説明

難燃性ポリカーボネート樹脂組成物

【課題】流動性と難燃性を兼ね備えた透明性に優れたポリカーボネートを提供する。
【解決手段】(A)特定のシロキサン構造を含むカーボネート構成単位を含むポリカーボネート−ポリジオルガノシロキサン(A成分)100重量部に対し、(B)有機酸金属塩系難燃剤(B成分)0.01〜0.2重量部を含有する難燃性ポリカーボネート樹脂組成物であって、且つUL―94に準じた難燃性評価がV−0であることを特徴とする難燃性ポリカーボネート樹脂組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、難燃性ポリカーボネート樹脂組成物に関する。更に詳しくは、特定のカーボネート構成単位を含んでなるポリカーボネート樹脂成分を含み、透明性に優れた難燃性ポリカーボネート樹脂組成物に関する。
【背景技術】
【0002】
芳香族ポリカーボネート樹脂は透明性や優れた耐熱性および強度を有し、さらに一定の難燃性を有することから、広い分野で使用されている。しかしながら、近年の電子・電気機器部品、OA関連部品などの難燃化要求の高まりや製品の薄肉化に伴う難燃レベルアップの要求に対応するためには、芳香族ポリカーボネート樹脂の難燃性は十分とはいえない。更に最近ではUL規格(米国アンダーライターズラボラトリー規格)−94においてV−1、もしくはV−0に適合するような高度な難燃性が要求される例が多く、高度な難燃性が付与されたPC材料が非常に重要となってきている。
【0003】
ポリカーボネート樹脂の難燃性向上を目的として、ハロゲン化ビスフェノールA、およびハロゲン化ポリカーボネートオリゴマーなどのハロゲン系難燃剤が難燃剤効率の点から酸化アンチモンの如き難燃助剤とともに用いられてきた。例えば特許文献1には、ポリカーボネート樹脂に対して、臭素化ビスフェノールAのカーボネートオリゴマーを全組成物当り1〜20重量%含有する難燃性ポリカーボネート樹脂組成物が提案されている。しかしながら、安全性、もしくは廃棄および焼却時の環境への影響の観点から、ハロゲンを含まない難燃剤による難燃化方法が市場より求められている。ノンハロゲン系難燃剤として、有機リン系難燃剤を、特に有機リン酸エステル化合物を配合したポリカーボネート樹脂組成物は優れた難燃性を示すとともに、可塑剤としての高流動化作用もあり、多くの方法が提案され、使用されている。たとえば、特許文献2には、ポリカーボネート系樹脂の難燃性を改良するためにリン酸エステルを添加することが提案されている。しかしながら、これらの樹脂組成物の難燃性を向上させるためには、リン酸エステルを大量に添加する必要があり、その結果、樹脂成形体の耐熱性や耐衝撃性が低下するという問題があった。また、成形加工時の金型やロールの腐食、ガスの発生、および変色など、成形環境や成形品外観において好ましくない場合がある。
【0004】
これに対して、上記従来の難燃剤に代わりシリコーン系難燃剤がポリカーボネート系樹脂の難燃剤として使用されるようになっている。特許文献3、特許文献4には、特定のシリコーン化合物を熱可塑性樹脂に添加した難燃性樹脂組成物が開示されている。しかしながら、かかる文献に記載されたシリコーン化合物を単独で添加した樹脂組成物は、概して難燃性能の大幅な改善が得られていなかった。高濃度のシリコーン化合物の配合により難燃性能が向上する事例もあるものの、かかる処方はプラスチックスの成形性、混練性および他の必要特性に悪影響が生じることがあり、さらにはコスト的にも不利であるため、実用的とはいえなかった。
【0005】
高度な難燃性を得る手法の一つに燃焼試験における樹脂の溶融滴下(ドリップ)現象の抑制がある。そのための方法としては、ベース樹脂として分岐単位を有する樹脂を用いる方法、ならびにドリップ防止剤としてフィブリル形成能を有するポリテトラフルオロエチレン(以下フィブリル化PTFEと略称する場合がある)を添加する方法などがある(特許文献5、特許文献6、および特許文献7参照)。その中で、ベース樹脂として分岐単位を有する芳香族ポリカーボネート樹脂を用いる方法では、透明性に優れる点で好ましくドリップ改善効果も認められるものの、ドリップ防止効果と流動性の両立の点で十分に満足なものが得られていないのが現状であった。さらに、ポリカーボネート樹脂の特徴である耐衝撃性が著しく低下する問題がある。フィブリル化PTFEを添加する方法は、ドリップ防止効果が得られ易く、フィブリル化PTFEの添加による流動性の低下も少ないため、高い難燃性が求められる材料(UL規格でV―0、V−1を有する材料)には多く適用されている方法である。ただし、ポリカーボネート樹脂の特徴である透明性が損なわれる問題があった。
【0006】
ポリカーボネート樹脂として、ポリカーボネート−ポリジオルガノシロキサン共重合体含有樹脂を用い、フィブリル化PTFEを配合した難燃性樹脂組成物も知られている(特許文献8参照)。ポリカーボネート−ポリジオルガノシロキサン共重合体をベース樹脂とすることにより酸素指数が向上し、フィブリル化PTFEの添加により溶融滴下防止効果が発現するため、UL規格でV−0を達成する高度な難燃組成物が得られる。しかしながら、透明性が低下する問題があった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特公昭47−44537号公報
【特許文献2】特公昭62−25706号公報
【特許文献3】特公昭62−60421号公報
【特許文献4】特開平5−86295号公報
【特許文献5】特開平11−323118号公報
【特許文献6】特許第3129374号公報
【特許文献7】特開2008−297424号公報
【特許文献8】特開平8−81620号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上記の如く流動性と難燃性を兼ね備えた透明性に優れたポリカーボネート系樹脂組成物が求められている現状に対して、上記従来技術はかかる要求を満足しうるものとはいえなかった。本発明の目的は、かかる要求を満足する難燃性ポリカーボネート樹脂組成物を提供することにある。
【課題を解決するための手段】
【0009】
本発明者らは、上記目的を達成せんとして鋭意研究を重ねた結果、特定のシロキサン構造を含むカーボネート構成単位を含むポリカーボネート−ポリジオルガノシロキサン共重合体(A成分)及び有機酸金属塩系難燃剤(B成分)からなるポリカーボネート樹脂組成物が、目的とする透明性に優れ、さらには難燃性にも優れることを見出し、本発明に到達した。
【0010】
すなわち、本発明によれば、(1)(A)下記一般式〔1〕で表されるカーボネート構成単位および下記一般式〔3〕で表されるカーボネート構成単位からなる透明性を有するポリカーボネート共重合体(A成分)100重量部に対し、
【化1】

[上記一般式〔1〕において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。
【化2】

(上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。)]
【0011】
【化3】

(上記一般式〔3〕において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは100未満の自然数である。Xは炭素原子数2〜8の二価脂肪族基である。)
(B)有機酸金属塩系難燃剤(B成分)0.01〜0.2重量部を含有する難燃性ポリカーボネート樹脂組成物であって、且つUL―94に準じた難燃性評価がV−0であることを特徴とする難燃性ポリカーボネート樹脂組成物が提供される。
【0012】
本発明のより好適な態様の一つは、(2)A成分の粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.60〜2.50であることを特徴とする上記構成(1)に記載の難燃性ポリカーボネート樹脂組成物である。
本発明のより好適な態様の一つは、(3)A成分が、一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート部分のマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造であり、該ポリジオルガノシロキサンドメインの平均サイズが5〜40nm、規格化分散が40%以下であることを特徴とする上記構成(1)または(2)に記載の難燃性ポリカーボネート樹脂組成物である。
本発明のより好適な態様の一つは、(4)上記一般式〔3〕において、p+qが30〜60であることを特徴とする上記構成(1)〜(3)のいずれかに記載の難燃性ポリカーボネート樹脂組成物である。
本発明のより好適な態様の一つは、(5)A成分の全重量を基準にして上記一般式〔3〕で表されるポリジオルガノシロキサンブロックが2〜20重量%であることを特徴とする上記構成(1)〜(4)のいずれかに記載の難燃性ポリカーボネート樹脂組成物である。
本発明のより好適な態様の一つは、(6)B成分が、パーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機酸金属塩系難燃剤であることを特徴とする上記構成(1)〜(5)のいずれかに記載の難燃性ポリカーボネート樹脂組成物である。
本発明のより好適な態様の一つは、(7)0.03μm以下の算術平均粗さ(Ra)を有する厚み2mmの平滑平板において、全光線透過率が80%〜95%であることを満足する上記構成(1)〜(6)のいずれかに記載の難燃性ポリカーボネート樹脂組成物である。
本発明のより好適な態様の一つは、(8)上記構成1〜7のいずれかに記載の難燃性ポリカーボネート樹脂組成物からなる射出成形品である。
本発明のより好適な態様の一つは、(9)上記構成1〜7のいずれか一項に記載の難燃性ポリカーボネート樹脂組成物からなる押出成形品である。
【0013】
以下、更に本発明の詳細について説明する。
<A成分:ポリカーボネート共重合体>
本発明のA成分として使用されるポリカーボネート共重合体は、前述した通り、上記一般式〔1〕で表されるカーボネート構成単位および上記一般式〔3〕で表されるカーボネート構成単位からなる透明性を有するポリカーボネート共重合体である。なお、ここでいう透明性を有するとは、2mm厚みのプレートの全光線透過率が80%以上であるということである。
【0014】
上記一般式〔1〕で表されるカーボネート構成単位を誘導する二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、および1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
【0015】
なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
【0016】
上記一般式〔3〕で表されるカーボネート構成単位において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、好ましくは水素原子、炭素数1〜6のアルキル基、又は炭素数6〜12の置換若しくは無置換のアリール基であり、水素原子、炭素数1〜6のアルキル基、又はフェニル基が特に好ましい。 R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、好ましくは水素原子、炭素原子数1〜10のアルキル基であり、水素原子、炭素原子数1〜4のアルキル基が特に好ましい。上記式〔3〕で表されるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)としては、例えば下記一般式(I)に示すような化合物が好適に用いられる。
【0017】
【化4】

