説明

電極、電極製造装置及び電極製造方法

【課題】集電体と電極層とが十分な密着状態を有し、充放電を繰り返しても、電極性能を維持できる電極、電極製造装置及び電極製造方法を提供する。
【解決手段】集電体101、201に電極層103、203が重なる電極100、200であって、電極層103、203の集電体101、201が重なる側の領域は、集電体101、201が重なる側と反対の表層側の領域よりも、電極層103、203に含まれる結着材112、212の成分濃度が高い電極100、200である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電極、電極製造装置及び電極製造方法に関する。
【背景技術】
【0002】
リチウムイオン二次電池は、蓄電密度が大きく、充放電を繰り返し行っても蓄電性能をよく保つことから、自動車や家電製品の電源として広く用いられている。
【0003】
リチウムイオン二次電池の電極形成過程においては、まず、例えば正極のアルミニウム箔、負極の銅箔のような集電体上に、活物質、結着材、導電性付与剤及び溶媒を含む電極スラリーを一定重量塗布する。次に乾燥炉内において、電極スラリーに含まれる溶媒を蒸発させて乾燥させ、電極スラリーの固形分である電極層と集電体とを結着材によって、固着させている。この後、必要に応じて電極層が重なる集電体をプレスし、当該プレスされた集電体を必要に応じて所定の大きさに切断し、集電体に電極層が重なる電極を製造している。
【0004】
上記の電極を乾燥させる工程においては、乾燥炉内において、集電体の上下面から熱風を吹きつける方法が一般的である。熱風による場合の乾燥条件の主なものとして、熱風の温度、熱風の吹き出し量、および乾燥時間があり、従来から乾燥条件を設定して乾燥する方法が知られている(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−107780号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記の電極スラリーを乾燥させる際に、乾燥条件(熱風の場合における熱風の温度、および熱風の吹き出し量)を大きく変化させると、電極層内部の微細構造に影響が及び、電極性能が低下することがある。これは、熱風の温度を高温にしたり、熱風量を増加させたりすると、電極スラリー内の結着材成分が電極層深部から電極層表面に移動してしまい(以下、偏析と称する場合がある。)、集電体と電極層との間に十分な結着材成分が存在しないことに起因する。特許文献1に記載の乾燥方法では、上記理由により、電極性能の低下を招く電極が製造される可能性がある。
【0007】
本発明は、上記の課題を解決するためになされたものであり、集電体と電極層とが十分な密着状態を有し、充放電を繰り返しても、電極性能を維持できる電極、電極製造装置及び電極製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成する本発明に係る電極は、集電体に電極層が重なる電極であって、電極層の集電体が重なる側の領域は、前記集電体が重なる側と反対の表層側の領域よりも、前記電極層に含まれる結着材の成分濃度が高い電極である。
【発明の効果】
【0009】
上記のように構成した電極であれば、電極層の集電体が重なる側の領域は、結着材の成分濃度が高いために、集電体と電極層との密着強度が向上する。このため、使用初期における電池内の抵抗値はもちろんのこと、充放電を繰り返した後の電池内の抵抗値も低く維持でき、電極性能を維持できる。また、電解液が染み込んで電極層が膨潤しても、集電体と電極層との密着強度が高いことによって、電極層が集電体から剥がれないために、電極の直流抵抗値が大きくならず、電極性能を維持できる。
【図面の簡単な説明】
【0010】
【図1】本発明に係る電極製造装置を示す概略構成図である。
【図2】本実施形態の乾燥方法によって塗布層を乾燥させているときの、正極の電極スラリーの状態変化を示す模式図であり、(a)は予熱工程終了後、(b)は定率蒸発工程終了後、(c)は減率工程終了後の電極スラリーの状態をそれぞれ示している。
【図3】本実施形態の乾燥方法によって塗布層を乾燥させているときの、負極の電極スラリーの状態変化を示す模式図であり、(a)は予熱工程終了後、(b)は定率蒸発工程終了後、(c)は減率工程終了後の電極スラリーの状態をそれぞれ示している。
【図4】図1における乾燥ゾーンの1つを抜粋した概略構成図である。
【図5】本発明に係る電極製造装置の多孔板ノズルを示す概略斜視図である。
【図6】本発明に係る電極製造装置の赤外線発熱体を示す概略構成図である。
【図7】本発明に係る製造装置を用いた電極の製造方法のフローチャートである。
【発明を実施するための形態】
【0011】
以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の番号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる。
【0012】
図1に示すように、本発明の実施形態に係る電極製造装置1は、集電体101、201を搬送し、活物質を含む電極スラリー110、210を集電体101、201に塗布し、形成された塗布層を後述する乾燥炉30の中において乾燥して、集電体101、201に電極層が重なる電極を製造するものである。
【0013】
まず、本実施形態に係る電極製造装置1により製造される電極について説明する。
【0014】
電極は、正極100と負極200とを有する。
【0015】
図2(a)に示すように正極100は、正極集電体101に、正極活物質111、結着材112、導電性付与剤113及び溶媒114を有する正極用の電極スラリー110(以下、正極スラリーと称する場合がある。)を塗布し、正極スラリー110内の溶媒114を乾燥させて製造される。
【0016】
同様に、図3(a)に示すように負極200は、負極集電体201に、負極活物質211、結着材212、導電性付与剤213及び溶媒214を有する負極用の電極スラリー210(以下、負極スラリーと称する場合がある。)を塗布し、負極スラリー210内の溶媒214を乾燥させて製造される。
【0017】
集電体101、201は、適宜の材料、アルミニウム、銅、ニッケル、鉄、ステンレス鋼などを用いることができる。具体的には、例えば、正極集電体101にはアルミニウムなどの材料を用い、負極集電体201には銅などの材料を用いることができる。集電体101、201の具体的な厚さについて特に制限はないが、例えば、アルミニウムの場合には20μm、銅の場合には10μm程度の薄膜である。
【0018】
正極スラリー110は、例えば、正極活物質111、結着材112及び導電性付与剤113を有し、溶媒114を添加することで、所定の粘度に設定される。正極活物質111は、例えば、マンガン酸リチウムである。結着材112は、例えば、PVDF(ポリフッ化ビニリデン)である。導電性付与剤113は、例えば、アセチレンブラックである。溶媒114は、例えば、NMP(ノルマルメチルピロリドン)である。なお、正極活物質111は、マンガン酸リチウムに特に限定されないが、容量および出力特性の観点から、リチウム−遷移金属複合酸化物を適用することが好ましい。導電性付与剤113は、例えば、カーボンブラックやグラファイトを利用することも可能である。結着材112および溶媒114は、PVDFおよびNMPに限定されない。溶媒114として水を用いてもよい。
【0019】
負極スラリー210は、例えば、負極活物質211、結着材212及び導電性付与剤213を有し、溶媒214を添加することで、所定の粘度にされる。負極活物質211は、例えば、グラファイトである。結着材212は、例えば、PVDF(ポリフッ化ビニリデン)である。導電性付与剤213は、例えば、アセチレンブラックである。溶媒214は、例えば、NMP(ノルマルメチルピロリドン)である。なお、負極活物質211は、グラファイトに特に限定されず、ハードカーボンや、リチウム−遷移金属複合酸化物を利用することも可能である。導電性付与剤213は、例えば、カーボンブラックやグラファイトを利用することも可能である。結着材212および溶媒214は、PVDFおよびNMPに限定されない。溶媒214として水を用いてもよい。
