接合されることが好ましい。
【0040】
シリコン基板と接合されたガラス基板温度測定装置200は、例えば、第1の実施形態と同様に、上述の陽極接合装置600における加熱又は冷却時のガラス基板温度の測定、あるいはガラス基板の温度プロファイルの異状の有無の診断のために利用されうる。より具体的には、ガラス基板温度測定装置200を用いれば、実際の各基板の接合状況に近似した環境下で、ガラス基板10の温度プロファイルの測定が可能となる。その結果、陽極接合時のヒーターの温度条件を最適化することが可能となる。プロセス前、プロセス間、及びプロセス後のうち、少なくも1つの期間に、ガラス基板10の温度を定期的、又は不定期的に複数回測定することにより、陽極接合装置を適切にメンテナンスすることができる。尚、ガラス基板温度測定装置200は第1の実施形態のガラス基板温度測定装置100と比較して、熱電対16,16,・・・,16が溝又は凹部により固定している点で優れている。
【0041】
他方、本実施形態における1つの陽極接合装置用の半導体基板温度測定装置300は、図5乃至図7に示すガラス基板温度測定装置200と同様の構造を有している。従って、図5乃至図7に示された構造及び構成部材は、本実施形態の半導体基板温度測定装置の構造及び構成部材と一部を除いて実質的に等しい。熱電対の一部が埋設されるシリコン基板の溝及び凹部は、公知のウェットエッチングプロセス、又は公知のドライエッチングプロセスによって形成されうる。ドライエッチングの例としては、プラズマプロセスによる公知の異方性エッチング技術が適用される。
【0042】
本実施形態の半導体基板温度測定装置300と上述のガラス基板温度測定装置200との構造及び構成部材における相違点は、基板の材質と固着剤の材質である。本実施形態の半導体基板温度測定装置300に使用される基板の材質はシリコンであり、固着剤はシリカ系耐火性固着剤である。尚、各装置の製造方法の相違点は上述の通りである。
【0043】
また、本実施形態の半導体基板温度測定装置300は、市販のガラス基板と陽極接合される。このとき、半導体基板温度測定装置300の溝が形成されていない半導体基板の表面は平坦性を備えており、かつ、埋設された熱電対の一部及び被覆材は、当該平坦面から突出していない。従って、熱電対の一部及び被覆材が埋設された側の半導体基板の表面とガラス基板の表面を陽極接合しても、陽極接合後の基板間に介在するボイドの容積及びその数が実際の製品とほぼ遜色ない程度にまで低減される。尚、仮に、充填された固着剤の量が少ない等の理由により、陽極接合後に熱電対が固着剤によって固定されなくなっても、ガラス基板との間に挟まれた熱電対の固定が事実上維持されるため、熱電対及び被覆材が埋設された側の半導体基板の表面が接合されることが好ましい。
【0044】
ガラス基板と接合された半導体基板温度測定装置300は、例えば、第1の実施形態と同様に、上述の陽極接合装置600における加熱又は冷却時の半導体基板温度の測定、あるいは半導体基板の温度プロファイルの異状の有無の診断のために利用されうる。より具体的には、半導体基板温度測定装置300を用いれば、実際の各基板の接合状況に近似した環境下で、半導体基板の温度プロファイルの測定が可能となる。その結果、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、プロセス前、プロセス間、及びプロセス後のうち、少なくも1つの期間に、半導体基板の温度を定期的、又は不定期的に複数回測定することにより、陽極接合装置を適切にメンテナンスすることができる。
【0045】
<第3の実施形態>
図8は、本実施形態における1つの陽極接合装置用のガラス基板温度測定装置400の平面図であり、図9は、図8に示すZ部分の拡大図である。また、図10は、図9におけるC−C断面図である。本実施形態は、溝12,12・・・,12の数、位置、及び深さを除き、第1の実施形態と同じ構成である。また、その製造方法の一部も第1の実施形態と同じである。従って、第1の実施形態と重複する説明は省略される。
【0046】