【0018】
ジヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、2−アリルフェノール、イソプロペニルフェノール、2−メトキシ−4−アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2−アリルフェノール)末端ポリジオルガノシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2−アリルフェノール)末端ポリジメチルシロキサン、および(2−メトキシ−4−アリルフェノール)末端ポリジメチルシロキサンが好ましい。また、高度な透明性を実現するためにジヒドロキシアリール末端ポリジオルガノシロキサンのオルガノシロキサン重合度(p+q)は100未満が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは5〜70、より好ましくは20〜60、更に好ましくは30〜60、特に好ましくは30〜50である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、透明性に優れる。上記下限以上の共重合体は、凝集力の低いポリジオルガノシロキサン部位の導入によるレオロジー特性の改質効果が高く、構造粘性指数を高くしやすい。その結果、剪断流動時の高い流動性を保持しつつ燃焼時のドリップが抑制された難燃性の高い樹脂成型品を得ることができる。かかる上限以下の共重合体は、ポリジオルガノシロキサンドメインの平均サイズと規格化分散を小さくしやすい。その結果高温で長時間シリンダー内に滞留される成形条件下にあっても、優れた透明性を有する樹脂成形品を得ることができる。上記上限以下のポリジオルガノシロキサン単位は、その単位重量あたりのモル数が増加し、ポリカーボネート中に該単位が均等に組み込まれやすくなる。ジオルガノシロキサン重合度が大きいと、ポリジオルガノシロキサン単位のポリカーボネート中への組み込みが不均等になるとともに、ポリマー分子中のポリジオルガノシロキサン単位の割合が増加するため、該単位を含むポリカーボネートと、含まないポリカーボネートとが生じやすく、かつ相互の相溶性が低下しやすくなる。その結果として大きなポリジオルガノシロキサンドメインが生じやすくなる。一方で、流動性、耐衝撃性、および難燃性の観点からは、ポリジオルガノシロキサンドメインがある程度大きい方が有利であることから、上記の如く好ましい重合度の範囲が存在する。尚、本発明のA成分として使用されるポリカーボネート共重合体は、一般式〔1〕で表されるカーボネート構成単位を主成分とする連続相と一般式〔3〕で表されるカーボネート構成単位を主成分とする分散相からなる海島型相分離構造を形成する。本発明において、マトリックスとは一般式〔1〕で表されるカーボネート構成単位を主成分とする連続相をいい、ポリジオルガノシロキサンドメインとはマトリックス中に分散した一般式〔3〕で表されるカーボネート構成単位を主成分とする分散相をいう。上述の如く、ポリジオルガノシロキサンドメインは、マトリックスたる一般式〔1〕で表されるカーボネート構成単位との相分離により構造が形成されることから、必ずしも単一の成分から構成されない。
【0019】
本発明のA成分として使用されるポリカーボネート共重合体全重量に占めるポリジオルガノシロキサン成分含有量は2〜20重量%が適切である。かかるポリジオルガノシロキサン成分含有量は好ましくは4〜15重量%、さらに好ましくは4〜12重量%、最も好ましくは6〜12重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した透明性が得られやすい。かかるジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、H−NMR測定により算出することが可能である。本発明において、上記一般式〔3〕で表されるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。また、本発明の妨げにならない範囲で、上記一般式〔1〕及び〔3〕以外のカーボネート構成単位をA成分の全重量に対して10重量%以下の範囲で併用することもできる。
【0020】
次にポリカーボネート共重合体の製造方法について以下に説明する。
あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中において、二価フェノール(I)と、ホスゲンや二価フェノール(I)のクロロホルメート等のクロロホルメート形成性化合物との反応により、二価フェノール(I)のクロロホルメートおよび/または末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調製する。クロロホルメート形成性化合物としてはホスゲンが好適である。
【0021】
二価フェノール(I)からのクロロホルメート化合物を生成するにあたり、上記一般式〔1〕で表されるカーボネート構成単位を誘導する二価フェノール(I)の全量を一度にクロロホルメート化合物としてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。
【0022】
このクロロホルメート化合物生成反応の方法は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。更に、所望に応じ、亜硫酸ナトリウム、およびハイドロサルファイドなどの酸化防止剤を少量添加してもよく、添加することが好ましい。
【0023】
クロロホルメート形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、好適なクロロホルメート形成性化合物であるホスゲンを使用する場合、ガス化したホスゲンを反応系に吹き込む方法が好適に採用できる。
【0024】
前記酸結合剤としては、例えば、水酸化ナトリウム、および水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、および炭酸カリウム等のアルカリ金属炭酸塩、並びにピリジンの如き有機塩基、あるいはこれらの混合物などが用いられる。
【0025】
酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、二価フェノール(I)のクロロホルメート化合物の形成に使用する二価フェノール(I)1モルあたり(通常1モルは2当量に相当)、2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。
【0026】
前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレンの如き炭化水素溶媒、並びに、塩化メチレンおよびクロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレンの如きハロゲン化炭化水素溶媒が好適に用いられる。得られるポリカーボネート−ポリジオルガノシロキサン共重合体の透明性向上のためには、固形分濃度を下げることが有効である。二価フェノール(I)の濃度は、好ましくは400g/L以下、より好ましくは300g/L以下、更に好ましくは250g/L以下である。二価フェノール(I)の濃度は、安定した透明性の点からは低いほど好ましいものの、製造効率の観点から、その下限は100g/L以上が好ましい。
【0027】
水に不溶性の有機溶媒のモル比は二価フェノール(I)1モルあたり、好ましくは10モル以上、より好ましくは14モル以上である。二価フェノール(I)に対する有機溶媒のモル比をかかる範囲内とすることにより、ポリジオルガノシロキサンドメインの平均サイズおよび規格化分散を、より適正値に制御しやすくなる。その結果、高シロキサン重合度のジヒドロキシアリール末端ポリジオルガノシロキサン(II)(p+q>30)からなる共重合体であっても、安定して全光線透過率が高く、ヘイズの低いポリカーボネート−ポリジオルガノシロキサン共重合体を与え得る。さらに、かかる共重合体は成形条件の透明性への影響が少なく、安定して透明性の高い成型品を与え得る。
【0028】
クロロホルメート化合物の生成反応における圧力は特に制限はなく、常圧、加圧、もしくは減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、反応に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。
クロロホルメート化合物の生成反応におけるpH範囲は、公知の界面反応条件が利用でき、pHは通常10以上に調製される。
【0029】
本発明のA成分として使用されるポリカーボネート共重合体の製造においては、このようにして二価フェノール(I)のクロロホルメートおよび末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調整した後、該混合溶液を攪拌しながら一般式〔3〕で表わされるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)を、該混合溶液の調整にあたり仕込まれた二価フェノール(I)の量1モルあたり、0.01モル/min以下の速度で加え、該ジヒドロキシアリール末端ポリジオルガノシロキサン(II)と該クロロホーメート化合物とを界面重縮合させることにより、ポリカーボネート−ポリジオルガノシロキサン共重合体を得る。本発明を何らかの理論により限定するものではないが、かかる方法により、所定のドメインサイズおよび該ドメインサイズの規格化分散を小さくできる理由を以下のように推察する。
【0030】
従来の方法では、二価フェノール(I)とジヒドロキシアリール末端ポリジオルガノシロキサン(II)との混合物に対してホスゲンを反応させるため、二価フェノール(I)とジヒドロキシアリール末端ポリジオルガノシロキサン(II)との反応性差から一方のモノマーのみからなる連鎖長の長いブロック共重合体が形成されやすい。さらには、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)からなる短鎖のカーボネートオリゴマーを介して結合した構造が形成されやすい。一方、上記に述べたプロセスでは、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)濃度の急増を抑制し、その結果、該モノマーと末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーとの反応を着実に進展させ、未反応のジヒドロキシアリール末端ポリジオルガノシロキサン(II)の量を低減することができる。かかる低減は、二価フェノール(I)とジヒドロキシアリール末端ポリジオルガノシロキサン(II)との反応性差を解消し、一方のモノマーのみからなる連鎖長の長いブロック共重合体や、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)からなる短鎖のカーボネートオリゴマーを介して結合した構造の形成確率を低下させると考えられる。これにより、ポリジオルガノシロキサンドメインサイズの規格化分散の小さい凝集構造が形成され、そして透明性の高く、かつ安定した共重合体が得られると推測される。上述のジヒドロキシアリール末端ポリジオルガノシロキサン(II)の添加速度が、0.01モル/minより速い場合、得られるポリカーボネート−ポリジオルガノシロキサン共重合体の成形品において、内部に分散したポリジオルガノシロキサンドメインサイズの規格化分散が40%を超え、透明性が悪化しやすくなる。即ち、成形加工条件によっては良好な透明性が得られない、または該条件により透明性がばらつきやすくなる。上述のジヒドロキシアリール末端ポリジオルガノシロキサン(II)の添加速度が0.0001モル当量/minよりも遅い場合、生産効率上好ましくなく、また得られる共重合体のポリジオルガノシロキサン成分含有量が少なくなり、分子量がばらつく傾向があるため好ましくない。したがって、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)の添加速度の下限は実質的には0.0001モル当量/minである。ジヒドロキシアリール末端ポリジオルガノシロキサン(II)の添加速度は、該混合溶液の調整にあたり仕込まれた二価フェノール(I)の量1モルあたり、より好ましくは0.005モル/min以下の速度、更に好ましくは0.0025モル/min以下の速度であり、下限はより好ましくは0.0002モル/min以上の速度である。
【0031】
また、均一分散性を高めるため、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)は、溶媒と混合して溶液状態で、末端クロロホルメート化合物を含有する混合溶液中に投入することが望ましい。該溶液の濃度は、反応を阻害しない範囲内で希薄であることが望ましく、好ましくは、0.2〜0.01モル/Lの範囲、より好ましくは0.1〜0.02モル/Lの範囲である。尚、かかる溶媒は特に限定されないものの、上述のクロロホルメート化合物の生成反応に使用する溶媒と同一が好ましく、特に塩化メチレンが好ましい。
【0032】
界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、および水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、および炭酸カリウム等のアルカリ金属炭酸塩、並びにピリジンの如き有機塩基、あるいはこれらの混合物などが用いられる。具体的には、使用するジヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とジヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。
【0033】
二価フェノール(I)のオリゴマーとジヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応は、上記混合液を激しく攪拌することにより行われる。
かかる重縮合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p−tert−ブチルフェノール、p−クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、好ましくは100〜0.5モル、より好ましくは50〜2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。
【0034】
重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加することができ、添加することが好ましい。特に好適にはトリエチルミンが利用される。
【0035】
かかる重合反応の反応時間は、透明性を向上させるためには比較的長くする必要がある。好ましくは30分以上、更に好ましくは50分以上であり、製造効率の点からその上限は好ましくは2時間以下、より好ましくは1.5時間以下である。
【0036】
本発明のA成分として用いられるポリカーボネート共重合体は、分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート共重合体とすることができる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
【0037】
かかる分岐化ポリカーボネート共重合体の製造方法は、クロロホルメート化合物の生成反応時にその混合溶液中に分岐化剤が含まれる方法であっても、該生成反応終了後の界面重縮合反応時に分岐化剤が添加される方法であってもよい。分岐化剤由来のカーボネート構成単位の割合は、該共重合体を構成するカーボネート構成単位全量中、好ましくは0.005〜1.5モル%、より好ましくは0.01〜1.2モル%、特に好ましくは0.05〜1.0モル%である。なお、かかる分岐構造量についてはH−NMR測定により算出することが可能である。
【0038】
重縮合反応における系内の圧力は、減圧、常圧、もしくは加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。
【0039】
場合により、得られたポリカーボネート共重合体に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート共重合体として取得することもできる。
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合体として回収することができる。
【0040】
ポリカーボネート樹脂の溶融流動特性を特徴付ける指標として構造粘性指数が用いられ、下記式(1)で表される。
【0041】
【数1】