【0020】
正極100及び負極200は以下の特徴を有する。
【0021】
図2(c)、図3(c)に示すように、後述する電極製造方法にて電極スラリー110、210を乾燥させることで、電極層103、203の集電体101、201が重なる側の領域は、集電体101、201が重なる側と反対の表層側の領域よりも、結着材112、212の成分濃度が高くなる。
【0022】
さらに、電極層103、203の全体の厚さを1としたとき、電極層103、203の集電体101、201が重なる側から1/4までの領域である集電体近傍部A01に、すべての積分強度のうち20〜40%が存在する。
【0023】
ここで積分強度の定義及び測定方法について説明する。ラマン分光法で結着材112、212を測定すると、ある特定の波長にピークが現れる。例えば、電極を割断して電極層103、203の断面を出して、集電体101、201から電極層103、203の表層までの厚さ120μmと幅100μmとの領域の中でラマンを測定すると、上記120μm×100μmの面内の各部分で結着材112、212のピークが現れ、このピークの強度を積算し、すべての積分強度としている。また、集電体101、201から電極層103、203の表層までの距離を4分割し、電極層103、203の集電体101、201が重なる側から1/4までの領域のピークの積分強度を算出し、この値をすべての積分強度で割って相対強度を算出している。
【0024】
さらに、集電体近傍部A01は、電極層103、203の集電体101、201が重なる側と反対の表層側から1/4までの領域である電極層表層近傍部A02よりも、電極層103、203に含まれる結着材112、212の積分強度が高い。
【0025】
上記のような特徴を有することで、集電体近傍部A01における結着材112、212の成分濃度が高くなるために、集電体101、201と電極層103、203との密着強度が向上し、高性能な電極を提供することができる。
【0026】
負極200は、さらに以下の特徴を有する。
【0027】
図3(c)に示すように、後述する電極製造方法によって、負極スラリー210を乾燥させることで、電極層表層近傍部A02では、表層側を基準として1/4から1までの領域である電極層中央部A03よりも、導電性付与剤213の濃度が高くなる。これは、負極200では、負極活物質211として用いられているグラファイト(比重:2.2)のような結晶カーボンに比べて、導電性付与剤213として添加されているアセチレンブラック(比重:1.9)のような非結晶カーボンの方が比重が小さいことによって、溶媒214の蒸発とともに導電性付与剤213が電極層203の表層に移動しやすいためである。
【0028】
さらに負極200は、ラマン分光法で測定したカーボンのGバンドに対するDバンドのピークの強度比である平均D/G値が、電極層表層近傍部A02にてRs、電極層中央部A03にてRbであるときに、2.0≧Rs/Rbの関係を満たす。これは、上記のように導電性付与剤213が電極層203の表層に移動する際に、移動量に上限を定めていることを意味する。
【0029】
つまり、平均D/G値は黒鉛化度(結晶性の大小)と相関があり、D/G値が小さいほど黒鉛化度が高い、つまり結晶性の高いカーボンが多いことを示している。上述したとおり負極200では、導電性付与剤213として付与している非結晶カーボン(黒鉛化度小)が、蒸発工程で電極層203の表層側に移動することがある。このとき、後述する電極製造方法によって、2.0≧Rs/Rbとすることで、非結晶カーボンが電極層203の表層側に過剰に移動することを抑えて、密着強度を高く維持することができる。
【0030】
上記のような特徴を有することで、集電体201と電極層203との密着強度が向上し、高性能な負極200を提供することができる。
【0031】
次に、本実施形態に係る電極製造装置1について説明する。ここでは、正極100を例に挙げて説明する。
【0032】
電極製造装置1は、図1に示すように、集電体101を搬送する搬送部10と、電極スラリー110を集電体101に塗布する塗布部20と、電極スラリー110を乾燥させる乾燥炉30と、を有している。以下、詳述する。
【0033】
搬送部10は、電極スラリー110を塗布する前の集電体101を供給する供給ロール11と、電極スラリー110を乾燥させた後の集電体101を巻取る巻取りロール12と、巻取りロール12を回転駆動するモーターMと、を有している。搬送部10はさらに、供給ロール11と巻取りロール12との間に配置され集電体101の下面を保持する複数のサポートロール13を有している。供給ロール11には、帯状の集電体101を予め巻回してある。モーターMを駆動して巻取りロール12を回転駆動すると、集電体101は、供給ロール11から供給され、乾燥炉30内を搬送され、巻取りロール12によって巻き取られる。このようにして、搬送部10は、長尺状の集電体101を連続的に搬送する。
【0034】
電極スラリー110の集電体101への塗布は、集電体101を搬送しつつ、塗布部20によって行う。塗布部20は、電極スラリー110を集電体101に塗布するコーター21を有している。コーター21は集電体101に対向して配置され、間欠的に電極スラリー110を搬送されている集電体101に塗布する。
【0035】
乾燥炉30は、図4に示すように、集電体101の搬送路を形成するケーシング31と、熱風を生成する熱風生成部32と、熱風生成部32からの熱風を電極スラリー110の塗布層102の上部に吹き出す上ノズル33と、熱風生成部32からの熱風を電極スラリー110の塗布層102の下部に吹き出す下ノズル34と、を有している。なお、図4では、後述する第1の乾燥ゾーン36が示されている。乾燥炉30内は、ケーシング31内に仕切り壁35を設けることによって、複数(図1にあっては、6個)に区画された乾燥ゾーン36〜41から形成されている。6つの乾燥ゾーン36〜41を説明の便宜上、集電体101を搬送する方向の上流側から順に(図1において左側から順に)、第1の乾燥ゾーン36、第2の乾燥ゾーン37、第3の乾燥ゾーン38、第4の乾燥ゾーン39、第5の乾燥ゾーン40、および第6の乾燥ゾーン41と定義する。
【0036】
第1の乾燥ゾーン36及び第2の乾燥ゾーン37では、電極スラリー110を予熱する予熱工程S04を実施する。
【0037】
第3の乾燥ゾーン38及び第4の乾燥ゾーン39では、電極スラリー110の乾燥速度が一定である定率蒸発工程S05を実施する。
【0038】
第5の乾燥ゾーン40及び第6の乾燥ゾーン41では、電極スラリー110の乾燥速度が電極スラリー110の含溶媒率の減少に依存して、徐々に減少する減率蒸発工程S06を実施する。
【0039】
熱風生成部32は、図4に示すように給気ファン42と循環ファン43とを接続する第1配管44と、循環ファン43と上ノズル33とを接続する第2配管45と、循環ファン43と下ノズル34とを接続する第3配管46と、を有している。熱風生成部32はさらに、乾燥炉30内の排気口47及び排気ファン48を接続する第4配管49と、乾燥炉30内の循環口50及び循環ファン43を接続する第5配管51と、を有している。また、給気ファン42と循環ファン43との間には、給気する熱風の温度を調整するためのヒーター52が設けられている。また、それぞれの配管44〜46、49、51では熱風の風量を調整するためのダンパー53が設けられている。熱風の温度は、環境温度や電極スラリー110の種類などによってそれぞれ異なるために特に制限されないが、例えば100±40℃である。
【0040】