図8乃至図10に示すとおり、ガラス基板10は、一つの測定領域(例えばZ部分)に2つの測温接点16b,16bが配置されるように、2つの溝12,12が形成されている。また、図10に示すとおり、二つの溝12,12の深さは互いに異なっている。尚、本実施形態では、ガラス基板10の厚みは、約2mmであり、1つの溝12の幅は約2mmである。また、深い方の溝の深さは約1.8mmであり、浅い方の溝の深さは1.4mmである。また、これらの2つの溝は、一つの狭い測定領域におけるガラス基板10の厚み方向の温度の変化を測定するために設けられているため、それぞれが加工上の支障が出ない程度まで近接している。本実施形態では、ガラス基板10の厚み方向の温度変化を測定するための測定領域として、ガラス基板の周辺部に4つ及び中央に1つの領域が点在して形成されている。
【0047】
本実施形態のガラス基板温度測定装置400は、市販のシリコン基板と陽極接合される。このとき、ガラス基板温度測定装置400の溝が形成されていないガラス基板10の表面は平坦性を備えており、かつ、埋設された熱電対16の一部及び被覆材17は、当該平坦面から突出していない。従って、熱電対16の一部及び被覆材17が埋設された側のガラス基板10の表面とシリコン基板の表面を陽極接合しても、陽極接合後の基板間に介在するボイドの容積及びその数が実際の製品とほぼ遜色ない程度にまで低減される。尚、仮に、充填された固着剤14の量が少ない等の理由により、陽極接合後に熱電対16が固着剤14によって固定されなくなっても、シリコン基板との間に挟まれた熱電対16の固定が事実上維持されるため、熱電対16及び被覆材17が埋設された側のガラス基板10の表面が接合されることが好ましい。
【0048】
シリコン基板と接合されたガラス基板温度測定装置400は、例えば、第1の実施形態と同様に、上述の陽極接合装置600における加熱又は冷却時の半導体基板温度の測定、あるいは半導体基板の温度プロファイルの異状の有無の診断のために利用されうる。より具体的には、ガラス基板温度測定装置400を用いれば、実際の各基板の接合状況に近似した環境下で、ガラス基板10の温度プロファイルの測定が可能となる。その結果、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、プロセス前、プロセス間、及びプロセス後のうち、少なくも1つの期間に、ガラス基板10の温度を定期的、又は不定期的に複数回測定することにより、陽極接合装置を適切にメンテナンスすることができる。尚、ガラス基板温度測定装置400は第1の実施形態のガラス基板温度測定装置100と比較して、ガラス基板10の複数の深さの温度が測定できる点で優れている。また、本実施形態では、2種類の深さの溝が形成されているが、これに限定されない。ガラス基板の面積等を考慮して、3種類以上の深さの溝が形成されてもよい。ガラス基板の厚み方向の変化をより詳細に調べるためには、3種類以上の溝を形成することは好ましい一態様である。
【0049】
他方、本実施形態における1つの陽極接合装置用の半導体基板温度測定装置は、図8乃至図10に示すガラス基板温度測定装置400と同様の構造を有している。従って、図8乃至図10に示された構造及び構成部材は、本実施形態の半導体基板温度測定装置の構造及び構成部材と一部を除いて実質的に等しい。熱電対の一部が埋設されるシリコン基板の溝は、公知のウェットエッチングプロセス、又は公知のドライエッチングプロセスによって形成されうる。ドライエッチングの例としては、プラズマプロセスによる公知の異方性エッチング技術が適用される。
【0050】
本実施形態の半導体基板温度測定装置と上述のガラス基板温度測定装置400との構造及び構成部材における相違点は、基板の材質と固着剤の材質である。本実施形態の半導体基板温度測定装置に使用される基板の材質はシリコンであり、固着剤はシリカ系耐火性固着剤である。尚、各装置の製造方法の相違点は上述の通りである。
【0051】