【0042】
上式(1)において、Dは剪断速度(1/sec)、aは定数、σは剪断応力(Pa)、Nは構造粘性指数である。この構造粘性指数は、ISO11443に準拠して測定される。構造粘性指数は成形加工における樹脂の流動性の指標となるとともに、燃焼時の滴下防止能の指標となりうる。N=1のときはニュートン流動性を示し、Nが大きくなるほど非ニュートン流動性が大きくなる。この構造粘性指数が高い場合、樹脂は溶融状態における粘度が高いため燃焼時に滴下しにくくなり、剪断速度が高くなると粘度が低下するため成形加工性に優れる。本発明のA成分として用いられるポリカーボネート共重合体はNが1.60〜2.50の値を示すものが好ましく、より好ましくは1.60〜2.30であり、さらに好ましくは1.65〜2.30である。Nが1.60以上の共重合体は燃焼時の火種の滴下が抑制され優れた難燃性を発現し、Nが2.50以下の共重合体は剪断粘度が低く成形加工性に優れるため好ましい。
【0043】
通常、樹脂の粘度平均分子量(Mv)が高いほど構造粘性指数が高くなるが、芳香族ポリカーボネート樹脂は粘度平均分子量が高くなるにしたがい流動性が低下するため好ましくない。本発明のA成分として用いられるポリカーボネート共重合体の粘度平均分子量は好ましくは1.6×10〜3.0×10であり、より好ましくは1.6×10〜2.5×10、更に好ましくは1.7×10〜2.4×10である。かかる好適な範囲の下限以上であれば、多くの分野において実用上の機械的強度が得られ、かかる上限以下であれば高剪断速度における剪断粘度が低く、各種成形法、特に射出成形において好適である。
【0044】
尚、本発明のA成分として用いられるポリカーボネート共重合体の粘度平均分子量の算出は次の要領で行なわれる。まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート共重合体0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]2 c(但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
【0045】
本発明のA成分として用いられるポリカーボネート共重合体は、良好な剪断流動性を維持しながら優れた難燃性を有しており、良好な成形加工性と溶融粘度の増大による滴下防止効果という両立し難い特性を両立するものである点において特徴的である。この驚くべき特徴は、ポリカーボネート共重合体の構造粘性指数が高く、同等粘度平均分子量のポリカーボネートホモポリマーと比較して、高剪断速度における粘度が同等であるのに対して低剪断速度における粘度が著しく高い現象に起因していると考えられる。この溶融粘度の剪断速度依存性はポリカーボネート共重合体を構成するポリジオルガノシロキサン成分の重合度や含有量、さらには共重合体の製造方法により大きく異なり、本発明は良好な成形加工性と溶融粘度の増大による滴下防止効果を両立する範囲を特定した点において極めて有用である。
【0046】
本発明のA成分として用いられるポリカーボネート共重合体に含まれるポリジオルガノシロキサンドメインの平均サイズは、5〜40nmの範囲が適切である。かかる平均サイズの下限は好ましくは6nmであり、かかる平均サイズの上限は、好ましくは20nm、より好ましくは15nm、特に好ましくは12nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると透明性が安定して発揮されない。さらに、ポリジオルガノシロキサンドメインの平均サイズが好適な範囲であっても、その規格化分散が40%を超えると良好かつ安定した透明性が発揮されないので好ましくない。かかるポリジオルガノシロキサンドメインサイズの規格化分散は40%以下が好ましく、より好ましくは30%以下、さらに好ましくは20%以下である。かかる規格化分散の下限は実用上5%以上が好ましく、10%以上がより好ましい。かかる適切なドメインの平均サイズと、その規格化分散を有することにより、透明性と耐衝撃性、ならびに難燃性の両立に優れた成形品が提供される。
【0047】
本発明におけるA成分として用いられるポリカーボネート共重合体からなるポリカーボネート−ポリジオルガノシロキサン共重合体成形品のポリジオルガノシロキサンドメインの平均ドメインサイズ、規格化分散は、小角エックス線散乱法(Small Angle X−ray Scattering:SAXS)により評価される。小角エックス線散乱法とは、散乱角(2θ)が10°未満の範囲の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に電子密度の異なる1〜100nm程度の大きさの領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。本発明のA成分として用いられるポリカーボネート共重合体のマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となる場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度I を測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズと粒径分布(規格化分散)を求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズと粒径分布を、精度よく、簡便に、かつ再現性良く測定することができる。
【0048】
平均ドメインサイズとは個々のドメインサイズの数平均を意味する。規格化分散とは、粒径分布の広がりを平均サイズで規格化したパラメータを意味する。具体的には、ポリジオルガノシロキサンドメインサイズの分散を平均ドメインサイズで規格化した値であり、下記式(2)で表される。
【0049】
【数2】