給気ファン42から給気された熱風は、第1配管44を通過して循環ファン43に到達する。このとき、ダンパー53によって熱風の風量が調整され、ヒーター52によって熱風の温度が調整される。循環ファン43を出た熱風は、第2配管45と第3配管46とに分配される。第2配管45に分配された熱風は、ダンパー53によって風量が調整され、上ノズル33に到達する。一方、第3配管46に分配された熱風は、ダンパー53によって風量が調整され、下ノズル34に到達する。上下のノズル33、34に到達した熱風はそれぞれ上下のノズル33、34から、電極スラリー110に吹き出される。上ノズル33は、図5に示すように、孔54を有する多孔板形ノズルであり、開口率10%以上を有している。上下のノズル33、34から吹き出された熱風は、排気として捨てられる熱風と再利用のために再度、熱風生成部32を循環する熱風とに分けられる。排気として捨てられる熱風は、乾燥炉30内に設けられた排気口47より第4配管49を通過して、排気ファン48に到達し、排気ファン48により排気が行われる。このときに、ダンパー53によって風量が調整される。また、再度循環する熱風は、乾燥炉30内に設けられた循環口50より第5配管51を通過して循環ファン43に到達する。このときにダンパー53によって風量が調整され、ヒーター52によって再度温度が調整される。また図4、図6に示すように、熱風生成部32の構成として、上ノズル33間に赤外線発熱体55を有しており、赤外線発熱体55は、電源Pによって発熱され、防爆のために冷却エアCによって、周囲から冷却されている。
【0041】
さらに、電極製造装置1は塗布部20の作動を制御するコントローラー56を有している。コントローラー56は、CPUおよびメモリを主体として構成され、動作を制御するためのプログラムがメモリに記憶されている。コントローラー56は、塗布部20の作動を制御して、電極スラリー110の塗布量、塗布厚さなどを調整し、また、熱風生成部32の作動を制御して、給気の温度、風量などを調整する。コントローラー56はまた、モーターMの作動を制御して、集電体101の搬送速度を調整する。
【0042】
本実施形態に係る電極製造装置1を用いた電極の製造方法を説明する前に、乾燥炉30に供給する給気の温度や風量を大きく変化させたときに生じる現象について説明する。ここでは、正極100を例に挙げて説明する。
【0043】
熱風を用いた乾燥炉30において、熱風温度を高くするとともに風量を増加し、塗布層102の表面部分における溶媒114の除去量を増加させることで、乾燥速度の向上を図ることができる。ところが、このような乾燥方法によると、乾燥が早くなってしまい、電極層103の表面近傍に結着材112が偏析する。このため、集電体101に強く密着した塗膜つまり強密着の電極層103を得ることが困難となる。
【0044】
熱風温度を高くした場合に結着材112の偏析が生じる原因として、次のようなものを挙げることができる。乾燥時においては結着材112を溶媒114に溶かしたものが塗布層102に含まれているので、塗布層102を高い温度の環境下にさらすと、塗布層102内において溶媒114自体が対流を起こす。この結果、溶解している結着材112が偏析する。
【0045】
また、風量を増加した場合に結着材112の偏析が生じる原因として、次のようなものを挙げることができる。塗布層102の表面近傍における溶媒114だけが優先的に揮発して表面近傍だけが先に乾き、この表面先乾き部分に生じた亀裂やホールなどによる毛細管現象によって、溶媒114を深部から表面に向けて吸い上げる。この結果、溶解している結着材112が偏析する。
【0046】
乾燥時に結着材112の偏析を生じ得る乾燥条件では、電極層103の表面粗さが大きく、密着力も弱いことから、集電体101と電極層103との接触量あるいは接触面積が少なくなる。このため、使用初期における電池内の抵抗値のみならず、充放電を繰り返した後の電池内の抵抗値も高くなり、電極性能の低下を招くことになる。
【0047】
発生した結着材112の偏析を解消するために、乾燥後の電極100をロールプレス機などによって圧縮する方法がある。しかしながら、乾燥が完了して電極層103が固着した後に強制的に構造変化させることになるため、電極層103の密着強度はさほど向上しない。しかも、低コストで量産を実現する観点から、乾燥工程の後に圧縮工程を付加することは避けることが望ましい。
【0048】
次に、本実施形態に係る電極製造装置1を用いた電極の製造方法を、図7のフローチャートに基づき説明する。ここでは、正極100を例に挙げて説明する。
【0049】
集電体搬送工程S01は、集電体101を搬送する工程である。集電体搬送工程S01では、モーターMを駆動して巻取りロール12を回転駆動し、集電体101を、供給ロール11から繰り出し、巻取りロール12に巻き取る。コントローラー56は、モーターMの作動を制御し、搬送スピードを調整している。
【0050】
塗布工程S02は、活物質111、結着材112、導電性付与剤113及び溶媒114を含む電極スラリー110を集電体101に塗布する工程である。集電体101に対向するように配置されたコーター21は、移動している集電体101の表面に間欠的に電極スラリー110を塗布する。コントローラー56は、塗布部20の作動を制御し、電極スラリー110の塗布量、塗布厚さなどを調整している。
【0051】
熱風生成工程S03は、電極スラリー110を乾燥させるための熱風を生成する工程である。熱風生成工程S03では、給気ファン42から給気された熱風が、ヒーター52によって温度が調整され、循環ファン43に到達する。循環ファン43を出た熱風は分離され、上下のノズル33、34に到達する。
【0052】
予熱工程S04では、乾燥工程に持ち込まれる前のスラリーの蒸発が始まるまでの熱量を与えるように、熱風を上下のノズル33、34から電極スラリー110に吹き出したり、赤外線発熱体55によって電極スラリー110に熱を与えたりする。具体的な熱量の供給量は、実際に特定の温度・風量の熱風を与えて蒸発量を確認する作業を何度か繰り返し、適切な温度・風量を定量化するという手順によって算出されている。コントローラー56は、ヒーター52や各種ファン42、43、48などを制御し、熱風の温度、風量などを調整している。予熱工程S04は、第1の乾燥ゾーン36及び第2の乾燥ゾーン37で実施される。この工程が終了したときの、電極スラリー110に残留している溶媒量は100〜90重量%である。
【0053】
定率蒸発工程S05では、溶媒114の蒸発に起因する結着材112の成分や導電性付与剤113の移動を抑制しながら溶媒114を蒸発除去するように、熱風を上下のノズル33、34から電極スラリー110に吹き出したり、赤外線発熱体55によって電極スラリー110に熱を与えたりする。定率蒸発工程S05は、第3の乾燥ゾーン38と第4の乾燥ゾーン39とで実施される。この工程が終了したときの、電極スラリー110に残留している溶媒量は95〜1重量%である。
【0054】
減率蒸発工程S06では、電極スラリー110が濃縮され、結着材112の成分や導電性付与剤113の移動が起こりにくくなっている。このため、残留している溶媒114を急速に蒸発除去するように、熱風を上下のノズル33、34から電極スラリー110に吹き出したり、赤外線発熱体55によって電極スラリー110に熱を与えたりする。減率蒸発工程S06は、第5の乾燥ゾーン40と第6の乾燥ゾーン41とで実施される。この工程が終了したときの、電極スラリー110に残留している溶媒量は0.1重量%以下である。
【0055】
上記の工程S04〜S06(以下、工程S04〜S06を乾燥工程と称する場合がある。)では、結着材112の偏析を生じさせない条件にて電極スラリー110を乾燥させている。したがって、集電体101と電極層103との密着性が向上し、使用初期における電池内の抵抗値はもちろんのこと、充放電を繰り返した後の電池内の抵抗値も低くなり、電極性能の向上を図ることが可能となる。さらに、乾燥工程で適切な温度条件を設定することができることから、全体として乾燥時間の短縮にもつながる。