また、本実施形態の半導体基板温度測定装置は、市販のガラス基板と陽極接合される。このとき、半導体基板温度測定装置の溝が形成されていない半導体基板の表面は平坦性を備えており、かつ、埋設された熱電対の一部及び被覆材は、当該平坦面から突出していない。従って、熱電対の一部及び被覆材が埋設された側の半導体基板の表面とガラス基板の表面を陽極接合しても、陽極接合後の基板間に介在するボイドの容積及びその数が実際の製品とほぼ遜色ない程度にまで低減される。尚、仮に、充填された固着剤の量が少ない等の理由により、陽極接合後に熱電対が固着剤によって固定されなくなっても、ガラス基板との間に挟まれた熱電対の固定が事実上維持されるため、熱電対及び被覆材が埋設された側の半導体基板の表面が接合されることが好ましい。
【0052】
ガラス基板と接合された半導体基板温度測定装置は、例えば、第1の実施形態と同様に、上述の陽極接合装置600における加熱又は冷却時の半導体基板温度の測定、あるいは半導体基板の温度プロファイルの異状の有無の診断のために利用されうる。より具体的には、半導体基板温度測定装置を用いれば、実際の各基板の接合状況に近似した環境下で、半導体基板の温度プロファイルの測定が可能となる。その結果、陽極接合時のヒーターの温度条件を最適化することが可能となる。また、プロセス前、プロセス間、及びプロセス後のうち、少なくも1つの期間に、半導体基板の温度を定期的、又は不定期的に複数回測定することにより、陽極接合装置を適切にメンテナンスすることができる。
【0053】
<第4の実施形態>
図11は、本実施形態における1つの陽極接合装置用の基板温度測定装置400の平面図であり、図12は、基板温度測定装置500の一部分の断面図(図6のD−D断面に相当)である。本実施形態の基板温度測定装置400は、第2の実施形態におけるガラス基板温度測定装置200と半導体基板温度測定装置300とを陽極接合したものである。従って、第2の実施形態と重複する説明は省略される。
【0054】
図12に示すとおり、ガラス基板温度測定装置200の熱電対16の一部及び被覆材17が埋設された側の表面と半導体基板温度測定装置300の熱電対16の一部及び被覆材17が埋設された側の表面が接合されている。埋設された熱電対16の一部及び被覆材17は、上述のいずれの平坦面からも突出していない。従って、熱電対16の一部及び被覆材17が埋設された側同士の表面を陽極接合しても、陽極接合後の基板間に介在するボイドの容積及びその数が実際の製品とほぼ遜色ない程度にまで低減される。尚、本実施形態においては特に、熱電対16及び被覆材17が埋設された側のガラス基板10表面と熱電対16及び被覆材17が埋設された側のシリコン基板20表面が接合されることが好ましい。これは、2種類の基板内に熱電対16が埋設されている本実施形態の基板温度測定装置500は、一方の基板のみに埋設されている場合と比較して熱電対16の固定状態の維持が困難となるためである。
【0055】
本実施形態の基板温度測定装置500は、例えば、第1の実施形態と同様に、上述の陽極接合装置600における加熱又は冷却時のガラス基板10及び半導体基板20の温度の同時測定を可能にする。また、上記各基板の温度プロファイルの異状の有無の診断が同時に行える。より具体的には、本実施形態の基板温度測定装置500を用いれば、実際の各基板の接合状況に近似した環境下で、各基板の温度プロファイルの同時測定が可能となる。その結果、陽極接合時のヒーターの温度条件を極めて効率よく最適化することが可能となる。また、プロセス前、プロセス間、及びプロセス後のうち、少なくも1つの期間に、ガラス基板10及び半導体基板20の温度を定期的、又は不定期的に複数回測定することにより、陽極接合装置をより適切にメンテナンスすることができる。
【0056】
これまで、本発明の実施形態について具体的に説明したが、上述した各実施形態は本発明を実施するための例示に過ぎない。上述の各実施形態では、被覆材を溝の内部に固定するために、被覆材が埋設されている溝の底部の一部、又は側面部の一部にも固着剤が充填されているが、これに限定されない。例えば、溝と被覆材の幅を調整することにより、固着剤を用いることなく、被覆材を溝内部に押し込むだけでも溝内部に固定されうる。他方、測温接点が埋設されている領域の溝内には、測温接点を確実に固定するための固着剤が充填されることが好ましい。