【0050】
上記式(2)において、δはポリジオルガノシロキサンドメインサイズの標準偏差、DAVは平均ドメインサイズである。
【0051】
本発明に関連して用いる用語「平均ドメインサイズ」、「規格化分散」は、射出成形により作成した3段型プレート(幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm))の厚み1.0mm部を、小角エックス線散乱法により測定することにより得られる測定値を示す。
【0052】
<B成分:有機酸金属塩系難燃剤>
本発明のB成分として使用される有機酸金属塩系難燃剤としては、従来ポリカーボネート樹脂を難燃化するのに使用されている各種の金属塩が使用可能であるが、特に有機スルホン酸のアルカリ(土類)金属塩、芳香族系イミドのアルカリ(土類)金属塩、硫酸エステルのアルカリ(土類)金属塩、およびリン酸部分エステルのアルカリ(土類)金属塩を挙げることができる(ここで、アルカリ(土類)金属塩の表記は、アルカリ金属塩、アルカリ土類金属塩のいずれも含む意味で使用する)。その中でもパーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩が好ましく使用され、パーフルオロアルキルスルホン酸アルカリ(土類)金属塩がより好ましい。これらは単独の使用だけでなく、2種以上を混合して使用することも可能である。
【0053】
パーフルオロアルキルスルホン酸アルカリ(土類)金属塩の好ましい例としては、パーフルオロメタンスルホン酸塩、パーフルオロエタンスルホン酸塩、パーフルオロプロパンスルホン酸塩、パーフルオロブタンスルホン酸塩、パーフルオロメチルブタンスルホン酸塩、パーフルオロヘキサンスルホン酸塩、パーフルオロヘプタンスルホン酸塩、パーフルオロオクタンスルホン酸塩等が挙げられ、特に炭素数が1〜8のものが好ましい。その中でも、パーフルオロアルキルスルホン酸アルカリ金属塩が好ましい。パーフルオロアルキルスルホン酸アルカリ金属塩に使用されるアルカリ金属塩としては、難燃性の要求がより高い場合にはルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、コストの点で有利であるがリチウムおよびナトリウムは逆に難燃性の点で不利な場合がある。これらを勘案してパーフルオロアルキルスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたパーフルオロアルキルスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ金属塩とを併用することもできる。パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。これらの中で特にパーフルオロブタンスルホン酸カリウム、パーフルオロブタンスルホン酸セシウムが好ましい。
【0054】
芳香族スルホン酸アルカリ(土類)金属塩に使用する芳香族スルホン酸としては、モノマー状またはポリマー状の芳香族サルファイドのスルホン酸、芳香族カルボン酸およびエステルのスルホン酸、モノマー状またはポリマー状の芳香族エーテルのスルホン酸、芳香族スルホネートのスルホン酸、モノマー状またはポリマー状の芳香族スルホン酸、モノマー状またはポリマー状の芳香族スルホンスルホン酸、芳香族ケトンのスルホン酸、複素環式スルホン酸、芳香族スルホキサイドのスルホン酸、および芳香族スルホン酸のメチレン型結合による縮合体からなる群から選ばれた少なくとも1種の酸を挙げることができ、
モノマー状またはポリマー状の芳香族サルファイドのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98539号公報に記載されており、例えば、ジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウムなどを挙げることができる。芳香族カルボン酸およびエステルのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98540号公報に記載されており、例えば5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウムなどを挙げることができる。モノマー状またはポリマー状の芳香族エーテルのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98542号公報に記載されており、例えば1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウムなどを挙げることができる。芳香族スルホネートのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98544号公報に記載されており、例えばベンゼンスルホネートのスルホン酸カリウムなどを挙げることができる。モノマー状またはポリマー状の芳香族スルホン酸アルカリ(土類)金属塩としては、特開昭50−98546号公報に記載されており、例えばベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウムなどを挙げることができる。モノマー状またはポリマー状の芳香族スルホンスルホン酸アルカリ(土類)金属塩としては、特開昭52−54746号公報に記載されており、例えばジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムなどを挙げることができる。芳香族ケトンのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98547号公報に記載されており、例えばα,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウムなどを挙げることができる。複素環式スルホン酸アルカリ(土類)金属塩としては、特開昭50−116542号公報に記載されており、例えばチオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウムなどを挙げることができる。芳香族スルホキサイドのスルホン酸アルカリ(土類)金属塩としては、特開昭52−54745号公報に記載されており、例えばジフェニルスルホキサイド−4−スルホン酸カリウムなどを挙げることができる。芳香族スルホン酸アルカリ(土類)金属塩のメチレン型結合による縮合体としては、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、アントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。
【0055】
芳香族系イミドのアルカリ(土類)金属塩としては、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホンアミド(言い換えるとジ(p−トルエンスルホン)イミド)、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミド、ビス(ジフェニルリン酸)イミド等のアルカリ(土類)金属塩などが挙げられる。
【0056】
硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、ステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩を挙げることができる。
【0057】
リン酸部分エステルのアルカリ(土類)金属塩としては、具体的にビス(2,6−ジブロモ−4−クミルフェニル)リン酸、ビス(4−クミルフェニル)リン酸、ビス(2,4,6−トリブロモフェニル)リン酸ビス(2,4−ジブロモフェニル)リン酸、ビス(4−ブロモフェニル)リン酸、ジフェニルリン酸、ビス(4−tert−ブチルフェニル)リン酸等のアルカリ(土類)金属塩を挙げることができる。
【0058】
本発明の樹脂組成物に含有されるB成分の量はA成分100重量部に対して、0.01〜0.2重量部であり、好ましくは0.01〜0.18重量部であり、より好ましくは0.01〜0.15重量部であり、さらに好ましくは0.03〜0.15重量部である。B成分の含有量が多すぎると本発明の特徴である透明性が損なわれるだけでなく、場合によっては成形時に樹脂が分解して逆に難燃性が低下する方向となる。添加量が少なすぎると難燃性が不十分となり本発明の目的である難燃性が発揮されない。
【0059】
<その他の成分>
一方、本発明の樹脂組成物には、透明性を損なうことがない限り、他の樹脂や充填剤を配合しても差し支えないが、他の樹脂や充填剤の多くは透明性に支障を来すので、その種類や量の選択は、その点を考慮すべきである。
【0060】
本発明の樹脂組成物には、透明性を損なうことがない限り、成形品の機械的物性、化学的性質または電気的性質の改良のために、A成分以外の他の熱可塑性樹脂を配合することができる。この他の熱可塑性樹脂の配合量は、その種類および目的によって変わるが、通常、A成分100重量部当たり、1〜30重量部が好ましく、より好ましくは2〜20重量部が適当である。
【0061】
他の熱可塑性樹脂としては、例えば、A成分以外のポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイドなどのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。さらにオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーも使用することができる。
【0062】
本発明の樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。かかる添加剤としては、熱安定剤、紫外線吸収剤、光安定剤、離型剤、滑剤、摺動剤(PTFE粒子など)、着色剤(カーボンブラック、酸化チタンなどの顔料、染料)、光拡散剤(アクリル架橋粒子、シリコン架橋粒子、極薄ガラスフレーク、炭酸カルシウム粒子など)、蛍光増白剤、蓄光顔料、蛍光染料、帯電防止剤、流動改質剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(微粒子酸化チタン、微粒子酸化亜鉛など)、グラフトゴムに代表される衝撃改質剤、赤外線吸収剤またはフォトクロミック剤が挙げられる。
【0063】
本発明の樹脂組成物の熱安定性、酸化防止性、光安定性(紫外線安定性)および離型性の改良のために、芳香族ポリカーボネート樹脂において、これらの改良に使用されている添加剤が有利に使用される。以下これら添加剤について具体的に説明する。
本発明の樹脂組成物は、熱安定剤としてリン含有安定剤を配合することができる。かかるリン含有安定剤としては、ホスファイト化合物、ホスホナイト化合物、およびホスフェート化合物のいずれも使用可能である。
【0064】
ホスファイト化合物としては、さまざまなものを用いることができる。具体的には例えば下記一般式〔4〕で表わされるホスファイト化合物、下記一般式〔5〕で表わされるホスファイト化合物、および下記一般式〔6〕で表わされるホスファイト化合物を挙げることができる。
【0065】
【化5】