【0056】
ステップS07は熱風を排気・循環する工程である。電極スラリー110に吹き出された熱風は、排気として捨てられる熱風と再利用のために、再度、熱風生成部32を循環する熱風とに分けられる。排気として捨てられる熱風は、乾燥炉30内に設けられた排気口47から排気ファン48により排気が行われる。また、再利用のための熱風は、ヒーター52によって温度が調整され、再度循環ファン43に到達し、再利用される。
【0057】
以上説明したように、本実施形態に係る電極は、集電体101、201に電極層103、203が重なる電極であって、電極層103、203の集電体101、201が重なる側の領域は、集電体101、201が重なる側と反対の表層側の領域よりも、電極層103、203に含まれる結着材112、212の成分濃度が高い電極である。このために、集電体101、201と電極層103、203との密着強度が高くなる。よって、使用初期における電池内の抵抗値はもちろんのこと、充放電を繰り返した後の電池内の抵抗値も低くなり、電池性能が向上する。また、電解液が染み込んで電極層103、203や結着材112、212が膨潤しても、集電体101、201と電極層103、203との密着強度が高いことによって、電極層103、203が集電体101、201から剥がれないために、電極の直流抵抗値が大きくならず、電池性能を維持できる。
【0058】
また、電極層103、203の全体の厚さを1としたとき、集電体近傍部A01に、すべての結着材112、212の積分強度のうち20〜40%が存在する。このために、集電体101、201と電極層103、203との密着強度を確実に高くすることができる。
【0059】
また、集電体近傍部A01は、電極層103、203の集電体101、201が重なる側と反対の表層側から1/4までの領域である電極層表層近傍部A02よりも、結着材112、212の積分強度が高い。このために、集電体101、201と電極層103、203との密着強度を確実に高くすることができる。
【0060】
また、電極層表層近傍部A02に、表層側を基準として1/4から1までの領域である電極層中央部A03よりも、導電性付与剤113、213の濃度が高い領域がある。このために、相対的に集電体近傍部A01における結着材112、212の成分濃度が高くなり、集電体101、201と電極層103、203との密着強度が高くなる。
【0061】
また、ラマン分光法で測定した炭素のGバンドに対するDバンドのピークの強度比である平均D/G値が、電極層表層近傍部A02にてRs、電極層中央部A03にてRbであるときに、2.0≧Rs/Rbの関係を満たす。このために、電極層表層側に導電性付与剤113、213が多くなりすぎず、集電体101、201と電極層103、203との密着強度が高くなる。
【0062】
また、以上説明したように、本実施形態に係る電極製造装置1は、活物質111、211、結着材112、212、導電性付与剤113、213及び溶媒114、214を含む電極スラリー110、210を集電体101、201に塗布することによって形成された塗布層102、202を、乾燥炉30の中において乾燥して、集電体101、201に電極層103、203が重なる電極を製造する電極製造装置1である。電極製造装置1は、電極スラリー110、210の塗布層102、202が形成された面を熱風によって加熱乾燥するための熱風の出口に多数の孔54が開いた多孔板ノズル(上ノズル)33を有し、多孔板ノズル33の開口率は10%以上である。このため、乾燥工程において適切に電極スラリー110、210を乾燥させることができ、集電体近傍部A01における結着材112、212の成分濃度が高くなることによって、集電体101、201と電極層103、203との密着強度が高くなる。
【0063】
また、電極スラリー110、210の塗布層102、202が形成された面を加熱乾燥するための赤外線発熱体55を有する。このために、乾燥工程において適切に電極スラリー110、210を乾燥させることができ、集電体近傍部A01における結着材112、212の成分濃度が高くなることによって、集電体101、201と電極層103、203との密着強度が高くなる。
【0064】
また、以上説明したように、本実施形態に係る電極製造方法は、集電体101、201に電極層103、203が重なる電極を製造する電極製造方法であって、電極スラリー110、210を予熱する予熱工程S04と、電極スラリー110、210の乾燥速度が一定である定率蒸発工程S05と、電極スラリー110、210の乾燥速度が電極スラリー110、210の含溶媒率の減少に依存して、徐々に減少する減率蒸発工程S06と、を有する。このために、各工程で適切な温度条件を設定することができることから、全体として乾燥時間を短縮することができ、さらには設備の縮小にもつながる。
【0065】
また、予熱工程S04、定率蒸発工程S05及び減率蒸発工程S06における、各工程が終了したときの電極スラリー110、210に残留している溶媒量がそれぞれ100〜90重量%、95〜1重量%、5〜0.01重量%の範囲にある。このために、適切に溶媒114、214が乾燥されており、結着材112、212を集電体近傍に多く存在させることができ、集電体101、201と電極層103、203との密着強度が高くなる。
【0066】
また、定率蒸発工程S05は、第1定率蒸発工程及び第2定率蒸発工程を有し、各工程が終了したときの電極スラリー110、210に残留している溶媒量がそれぞれ95〜65重量%、65〜1重量%の範囲にある。このために、適切に溶媒114、214が乾燥されており、結着材112、212を集電体近傍部A01に多く存在させることができ、集電体101、201と電極層103、203との密着強度が高くなる。
【0067】
減率蒸発工程S06が終了した後の電極スラリー110、210に残留している溶媒量は0.1重量%以下である。このために、乾燥工程が終わった後は溶媒114、214がほとんど残っていないことから集電体101、201と電極層103、203との密着強度が高くなる。
【0068】
(改変例)
乾燥炉30内での乾燥工程である予熱工程S04、定率蒸発工程S05及び減率蒸発工程S06は、それぞれ2つの乾燥ゾーンで実施する形態を示したが、この形態に限られず、各工程の乾燥ゾーンの数を増やしても減らしてもよい。
【0069】
本実施形態では、熱風生成部32の構成として、上下ノズル33、34から吹き出される熱風と赤外線発熱体55とが含まれているが、いずれか一方が単独に存在していてもいいし、また他の発熱方法を用いてもよい。
【0070】
また、本実施形態では、電極スラリー110、210を乾燥するための熱風が吹き出される上ノズル33の開口率を10%以上としているが、これに限られない。
【0071】
本実施形態では、上下ノズル33、34から吹き出された熱風を再利用するための第5配管51を有しているが、なくてもよい。
【0072】
また、本実施形態では集電体101、201を連続して搬送する形態を図示したが、バッチ式で搬送する形態でもよい。
【0073】
さらに、本発明は、電極スラリー110、210を間欠的に塗布する場合に限られるものではなく、電極スラリー110、210を連続塗布する場合にも適用できることは言うまでもない。
【実施例】
【0074】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらのみに限定されるものではない。なお、実施例1〜8、17、18及び比較例1は正極、実施例9〜16及び比較例2は負極に該当する。
【0075】
[実施例1]
(正極スラリーの組成)
【0076】
【表1】

【0077】
(正極スラリーの製造)