【0057】
また、上述の幾つかの実施形態では、1つの溝は、先端部がそれ以外の領域よりも深く掘り込まれており、その深い溝の内部に測温接点が位置するように固着剤によって固定されていたが、これに限定されない。例えば、被覆材の厚みや固着剤の量を調整することにより、一つの溝の深さを全領域に渡って同じ深さにすることもできる。
【0058】
また、上述の各実施形態のうち、ガラス基板温度測定装置100,200,300に代表されるガラス基板温度測定装置では、1つの測定接点16bが、1つの溝12の内壁面上に接しないように固定されているが、これに限定されない。従って、測定接点16bが溝12の内壁面上に接するように固定されても、本発明の効果は奏される。測温接点16bの配置の容易性の観点からは、測定接点16bが溝12の内壁面上に接するように固定するほうが好ましい。他方、上述の各実施形態の半導体基板温度測定装置に関しては、熱電対の測定接点が、溝の内壁面上に接しないように固定される必要がある。つまり、測定対象が半導体基板であるため、熱電対の測温接点は、溝の内壁面に接すると測定精度が落ちるか、あるいは測定不能となる。
【0059】
また、上述の各実施形態では、測温接点が固定されている位置からガラス基板又は半導体基板の端部まで連続する複数の溝が形成されていたが、これに限定されない。例えば、図13のガラス基板又は半導体基板の基板温度測定装置700に示すように、それぞれの溝12,12,・・・,12が一つの基板の周辺部において一体となって一つの溝(又は凹部)42を形成する場合、換言すれば、支流であるそれぞれの溝12,12,・・・,12が、一つの基板内において本流に合流するような構造であっても、本発明の「複数の溝」の範囲に含まれるものである。以上、述べたとおり、本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
【産業上の利用可能性】
【0060】
本発明は、陽極接合装置の温度条件の最適化や異状の有無の診断、あるいは、メンテナンスの際などに利用される。
【図面の簡単な説明】
【0061】
【図1】本発明の1つの実施形態における陽極接合装置用のガラス基板温度測定装置の平面図である。
【図2】図1に示すX部分の拡大図である。
【図3】図2におけるC−C断面図である。
【図4】本発明の1つの実施形態における陽極接合装置の概略構成図である。
【図5】本発明の他の実施形態における陽極接合装置用のガラス基板温度測定装置の平面図である。
【図6】図5に示すY部分の拡大図である。
【図7】図6におけるC−C断面図である。
【図8】本発明の他の実施形態における陽極接合装置用のガラス基板温度測定装置の平面図である。
【図9】図8に示すZ部分の拡大図である。
【図10】図9におけるC−C断面図である。
【図11】本発明の他の実施形態における陽極接合装置用の基板温度測定装置の平面図である。
【図12】本発明の他の実施形態における陽極接合装置用の基板温度測定装置の一部の断面図である。
【図13】本発明の他の実施形態における陽極接合装置用の基板温度測定装置の平面図である。
【符号の説明】
【0062】
10 ガラス基板
12,22,42 溝
14 固着剤
16 熱電対
16a 熱電対素線
16b 測温接点
17 被覆材
18a,18b,28b 貫通孔
19,29 凹部
20 半導体基板
30 チャンバー
31 第1ヒーター兼電極部
32 第2ヒーター兼電極部
33 シリコン基板
34a 制御部
34b 制御部
35 ポート
36 排気ポンプ
37 直流電源
38 測温データ表示部(及び/又は記録部)
100,200,400,700 ガラス基板温度測定装置
300 半導体基板温度測定装置
500 基板温度測定装置
600 陽極接合装置


【特許請求の範囲】
【請求項1】
陽極接合用ガラス基板と複数の熱電対から構成され、
前記ガラス基板は、前記熱電対の測温接点及び前記測温接点から前記ガラス基板の端部まで連続する一部の熱電対素線が埋設された複数の溝が形成された平坦面を有し、
少なくとも前記測温接点は、それぞれの前記溝の内壁面上を含む内部に無機質の固着剤によって固定され、かつ