[式中Rは、水素原子または炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルカリール基、炭素数7〜30のアラルキル基、またはこれらのハロ、アルキルチオ(アルキル基は炭素数1〜30)またはヒドロキシ置換基を示し、3個のRは互いに同一または互いに異なるのいずれの場合も選択でき、また2価フェノール類から誘導されることにより環状構造も選択できる。]
【0066】
【化6】

[式中R、Rはそれぞれ水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルキルアリール基、炭素数7〜30のアラルキル基、炭素数4〜20のシクロアルキル基、炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基を示す。なお、シクロアルキル基およびアリール基は、アルキル基で置換されていないもの、またはアルキル基で置換されているもののいずれも選択できる。]
【0067】
【化7】

[式中R、Rは炭素数12〜15のアルキル基である。なお、RおよびRは互いに同一または互いに異なるのいずれの場合も選択できる。]で表わされるホスファイト化合物を挙げることができる。
【0068】
ホスホナイト化合物としては下記一般式〔7〕で表わされるホスホナイト化合物、および下記一般式〔8〕で表わされるホスホナイト化合物を挙げることができる。
【0069】
【化8】

【化9】

[式中、Ar、Arは炭素数6〜20のアリール基ないしアルキルアリール基、または炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基を示し、4つのArは互いに同一、または互いに異なるいずれも選択できる。または2つのArは互いに同一、または互いに異なるいずれも選択できる。]
【0070】
上記一般式〔4〕で表されるホスファイト化合物の好ましい具体例としては、ジフェニルイソオクチルホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイトが挙げられる。
【0071】
上記一般式〔5〕で表されるホスファイト化合物の好ましい具体例としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられ、好ましくはジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトを挙げることができる。かかるホスファイト化合物は1種、または2種以上を併用することができる。
【0072】
上記一般式〔6〕で表されるホスファイト化合物の好ましい具体例としては、4,4’−イソプロピリデンジフェノールテトラトリデシルホスファイトを挙げることができる。
【0073】
上記一般式〔7〕で表されるホスホナイト化合物の好ましい具体例としては、テトラキス(2,4−ジ−iso−プロピルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−n−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−iso−プロピルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−n−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト等が挙げられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトがより好ましい。このテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトは、2種以上の混合物が好ましく、具体的にはテトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト および、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイトの1種もしくは2種以上を併用して使用可能であるが、好ましくはかかる3種の混合物である。
【0074】
上記一般式〔8〕で表されるホスホナイト化合物の好ましい具体例としては、ビス(2,4−ジ−iso−プロピルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイトビス(2,6−ジ−iso−プロピルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられ、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。このビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトは、2種以上の混合物が好ましく、具体的にはビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、およびビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイトの1種もしくは2種を併用して使用可能であるが、好ましくはかかる2種の混合物である。また、2種の混合物の場合その混合比は、重量比で5:1〜4の範囲が好ましく、5:2〜3の範囲がより好ましい。
【0075】
一方、ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリメチルホスフェートである。
上記のリン含有熱安定剤の中で、さらに好ましい化合物としては、以下の一般式〔9〕および〔10〕で表される化合物を挙げることができる。
【0076】
【化10】

(式〔9〕中、R10およびR11は、それぞれ独立して炭素原子数1〜12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示す。)
【0077】
【化11】

(式〔10〕中、R12、R13、R14、R15、R18、R19およびR20はそれぞれ独立して水素原子、炭素原子数1〜12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示し、R16は水素原子または炭素原子数1〜4のアルキル基を示し、およびR17は水素原子またはメチル基を示す。)
【0078】
式〔9〕中、好ましくはR10およびR11は炭素原子数1〜12のアルキル基であり、より好ましくは炭素原子数1〜8のアルキル基である。式〔9〕で表される化合物としては具体的に、トリス(ジメチルフェニル)ホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイトなどが挙げられ、特にトリス(2,6−ジ−tert−ブチルフェニル)ホスファイトが好ましい。
【0079】
式〔10〕で表される化合物としては具体的に、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)と2,6−ジ−tert−ブチルフェノールから誘導されるホスファイト、 2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)とフェノールから誘導されるホスファイト、が挙げられ、特に2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)とフェノールから誘導されるホスファイトが好ましい。
【0080】
なお、式〔10〕のリン化合物は公知の方法で製造できる。例えば下記一般式〔11〕に示されるビスフェノール化合物と三塩化リンとを反応させて相当する塩化リン酸を得て、その後それと下記一般式〔12〕で示されるフェノールとを反応させる方法などがある。
【0081】
【化12】

(式〔11〕中、R21、R22、R23、およびR24はそれぞれ水素原子、炭素原子数1〜12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示し、R25は水素原子または炭素原子数1〜4のアルキル基を示し、およびR26は水素原子またはメチル基を示す。)
【0082】
【化13】