表1の組成を有する正極スラリーを次のように調製した。まず、PVDF4.4重量部をNMP30重量部に溶解してPVDF溶液を作製した。次に、導電性付与剤4.4重量部とマンガン酸リチウム粉100重量部の混合粉に、上記PVDF溶液34.4重量部を加え、プラネタリーミキサー(浅田鉄工株式会社製、PVM100)にて混練し、この後、混練物にNMP37重量部を加えて、正極スラリー(固形分濃度62重量%)とした。
【0078】
(正極スラリーの塗布・乾燥)
20μm厚のアルミニウム箔集電体を走行スピード8m/分で走行させながら、集電体の片面に、上記正極スラリーをコーターにより塗布した。
【0079】
続いて、図1に対して定率蒸発工程の乾燥ゾーンが2ゾーン増えた乾燥炉(1ブロックが2.5m、8連炉)及び図4(多孔板型上ノズルから箔までの距離(D1):10〜150mm、スリット型下ノズルから箔までの距離(D2):10〜75mm)に示された乾燥炉を用いて、以下の乾燥工程によって、正極スラリーの乾燥を行った。
【0080】
まず、予熱工程(第1乾燥ゾーンと第2乾燥ゾーン)の各ゾーンの炉内温度135℃、上ノズル(開口率10%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量50Nm/min(循環風量43Nm/minと外部から導入する空気量7Nm/min)の条件で昇温を行った。
【0081】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率30%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量100Nm/m(循環風量10Nm/minと外部から導入する空気量90Nm/min)の条件で定率蒸発を行った。
【0082】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度140℃、上ノズル(開口率10%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量70Nm/min(循環風量67Nm/minと外部から導入する空気量3Nm/min)の条件で減率蒸発を行った。
【0083】
各工程の頂部に設置されたNMP濃度センサーで、各工程で蒸発するNMP量を測定し、各工程を通過する塗布層(集電体上に塗布された正極スラリー)内に残留しているNMP含有量を算出した。
【0084】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は7重量%(残留NMP量は93重量%)、定率蒸発工程での蒸発NMP量は88重量%(残留NMP量は5重量%)、減率蒸発工程での蒸発NMP量は4.97重量%(残留NMP量は0.03重量%)であった。
【0085】
また、減率蒸発工程が終了したときの、正極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0086】
さらにアルミニウム箔の裏面にも上記同様の条件で塗布、乾燥を行い、両面に電極活物質層を有するシート状電極を形成した。シート状電極にローラープレスをかけて圧縮成形し、切断して、片面の活物質層の厚さ約100μmの正極電極を作製した。正極電極の表面を観察したところ、クラックの発生は見られなかった。
【0087】
また、プレス後の電極活物質層の密着強度は、90°引っ張り試験(試験機:株式会社今田製作所製、型番:SV−52NA−20M、ロードセル最大荷重:200N、引っ張り速度:100mm/min、試料片:15mm×80mm)で測定した。
【0088】
[実施例2]
(正極スラリーの組成)
【0089】
【表2】

【0090】
(正極スラリーの製造)
表2の組成を有する正極スラリーを、実施例1に準じて調製した。
【0091】
(正極スラリーの塗布・乾燥)
実施例1に準じて、20μmのアルミニウム箔集電体の片面に、上記正極スラリーをコーターにより塗布した。
【0092】
続いて、以下の乾燥工程によって、正極スラリーの乾燥を行った。
【0093】
まず、予熱工程(第1乾燥ゾーン)の炉内温度135℃、上ノズル(開口率10%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量25Nm/min(循環風量25Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度135℃、上ノズル(開口率10%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量25Nm/min(循環風量20Nm/minと外部から導入する空気量5Nm/min)の条件で昇温を行った。
【0094】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度125℃、上ノズル(開口率30%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量100Nm/m(循環風量8Nm/minと外部から導入する空気量92Nm/min)の条件で定率蒸発を行った。
【0095】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度140℃、上ノズル(開口率10%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量70Nm/min(循環風量67Nm/minと外部から導入する空気量3Nm/min)の条件で減率蒸発を行った。
【0096】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は5重量%(残留NMP量は95重量%)、定率蒸発工程での蒸発NMP量は92重量%(残留NMP量は3重量%)、減率蒸発工程での蒸発NMP量は2.97重量%(残留NMP量は0.03重量%)であった。
【0097】
また、減率蒸発工程が終了したときの、正極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0098】
また、実施例1に準じて、正極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0099】
[実施例3]
実施例1に準じて、20μm厚のアルミニウム箔集電体を走行スピード12m/分で走行させながら、集電体の片面に、上記正極スラリーをコーターにより塗布した。
【0100】
続いて、以下の乾燥工程によって、正極スラリーの乾燥を行った。
【0101】
まず、予熱工程(第1乾燥ゾーン)の炉内温度135℃、上ノズル(開口率10%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量30Nm/min(循環風量30Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度135℃、上ノズル(開口率10%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量40Nm/min(循環風量25Nm/minと外部から導入する空気量15Nm/min)の条件で昇温を行った。
【0102】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率30%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量150Nm/m(循環風量20Nm/minと外部から導入する空気量130Nm/min)の条件で定率蒸発を行った。
【0103】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度140℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量80Nm/min(循環風量70Nm/minと外部から導入する空気量10Nm/min)の条件で減率蒸発を行った。