陽極接合前後において、前記測温接点、前記一部の熱電対素線、及び前記固着剤が、前記平坦面から突出していない
陽極接合装置用のガラス基板温度測定装置。
【請求項2】
陽極接合用半導体基板と複数の熱電対から構成され、
前記半導体基板は、前記熱電対の測温接点及び前記測温接点から前記半導体基板の端部まで連続する一部の熱電対素線が埋設された複数の溝が形成された平坦面を有し、
少なくとも前記測温接点は、それぞれの前記溝の内壁面上を除く内部に無機質の固着剤によって固定され、かつ
陽極接合前後において、前記測温接点、前記一部の熱電対素線、及び前記固着剤が、前記平坦面から突出していない
陽極接合装置用の半導体基板温度測定装置。
【請求項3】
それぞれの前記平坦面同士が陽極接合された請求項1に記載のガラス基板温度測定装置と請求項2に記載の半導体基板温度測定装置を備える
陽極接合装置用の基板温度測定装置。
【請求項4】
点在する測定領域を有し、
それぞれの前記測定領域内に、前記複数の溝の内壁面上を含む内部に前記平坦面からの深さが異なるように配置された複数の測温接点を備える
請求項1に記載のガラス基板温度測定装置。
【請求項5】
点在する測定領域を有し、
それぞれの前記測定領域内に、前記複数の溝の内壁面上を除く内部に前記平坦面からの深さが異なるように配置された複数の測温接点を備える
請求項2に記載の半導体基板温度測定装置。
【請求項6】
陽極接合用ガラス基板と複数の熱電対から構成され、
前記ガラス基板は、複数の溝が形成された接合面と、それぞれの前記溝に対応する凹部が形成された前記接合面と反対の面と、それぞれの前記溝の一部から前記凹部に貫通する一対の貫通孔を有し、
それぞれの前記熱電対は、一対の熱電対素線が前記一対の貫通孔に挿通されることにより前記熱電対の測温接点が前記一対の貫通孔の間に位置して前記凹部の内壁面上を含む内部に無機質の固着剤によって固定されるとともに、それぞれの前記溝に前記熱電対素線の一部が前記ガラス基板の端部まで連続して埋設され、
陽極接合前後において、前記測温接点、前記一部の熱電対素線、及び前記固着剤が、前記接合面から突出していない
陽極接合装置用のガラス基板温度測定装置。
【請求項7】
陽極接合用半導体基板と複数の熱電対から構成され、
前記半導体基板は、複数の溝が形成された接合面と、それぞれの前記溝に対応する凹部が形成された前記接合面と反対の面と、それぞれの前記溝の一部から前記凹部に貫通する一対の貫通孔を有し、
それぞれの前記熱電対は、一対の熱電対素線が前記一対の貫通孔に挿通されることにより前記熱電対の測温接点が前記一対の貫通孔の間に位置して前記凹部の内壁面上を除く内部に無機質の固着剤によって固定されるとともに、それぞれの前記溝に前記熱電対素線の一部が前記半導体基板の端部まで連続して埋設され、
陽極接合前後において、前記測温接点、前記一部の熱電対素線、及び前記固着剤が、前記接合面から突出していない
陽極接合装置用の半導体基板温度測定装置。
【請求項8】
それぞれの前記接合面同士が陽極接合された請求項6に記載のガラス基板温度測定装置と請求項7に記載の半導体基板温度測定装置を備える
陽極接合装置用の基板温度測定装置。
【請求項9】
請求項3に記載の基板温度測定装置に対して、試作用又は生産用の電圧印加を除く陽極接合プロセスと同じ条件で処理を行うとともに、処理する前、処理の間、及び処理した後の群から選ばれる少なくも1つの期間に、前記ガラス基板及び前記半導体基板のそれぞれの温度を定期的、又は不定期的に複数回測定する
陽極接合装置の診断方法。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2009−19991(P2009−19991A)
【公開日】平成21年1月29日(2009.1.29)
【国際特許分類】
【出願番号】特願2007−182782(P2007−182782)
【出願日】平成19年7月12日(2007.7.12)
【出願人】(502265367)ヤマナカヒューテック株式会社 (2)
【出願人】(307021092)山中セミコンダクター株式会社 (4)
【Fターム(参考)】