(式〔12〕中、R27、R28、およびR29はそれぞれ水素原子、炭素原子数1〜12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示す。)
【0083】
上記一般式〔11〕の化合物の具体例としては、2,2’−メチレンビスフェノール、2,2’−メチレンビス(4−メチルフェノール)、2,2’−メチレンビス(6−メチルフェノール)、2,2’−メチレンビス(4,6−ジメチルフェノール)、2,2’−エチリデンビスフェノール、2,2’−エチリデンビス(4−メチルフェノール)、2,2’−イソプロピリデンビスフェノール、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジヒドロキシ−3,3’−ジ(α−メチルシクロヘキシル)−5,5’−ジメチルフェニルメタン、2,2’−メチレンビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、および2,2−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)などが挙げられ、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、および2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)が好ましい。
【0084】
一方、一般式〔12〕の化合物の具体例としては、フェノール、2−メチルフェノール、3−メチルフェノール、4−メチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2−tert−ブチル−4−メチルフェノール、2,4−ジ−tert−ブチルフェノール、2,6−ジ−tert−ブチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,4−ジメチル−6−tert−ブチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,4,6−トリ−tert−ブチルフェノール、および2,6−ジ−tert−ブチル−4−s−ブチルフェノールなどが挙げられ、アルキル置換基を2つ以上有する化合物が好ましい。
【0085】
本発明の樹脂組成物に配合することができる酸化防止剤としてはフェノール系酸化防止剤を挙げることができる。フェノール系酸化防止剤により熱暴露時の変色を抑制できると共に、難燃性の向上に対してもある程度の効果を発揮する。かかるフェノール系酸化防止剤としては種々のものを使用することができる。
【0086】
かかるフェノール系酸化防止剤の具体例としては、例えばビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどを挙げることができ、好ましく使用できる。
【0087】
より好ましくは、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンであり、さらにn−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネートが好ましい。
【0088】
また、酸化防止剤としてイオウ含有酸化防止剤を使用することもできる。特に樹脂組成物が回転成形や圧縮成形に使用される場合には好適である。かかるイオウ含有酸化防止剤の具体例としては、ジラウリル−3,3’−チオジプロピオン酸エステル、ジトリデシル−3,3’−チオジプロピオン酸エステル、ジミリスチル−3,3’−チオジプロピオン酸エステル、ジステアリル−3,3’−チオジプロピオン酸エステル、ラウリルステアリル−3,3’−チオジプロピオン酸エステル、ペンタエリスリトールテトラ(β−ラウリルチオプロピオネート)エステル、ビス[2−メチル−4−(3−ラウリルチオプロピオニルオキシ)−5−tert−ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2−メルカプト−6−メチルベンズイミダゾール、1,1’−チオビス(2−ナフトール)などを挙げることができる。より好ましくは、ペンタエリスリトールテトラ(β−ラウリルチオプロピオネート)エステルを挙げることができる。
【0089】
上記に挙げたリン含有熱安定剤、フェノール系酸化防止剤、およびイオウ含有酸化防止剤はそれぞれ単独または2種以上併用することができる。
これらの安定剤の組成物中の割合としては、A成分100重量部当たり、リン含有安定剤、フェノール系酸化防止剤、またはイオウ含有酸化防止剤はそれぞれ0.0001〜1重量部であることが好ましい。より好ましくは0.0005〜0.5重量部であり、さらに好ましくは0.001〜0.2重量部である。
【0090】
本発明の樹脂組成物には、必要に応じて離型剤を配合することができる。本発明においてはB成分を含有することにより難燃性を有するため、通常難燃性に対して悪影響を及ぼしやすい離型剤を配合した場合であっても、良好な難燃性を達成することができる。かかる離型剤としてはそれ自体公知のものが使用できる。例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックスまたは1−アルケン重合体が挙げられる。これらは酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物(本発明のC成分以外のもの。例えば直鎖状または環状のポリジメチルシロキサンオイルやポリメチルフェニルシリコーンオイルなどが挙げられる。これらは酸変性などの官能基含有化合物で変性されているものも使用できる)、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。これらの中でも飽和脂肪酸エステル類、直鎖状または環状のポリジメチルシロキサンオイルやポリメチルフェニルシリコーンオイルなど、およびフッ素オイルを挙げることができる。好ましい離型剤としては飽和脂肪酸エステルが挙げられ、例えばステアリン酸モノグリセライドなどのモノグリセライド類、デカグリセリンデカステアレートおよびデカグリセリンテトラステアレート等のポリグリセリン脂肪酸エステル類、ステアリン酸ステアレートなどの低級脂肪酸エステル類、セバシン酸ベヘネートなどの高級脂肪酸エステル類、ペンタエリスリトールテトラステアレートなどのエリスリトールエステル類が使用される。かかる離型剤の含有量はA成分100重量部に対して0.001〜0.3重量部が好ましい。
【0091】
本発明の樹脂組成物は、OA機器の筐体などに使用されることが多いため、紫外線吸収剤を含んでいることが好ましい。紫外線吸収剤としては、例えば2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタンなどに代表されるベンゾフェノン系紫外線吸収剤を挙げることができる。
【0092】
また紫外線吸収剤としては例えば2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−ドデシル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ビス(α,α’−ジメチルベンジル)フェニルベンゾトリアゾール、2−[2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラフタルイミドメチル)−5’−メチルフェニル]ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2,2’メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、メチル−3−[3−tert−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニルプロピオネート−ポリエチレングリコールとの縮合物に代表されるベンゾトリアゾール系紫外線吸収剤を挙げることができる。
【0093】
さらに紫外線吸収剤としては例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシ−フェノール、2−(4,6−ビス−(2,4−ジメチルフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシ−フェノールなどのヒドロキシフェニルトリアジン系化合物を挙げることができる。
【0094】
本発明の樹脂組成物には、光安定剤を配合することもできる。かかる光安定剤としては、例えばビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−2n−ブチルマロネート、1,2,3,4−ブタンカルボン酸と2,2,6,6−テトラメチル−4−ピペリジノールとトリデシルアルコールとの縮合物、1,2,3,4−ブタンジカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとトリデシルアルコールとの縮合物、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート、ポリ{[6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチルピペリジル)イミノ]ヘキサメチレン[(2,2,6,6−テトラメチルピペリジル)イミノ]}、ポリ{[6−モルフォリノ−s−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチルピペリジル)イミノ]ヘキサメチレン[(2,2,6,6−テトラメチルピペリジル)イミノ]}、1,2,3,4−ブタンテトラカルボン酸と2,2,6,6−テトラメチル−4−ピペリジノールとβ,β,β’,β’−テトラメチル−3,9−(2,4,8,10−テトラオキサスピロ[5,5]ウンデカン)ジエタノールとの縮合物、N,N’−ビス(3−アミノプロピル)エチレンジアミンと2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−クロロ−1,3,5−トリアジンとの縮合物、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β’,β’−テトラメチル−3,9−(2,4,8,10−テトラオキサスピロ[5,5]ウンデカン)ジエタノールとの縮合物、ポリメチルプロピル3−オキシ−[4−(2,2,6,6−テトラメチル)ピペリジニル]シロキサンに代表されるヒンダードアミンが挙げられる。
紫外線吸収剤および光安定剤の含有量は、それぞれA成分100重量部当たり0.01〜5重量部が好ましく、より好ましくは0.02〜1重量部である。
【0095】
また、本発明の樹脂組成物には紫外線吸収剤などに基づく黄色味を打ち消すためにブルーイング剤を配合することができる。ブルーイング剤としては通常ポリカーボネート樹脂に使用されるものであれば、特に支障なく使用することができる。一般的にはアンスラキノン系染料が入手容易であり好ましい。具体的なブルーイング剤としては、例えば一般名Solvent Violet13[CA.No(カラーインデックスNo)60725;商標名 バイエル社製「マクロレックスバイオレットB」、三菱化学(株)製「ダイアレジンブルーG」、住友化学工業(株)製「スミプラストバイオレットB」]、一般名Solvent Violet31[CA.No68210;商標名 三菱化学(株)製「ダイアレジンバイオレットD」]、一般名Solvent Violet33[CA.No60725;商標名 三菱化学(株)製「ダイアレジンブルーJ」]、一般名Solvent Blue94[CA.No61500;商標名 三菱化学(株)製「ダイアレジンブルーN」]、一般名Solvent Violet36[CA.No68210;商標名 バイエル社製「マクロレックスバイオレット3R」]、一般名Solvent Blue97[商標名 バイエル社製「マクロレックスブルーRR」]および一般名Solvent Blue45[CA.No61110;商標名 サンド社製「テラゾールブルーRLS」]等が挙げられ、特に、マクロレックスブルーRR、マクロレックスバイオレットBやテラゾールブルーRLSが好ましい。ブルーイング剤の含有量は(A成分100重量部当たり0.000005〜0.0010重量部が好ましく、より好ましくは0.00001〜0.0001重量部である。
【0096】
本発明の樹脂組成物はドリップ防止性に優れるが、かかる性能をさらに補強するため通常のドリップ防止剤を併用することができる。しかしながら本発明の樹脂組成物において、かかる透明性を損なわないためその配合量はA成分100重量部に対し0.5重量部以下が適切であり、0.3重量部以下が好ましく、0.2重量部以下がより好ましく、0.1重量部以下がさらに好ましい。かかるドリップ防止剤としてはフィブリル形成能を有する含フッ素ポリマーを挙げることができる。特にポリテトラフルオロエチレン(以下PTFEと称することがある)が好ましい。ここでいう透明性を損なわないとは例えば、2mm厚みのプレートの全光線透過率が80%を下回らない量のPTFEを使用するということである。フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万〜1,000万、より好ましくは200万〜900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および透明性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。混合形態のPTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)、「メタブレン A3700」(商品名)、「メタブレン A3750」(商品名)、Shinepoly SN3307(商品名)およびGEスペシャリティーケミカルズ社製「BLENDEX B449」(商品名)などを挙げることができる。
【0097】
<樹脂組成物の製造について>
本発明の樹脂組成物を製造するには、任意の方法が採用される。例えばA成分、B成分および任意に他の成分をそれぞれV型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行い、その後ベント式二軸ルーダーに代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する方法が挙げられる。別法として、A成分、B成分および任意に他の成分をそれぞれ独立にベント式二軸ルーダーに代表される溶融混練機に供給する方法、A成分および他の成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法、B成分を水または有機溶剤で希釈混合した後、溶融混練機に供給、またはかかる希釈混合物を他の成分と予備混合した後、溶融混練機に供給する方法なども挙げられる。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。
【0098】
<成形品の製造>
本発明の樹脂組成物は通常かかるペレットを射出成形して成形品を得ることにより各種製品を製造することができる。かかる射出成形においては、通常のコールドランナー方式の成形法だけでなく、ランナーレスを可能とするホットランナーによって製造することも可能である。また射出成形においても、通常の成形方法だけでなくガスアシスト射出成形、射出圧縮成形、超高速射出成形、射出プレス成形、二色成形、サンドイッチ成形、インモールドコーティング成形、インサート成形、発泡成形(超臨界流体を利用するものを含む)、急速加熱冷却金型成形、断熱金型成形および金型内再溶融成形、並びにこれらの組合せからなる成形法等を使用することができる。
【0099】
本発明の樹脂組成物は、透明性に優れた成形品を与える。本発明の樹脂組成物を用いて成形された算出平均粗さ(Ra)が0.03μm以下である2mmの厚さの成形品の全光線透過率は80%〜95%が好ましく、より好ましくは82〜95%、さらに好ましくは84〜95%、最も好ましくは84〜90%である。このように本発明の透明樹脂組成物は、透明性に優れた成形品を得るのに適している。本発明の透明樹脂組成物は、透明性と高度の難燃性を必要とする種々の成形品に有利に利用することができる。さらに本発明の透明樹脂組成物は、透明性に優れていることから、顔料や染料を配合することにより透明性に優れかつ色彩が鮮やかな成形品を得ることが可能となる。
【0100】
また本発明の樹脂組成物は、その優れた溶融張力により、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を溶融混練することなく回転成形により成形品とすることも可能である。
【0101】
さらに樹脂組成物から形成された成形品には、各種の表面処理を行うことが可能である。表面処理としては、加飾塗装、ハードコート、撥水・撥油コート、親水コート、紫外線吸収コート、赤外線吸収コート、電磁波吸収コート、発熱コート、帯電防止コート、制電コート、導電コート、並びにメタライジング(メッキ、化学蒸着(CVD)、物理蒸着(PVD)、溶射など)などの各種の表面処理を行うことができる。殊に透明シートに透明導電層が被覆されたものは好適である。
【発明の効果】
【0102】
本発明の難燃性ポリカーボネート樹脂組成物は、ポリジオルガノシロキサン単位を含む特定のカーボネート構成単位を含むポリカーボネート共重合体に有機酸金属塩系難燃剤を配合させた樹脂組成物において、肉厚成形品における透明性を維持した上で優れた難燃性を有するものであり、これらの技術は従来の難燃化技術にはないものである。本発明のポリカーボネート樹脂組成物は、環境負荷が高いとされる臭素系難燃剤やリン系難燃剤を使用せずに高度な難燃性を付与することも可能となり、さらに成形品の肉薄部でも肉厚部でも透明性を維持しているので、OA機器分野、電気電子機器分野などの各種工業用途に極めて有用であり、その奏する工業的効果は極めて大である。
【発明を実施するための形態】
【0103】
本発明者らが現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
【実施例】
【0104】
本発明について実施例および比較例を示してより具体的に説明する。特記しない限り、実施例中の部は重量部であり、%は重量%である。なお、評価は下記の方法に従った。
【0105】
1.ポリカーボネート−ポリオルガノシロキサン共重合体の評価
(1)粘度平均分子量(Mv)
次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート−ポリジオルガノシロキサン共重合体を溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]c (但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
【0106】
(2)ポリジオルガノシロキサン成分含有量
日本電子(株)製 JNM−AL400を用い、ポリカーボネート−ポリジオルガノシロキサン共重合体の1H−NMRスペクトルを測定し、二価フェノール(I)由来のピークの積分比とジヒドロキシアリール末端ポリジオルガノシロキサン(II)由来のピークの積分比を比較することにより算出した。
ポリオルガノシロキサン成分含有量(wt%)=[A/(A+B)]×100
A:〔ジヒドロキシアリール末端ポリジオルガノシロキサン(II)のH一つ分のピークの積分比〕×〔ポリジオルガノシロキサン部分の分子量〕
B:〔二価フェノール(I)のH一つ分のピークの積分比〕×〔二価フェノールの分子量〕
【0107】
(3)構造粘性指数(N)
ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーをベント式二軸押出機(テクノベル(株)製、KZW15−25MG)によって、温度260℃で混錬し、ペレット化した。得られたペレットを120℃で5時間熱風乾燥した後、ISO11443(JIS K 7199)に準拠し、キャピラリー型レオメーター(東洋精機製作所(株)製 キャピログラフ1D)を使用し、キャピラリーとして東洋精機製作所(株)製 キャピラリー型式EF(径:1.0mm、長さ:10.0mm、L/D:10)を用いて、炉体温度300℃で、剪断速度D(60.8−6080 sec−1)に対する剪断応力σ(Pa)を測定し、それぞれの値を両対数グラフにプロットして得られる回帰直線の勾配から構造粘性指数Nを求めた。
【0108】
(4)ポリジオルガノシロキサンドメインの平均サイズと規格化分散
ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーをベント式二軸押出機(テクノベル(株)製、KZW15−25MG)によって、温度260℃で混錬し、ペレット化した。得られたペレットを120℃で5時間熱風乾燥した後、射出成形機[住友重機械工業(株)SG150U・S−M IV]を用いて、成形温度280℃、金型温度80℃にて幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm)である3段型プレートを成形した。この3段型プレートを用いて、厚み1.0mm部の端部より5mm、側部より5mmの交点におけるポリジオルガノシロキサンドメインの平均サイズと粒径分布(規格化分散)を、X線回折装置((株)リガク社製 RINT−TTRII)を用いて測定した。X線源として、CuKα特性エックス線(波長0.1541841nm)、管電圧50kV、管電流300mAで行った。小角散乱光学系は、Slit:1st 0.03mm、HS 10mm、SS 0.2mm、RS 0.1mmとした。測定は、非対称走査法(2θスキャン)により、FT 0.01°ステップ、4sec/step、走査範囲 0.06−3°として実施した。カーブフィッティングの解析には、(株)リガク社製 小角散乱解析ソフトウェア NANO−Solver(Ver.3.3)を使用した。解析はポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンの球状ドメインが分散した凝集構造であり、粒径分布のばらつきが存在すると仮定して、ポリカーボネートマトリックスの密度を1.2g/cm、ポリジオルガノシロキサンドメインの密度を1.1g/cmとし、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて実施した。
【0109】
(5)全光線透過率
ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーをベント式二軸押出機(テクノベル(株)製, KZW15−25MG)を使用して温度260℃で混錬し、ペレット化した。得られたペレットを120℃で5時間熱風乾燥した後、射出成形機[住友重機械工業(株)SG150U・S−M IV]を用いて、成形温度280℃、金型温度80℃にて幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm)である3段型プレートを成形した。かかる3段型プレートの厚み2.0mm部における全光線透過率を日本電飾工業(株)製 Haze Meter NDH 2000を用い、ASTM D1003に準拠して測定した。
【0110】
2.樹脂組成物の評価
(1)透明性
実施例の各組成から得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥し、射出成形機[住友重機械工業(株)SG150U・S−M IV]を用いて、成形温度280℃、金型温度80℃にて幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm)である3段型プレートを成形した。 この3段型プレートを用いて、ASTM D1003で厚み2.0mm部分の全光線透過率を測定した。全光線透過率が80%以上のものを○、80%未満のものを×とした。
【0111】
(2)難燃性
実施例の各組成から得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度280℃、金型温度80℃で難燃性評価用の試験片を成形した。UL規格94の垂直燃焼試験を、厚み3.2mm、1.6mmで行いその等級を評価した。なお、判定がV−0、V−1、V−2のいずれの基準も満たすことが出来なかった場合「notV」と示すこととする。
【0112】
[実施例1〜4、および比較例1〜4]
表2記載の配合割合からなる樹脂組成物を以下の要領で作成した。尚、説明は以下の表中の記号にしたがって説明する。表2の割合の各成分を計量して、タンブラーを用いて均一に混合し、かかる混合物を押出機に投入して樹脂組成物の作成を行った。押出機としては径30mmφのベント式二軸押出機((株)神戸製鋼所KTX−30)を使用した。スクリュー構成はベント位置以前に第1段のニーディングゾーン(送りのニーディングディスク×2、送りのローター×1、戻しのローター×1および戻しニーディングディスク×1から構成される)を、ベント位置以後に第2段のニーディングゾーン(送りのローター×1、および戻しのローター×1から構成される)を設けてあった。シリンダ−温度およびダイス温度が260〜280℃、およびベント吸引度が3000Paの条件でストランドを押出し、水浴において冷却した後ペレタイザーでストランドカットを行い、ペレット化した。得られたペレットは120℃で5時間、熱風循環式乾燥機にて乾燥し、上記条件にて各測定サンプルを作成した。 なお、表2に記載の使用した原材料等は以下の通りである。
【0113】
(A成分)
PC−1:製造例1で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
PC−2:製造例2で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
PC−3:製造例3で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
PC−4:製造例4で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
PC−5:製造例5で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
【0114】
製造例1:PC−1の製造方法
温度計、撹拌機、還流冷却器付き反応器にイオン交換水21591部、48.5%水酸化ナトリウム水溶液3674部を入れ、上記式〔1〕で表されるカーボネート構成単位を構成するジヒドロキシ化合物(I)として2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3880部、およびハイドロサルファイト7.6部を溶解した後、塩化メチレン14565部(ジヒドロキシ化合物(I)1モルに対して14モル)を加え、撹拌下22〜30℃でホスゲン1900部を60分要して吹き込んだ。48.5%水酸化ナトリウム水溶液1131部、p−tert−ブチルフェノール108部を塩化メチレン800部に溶解した溶液を加え、攪拌しながら一般式〔3〕で表わされるカーボネート構成単位を構成するジヒドロキシアリール末端ポリジオルガノシロキサン(II)として下記式〔13〕で表されるポリジオルガノシロキサン化合物(信越化学工業(株)製 X−22−1821)430部を塩化メチレン1600部に溶解した溶液を、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)の量1モルあたり0.0008モル/minとなる速度で加えて乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が26℃の状態でトリエチルアミン4.3部を加えて温度26〜31℃において1時間撹拌を続けて反応を終了した。反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発し、ポリカーボネート−ポリジオルガノシロキサン共重合のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥した。
【0115】
【化14】