【0104】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は4重量%(残留NMP量は96重量%)、定率蒸発工程での蒸発NMP量は93重量%(残留NMP量は3重量%)、減率蒸発工程での蒸発NMP量は2.97重量%(残留NMP量は0.03重量%)であった。
【0105】
また、減率蒸発工程が終了したときの正極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0106】
また、実施例1に準じて、正極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0107】
[実施例4]
実施例1に準じて、20μm厚のアルミニウム箔集電体を走行スピード16m/分で走行させながら、集電体の片面に、上記正極スラリーをコーターにより塗布した。
【0108】
続いて、以下の乾燥工程によって、正極スラリーの乾燥を行った。
【0109】
まず、予熱工程(第1乾燥ゾーン)の炉内温度140℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量40Nm/min(循環風量40Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度135℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量50Nm/min(循環風量20Nm/minと外部から導入する空気量30Nm/min)の条件で昇温を行った。
【0110】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度135℃、上ノズル(開口率30%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量200Nm/min(循環風量25Nm/minと外部から導入する空気量175Nm/min)の条件で定率蒸発を行った。
【0111】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度140℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量120Nm/min(循環風量105Nm/minと外部から導入する空気量15Nm/min)の条件で減率蒸発を行った。
【0112】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は3重量%(残留NMP量は97重量%)、定率蒸発工程での蒸発NMP量は94重量%(残留NMP量は3重量%)、減率蒸発工程での蒸発NMP量は2.97重量%(残留NMP量は0.03重量%)であった。
【0113】
また、減率蒸発工程が終了したときの、正極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0114】
また、実施例1に準じて、正極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0115】
[実施例5]
実施例4において、予熱工程に赤外線加熱炉装置を組込み、予熱工程(第1乾燥ゾーン)の炉内温度140℃、上ノズル(開口率20%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量25Nm/min(循環風量25Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度135℃、上ノズル(開口率20%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量50Nm/min(循環風量10Nm/minと外部から導入する空気量40Nm/min)の条件で昇温を行った。これ以外は、実施例4と同様とした。
【0116】
[実施例6]
実施例4において、定率蒸発工程に赤外線加熱炉装置を組込み、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度135℃、上ノズル(開口率35%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量175Nm/m(循環風量0Nm/minと外部から導入する空気量175Nm/min)の条件で定率蒸発を行った。これ以外は、実施例4と同様とした。
【0117】
[実施例7]
実施例4において、減率加熱ゾーンに赤外線加熱炉装置を組込み、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度140℃、上ノズル(開口率20%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量70Nm/min(循環風量55Nm/minと外部から導入する空気量15Nm/min)の条件で減率蒸発を行った。これ以外は、実施例4と同様とした。
【0118】
[実施例8]
実施例4において、減率加熱ゾーンを出た位置から2.5mの場所に赤外線加熱炉装置を配置し、130℃の条件で追加乾燥を行った。これ以外は、実施例4と同様とした。
【0119】
[実施例9]
(負極スラリーの組成)
【0120】
【表3】

【0121】
(負極スラリーの製造)
表3の組織を有する負極スラリーを次のように調製した。まず、PVDF6.5重量部をNMP45重量部に溶解してPVDF溶液を作製した。次に、導電性付与剤1.1重量部と天然グラファイト粉100重量部の混合粉に、上記PVDF溶液51.5重量部を加え、プラネタリーミキサー(浅田鉄工製、PVM100)にて混練し、この後、混練物にNMP44重量部を加えて、負極スラリー(固形分濃度52重量%)とした。
【0122】
(負極スラリーの塗布・乾燥)
10μm厚の圧延銅箔集電体を走行スピード8m/分で走行させながら、集電体の片面に、上記負極スラリーをコーターにより塗布した。
【0123】
続いて、以下の乾燥工程によって、負極スラリーの乾燥を行った。
【0124】
まず、予熱工程(第1乾燥ゾーンと第2乾燥ゾーン)の各ゾーンの炉内温度125℃、上ノズル(開口率10%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量30Nm/min(循環風量20Nm/minと外部から導入する空気量10Nm/min)の条件で昇温を行った。
【0125】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度115℃、上ノズル(開口率30%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量60Nm/m(循環風量12Nm/minと外部から導入する空気量48Nm/min)の条件で定率蒸発を行った。
【0126】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率10%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量70Nm/min(循環風量60Nm/minと外部から導入する空気量10Nm/min)の条件で減率蒸発を行った。
【0127】
各工程の頂部に設置されたNMP濃度センサーで、各工程で蒸発するNMP量を測定し、各工程を通過する塗布層(集電体上に塗布された負極スラリー)内に残留しているNMP含有量を算出した。
【0128】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は4重量%(残留NMP量は96重量%)、定率蒸発工程での蒸発NMP量は95重量%(残留NMP量は1重量%)、減率蒸発工程での蒸発NMP量は0.98重量%(残留NMP量は0.02重量%)であった。
【0129】
また、減率蒸発工程が終了したときの負極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.02重量%であることを確認した。