【0116】
得られたポリカーボネート−ポリジオルガノシロキサン共重合体の粘度平均分子量、ポリジオルガノシロキサン成分含有量、構造粘性指数、ポリジオルガノシロキサンドメインの平均サイズと規格化分散、全光線透過率を測定した。測定結果を表1に示す。
【0117】
製造例2:PC−2の製造方法
温度計、撹拌機、還流冷却器付き反応器にイオン交換水13980部、48.5%水酸化ナトリウム水溶液2956部を入れ、式[1]で表される二価フェノール(I)として2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3369部およびハイドロサルファイト6.8部を溶解した後、塩化メチレン11420部を加え、撹拌下22〜30℃でホスゲン1700部を70分要して吹き込んだ。 48.5%水酸化ナトリウム水溶液431部、塩化メチレン11420部、p−tert−ブチルフェノール85部を塩化メチレン800部に溶解した溶液を加え、攪拌しながら式[3]で表される二価フェノール(II)として前記ポリジオルガノシロキサン化合物(信越化学工業(株)製 X−22−1821)373部を塩化メチレン1600部に溶解した溶液をジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)の量1モルあたり0.0008モル/minとなる速度で加えた後、SL型ホモミキサーにより回転数8000rpmで2分間攪拌することにより高度の乳化状態として、その後攪拌せずに静置状態で35±1℃に2時間保持して重合反応を行った(ビスフェノールA1モルあたり塩化メチレン18モル)。反応終了後、塩化メチレンを加えて有機相のポリカーボネート−ポリオルガノシロキサン共重合体濃度が12重量%になるまで希釈し、水相を分離除去した後、充分に水洗した。次いで、この樹脂溶液を温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発し、ポリカーボネート−ポリジメチルシロキサン共重合体のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥した。得られたポリカーボネート−ポリジオルガノシロキサン共重合体を製造例1と同様に分析した。測定結果を表1に示す。
【0118】
製造例3:PC−3の製造方法
p−tert−ブチルフェノールを77部とした以外は製造例1と同様にしてポリカーボネート−ポリジメチルシロキサン共重合体のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥した。得られたポリカーボネート−ポリジオルガノシロキサン共重合体を製造例1と同様に分析した。測定結果を表1に示す。
【0119】
製造例4:PC−4の製造方法
2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3897部、ポリジオルガノシロキサン化合物(信越化学工業(株)製 X−22−1821)204部を塩化メチレン800部に溶解した以外は製造例1と同様にしてポリカーボネート−ポリジメチルシロキサン共重合体のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥した。得られたポリカーボネート−ポリジオルガノシロキサン共重合体を製造例1と同様に分析した。測定結果を表1に示す。
【0120】
製造例5:PC−5の製造方法
ポリジオルガノシロキサン化合物(信越化学工業(株)製 X−22−1821)430部を塩化メチレン1600部に溶解した溶液を、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)の量1モルあたり0.5モル/minとなる速度で加えて乳化状態とし、トリエチルアミン4.3部を加えて温度26〜31℃において0.5時間撹拌を続けた以外は製造例1と同様にしてポリカーボネート−ポリジメチルシロキサン共重合体のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥した。得られたポリカーボネート−ポリジオルガノシロキサン共重合体を製造例1と同様に分析した。測定結果を表1に示す。
【0121】
(B成分)
B−1:パーフルオロブタンスルホン酸カリウム塩(大日本インキ(株)製メガファックF−114P)
B−2:パーフルオロブタンスルホン酸ナトリウム塩(大日本インキ(株)製メガファックF−114S)
(その他の成分)
C−1 :オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート(チバ・スペシャルティ・ケミカルズ社製Irganox1076)
C−2 :ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製Irganox1010)
C−3 :3,9−ビス[2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニロキシ]−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン(住友化学(株)社製SumilizerGA−80)
【0122】
【表1】