【0130】
さらに圧延銅箔集電体の裏面にも上記同様の条件で塗布、乾燥を行い、両面に電極活物質層を有するシート状電極を形成した。シート状電極にローラープレスをかけて圧縮成形し、切断して、片面の活物質層の厚さ約60μmの負極電極を作製した。負極電極の表面を観察したところ、クラックの発生は見られなかった。
【0131】
また、プレス後の電極活物質層の密着強度は、90°引っ張り試験(試験機:今田製作所製、型番:SV−52NA−20M、ロードセル最大荷重:200N、引っ張り速度:100mm/min、試料片:15mm×80mm)で測定した。
【0132】
[実施例10]
実施例9に準じて、10μmの圧延銅箔集電体の片面に、上記塗料を塗布した。
【0133】
続いて、以下の乾燥工程によって、負極スラリーの乾燥を行った。
【0134】
まず、予熱工程(第1乾燥ゾーン)の炉内温度125℃、上ノズル(開口率10%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量15Nm/min(循環風量15Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度115℃、上ノズル(開口率10%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量15Nm/min(循環風量5Nm/minと外部から導入する空気量10Nm/min)の条件で昇温を行った。
【0135】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度115℃、上ノズル(開口率30%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量60Nm/m(循環風量12Nm/minと外部から導入する空気量48Nm/min)の条件で定率蒸発を行った。
【0136】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率10%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量70Nm/min(循環風量60Nm/minと外部から導入する空気量10Nm/min)の条件で減率蒸発を行った。
【0137】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は4重量%(残留NMP量は96重量%)、定率蒸発工程での蒸発NMP量は95重量%(残留NMP量は1重量%)、減率蒸発工程での蒸発NMP量は0.97重量%(残留NMP量は0.03重量%)であった。
【0138】
また、減率蒸発工程が終了したときの負極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0139】
また、実施例1に準じて、負極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0140】
[実施例11]
実施例10に準じて、10μm厚の銅箔集電体を走行スピード12m/分で走行させながら、集電体の片面に、上記負極スラリーをコーターにより塗布した。
【0141】
続いて、以下の乾燥工程によって、負極スラリーの乾燥を行った。
【0142】
まず、予熱工程(第1乾燥ゾーン)の炉内温度125℃、上ノズル(開口率10%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量20Nm/min(循環風量20Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度120℃、上ノズル(開口率10%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量20Nm/min(循環風量10Nm/minと外部から導入する空気量10Nm/min)の条件で昇温を行った。
【0143】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度120℃、上ノズル(開口率30%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量80Nm/m(循環風量15Nm/minと外部から導入する空気量65Nm/min)の条件で定率蒸発を行った。
【0144】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量70Nm/min(循環風量60Nm/minと外部から導入する空気量10Nm/min)の条件で減率蒸発を行った。
【0145】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は4重量%(残留NMP量は96重量%)、定率蒸発工程での蒸発NMP量は94重量%(残留NMP量は2重量%)、減率蒸発工程での蒸発NMP量は1.97重量%(残留NMP量は0.03重量%)であった。
【0146】
また、減率蒸発工程を終了したときの負極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0147】
また、実施例1に準じて、負極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0148】
[実施例12]
実施例10に準じて、10μm厚の圧延銅箔集電体を走行スピード16m/分で走行させながら、集電体の片面に、上記負極スラリーをコーターにより塗布した。
【0149】
続いて、以下の乾燥工程によって、負極スラリーの乾燥を行った。
【0150】
まず、予熱工程(第1乾燥ゾーン)の炉内温度130℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量25Nm/min(循環風量25Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度130℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量25Nm/min(循環風量15Nm/minと外部から導入する空気量10Nm/min)の条件で昇温を行った。
【0151】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度125℃、上ノズル(開口率30%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量100Nm/m(循環風量10Nm/minと外部から導入する空気量90Nm/min)の条件で定率蒸発を行った。
【0152】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度135℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量100Nm/min(循環風量80Nm/minと外部から導入する空気量20Nm/min)の条件で減率蒸発を行った。
【0153】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は3重量%(残留NMP量は97重量%)、定率蒸発工程での蒸発NMP量は94重量%(残留NMP量は3重量%)、減率蒸発工程での蒸発NMP量は2.97重量%(残留NMP量は0.03重量%)であった。
【0154】
また、減率蒸発工程が終了したときの負極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0155】
また、実施例1に準じて、負極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0156】
[実施例13]