【0123】
【表2】

【産業上の利用可能性】
【0124】
本発明において得られる難燃性ポリカーボネート樹脂組成物は、高度な難燃性を発揮し、且つ透明性の良好なシート状成型品を与えるため、かかる特性を活かし従来使用できなかった部品に用途展開が可能である。具体例としては、光学部品、電気・電子機器分野、自動車分野において幅広く使用することができる。

【特許請求の範囲】
【請求項1】
(A)下記一般式〔1〕で表されるカーボネート構成単位および下記一般式〔3〕で表されるカーボネート構成単位からなる透明性を有するポリカーボネート共重合体(A成分)100重量部に対し、
【化1】

[上記一般式〔1〕において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。
【化2】

(上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。)]
【化3】

(上記一般式〔3〕において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは100未満の自然数である。Xは炭素原子数2〜8の二価脂肪族基である。)
(B)有機酸金属塩系難燃剤(B成分)0.01〜0.2重量部を含有する難燃性ポリカーボネート樹脂組成物であって、且つUL―94に準じた難燃性評価がV−0であることを特徴とする難燃性ポリカーボネート樹脂組成物。
【請求項2】
A成分の粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.60〜2.50であることを特徴とする請求項1に記載の難燃性ポリカーボネート樹脂組成物。
【請求項3】
A成分が、一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート部分のマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造であり、該ポリジオルガノシロキサンドメインの平均サイズが5〜40nm、規格化分散が40%以下であることを特徴とする請求項1または2に記載の難燃性ポリカーボネート樹脂組成物。
【請求項4】
上記一般式〔3〕において、p+qが30〜60であることを特徴とする請求項1〜3のいずれか一項に記載の難燃性ポリカーボネート樹脂組成物。
【請求項5】
A成分の全重量を基準にして上記一般式〔3〕で表されるポリジオルガノシロキサンブロックが2〜20重量%であることを特徴とする請求項1〜4のいずれか一項に記載の難燃性ポリカーボネート樹脂組成物。
【請求項6】
B成分が、パーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機酸金属塩系難燃剤であることを特徴とする請求項1〜5のいずれか一項に記載の難燃性ポリカーボネート樹脂組成物。
【請求項7】
0.03μm以下の算術平均粗さ(Ra)を有する厚み2mmの平滑平板において、全光線透過率が80%〜95%であることを特徴とする請求項1〜6のいずれか一項に記載の難燃性ポリカーボネート樹脂組成物。
【請求項8】
請求項1〜7のいずれか一項に記載の難燃性ポリカーボネート樹脂組成物からなる射出成形品。
【請求項9】
請求項1〜7のいずれか一項に記載の難燃性ポリカーボネート樹脂組成物からなる押出成形品。

【公開番号】特開2011−236287(P2011−236287A)
【公開日】平成23年11月24日(2011.11.24)
【国際特許分類】
【出願番号】特願2010−107237(P2010−107237)
【出願日】平成22年5月7日(2010.5.7)
【出願人】(000215888)帝人化成株式会社 (504)
【Fターム(参考)】