実施例12において、予熱工程に赤外線加熱炉装置を組込み、予熱工程(第1乾燥ゾーン)の炉内温度125℃、上ノズル(開口率20%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量15Nm/min(循環風量15Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度125℃、上ノズル(開口率20%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量15Nm/min(循環風量5Nm/minと外部から導入する空気量10Nm/min)の条件で昇温を行った。これ以外は、実施例12と同様とした。
【0157】
[実施例14]
実施例12において、定率蒸発工程に赤外線加熱炉装置を組込み、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度115℃、上ノズル(開口率40%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量90Nm/m(外部から導入する空気量90Nm/min)の条件で定率蒸発を行った。
【0158】
これ以外は、実施例12と同様とした。
【0159】
[実施例15]
実施例12において、減率蒸発工程に赤外線加熱炉装置を組込み、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率20%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全ノズルからの吹き出し風量70Nm/min(循環風量60Nm/minと外部から導入する空気量10Nm/min)の条件で減率蒸発を行った。これ以外は、実施例12と同様とした。
【0160】
[実施例16]
実施例12において、減率加熱ゾーンを出た位置から2.5mの場所に赤外線加熱炉装置を配置し、130℃の条件で追加乾燥を行った。これ以外は、実施例12と同様とした。
【0161】
[実施例17]
実施例1に準じて、20μm厚のアルミニウム箔集電体を走行スピード8m/分で走行させながら、集電体の片面に、上記正極スラリーをコーターにより塗布した。続いて、図1において定率蒸発工程が4ブロックあるタイプ(1ブロックが2.5mの8連炉で全体炉長20m)及び図4(上ノズルから箔までの距離(D1):10〜150mm、下ノズルから箔までの距離(D2):10〜75mm)に示された乾燥炉を用いて、以下の乾燥工程によって、正極スラリーの乾燥を行った。
【0162】
まず、予熱工程(第1乾燥ゾーンと第2乾燥ゾーン)の各ゾーンの炉内温度135℃、上ノズル(開口率10%、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量50Nm/min(循環風量43Nm/minと外部から導入する空気量7Nm/min)の条件で昇温を行った。
【0163】
続いて、定率蒸発工程1(第3乾燥ゾーンと第4乾燥ゾーン)の各ゾーンの炉内温度125℃、上ノズル(開口率30%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量29Nm/m(循環風量3Nm/minと外部から導入する空気量26Nm/min)の条件で定率蒸発を行った。
【0164】
続いて、定率蒸発工程2(第5乾燥ゾーンと第6乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率20%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量71Nm/m(循環風量7Nm/minと外部から導入する空気量64Nm/min)の条件で定率蒸発を行った。
【0165】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度140℃、上ノズル(開口率10%、D1:100mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量70Nm/min(循環風量67Nm/minと外部から導入する空気量3Nm/min)の条件で減率蒸発を行った。
【0166】
各工程の頂部に設置されたNMP濃度センサーで、各工程から排出(蒸発)するNMP量を測定し、各工程を通過する塗布層(集電体上に塗布された正極スラリー)の残留している溶剤含有量を算出した。
【0167】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は7重量%(残留NMP量は93重量%)、定率蒸発工程1での蒸発NMP量は27重量%(残留NMP量は66重量%)、定率蒸発工程2での蒸発NMP量は65重量%(残留NMP量は1重量%)、減率蒸発工程での蒸発NMP量は0.97重量%(残留NMP量は0.03重量%)であった。
【0168】
また、減率蒸発工程が終了したときの正極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0169】
また、実施例1に準じて、正極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0170】
[実施例18]
実施例1に準じて、20μm厚のアルミニウム箔集電体を走行スピード16m/分で走行させながら、集電体の片面に、上記正極スラリーをコーターにより塗布した。
【0171】
続いて、以下の乾燥工程によって、正極スラリーの乾燥を行った。
【0172】
まず、予熱工程(第1乾燥ゾーン)の炉内温度140℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量40Nm/min(循環風量40Nm/min)、予熱工程(第2乾燥ゾーン)の炉内温度135℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量50Nm/min(循環風量20Nm/minと外部から導入する空気量30Nm/min)の条件で昇温を行った。
【0173】
続いて、定率蒸発工程1(第3乾燥ゾーンと第4乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率35%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量58Nm/m(循環風量6Nm/minと外部から導入する空気量52Nm/min)の条件で定率蒸発を行った。
【0174】
続いて、定率蒸発工程2(第5乾燥ゾーンと第6乾燥ゾーン)の各ゾーンの炉内温度135℃、上ノズル(開口率30%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全ノズルからの吹き出し風量142Nm/m(循環風量19Nm/minと外部から導入する空気量123Nm/min)の条件で定率蒸発を行った。
【0175】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度140℃、上ノズル(開口率10%、D1:15mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全ノズルからの吹き出し風量120Nm/min(循環風量105Nm/minと外部から導入する空気量15Nm/min)の条件で減率蒸発を行った。
【0176】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は3重量%(残留NMP量は97重量%)、定率蒸発工程1での蒸発NMP量は27重量%(残留NMP量は66重量%)、定率蒸発工程2での蒸発NMP量は65重量%(残留NMP量は1重量%)、減率蒸発工程での蒸発NMP量は2.97重量%(残留NMP量は0.03重量%)であった。
【0177】
また、減率蒸発工程が終了したときの正極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0178】
また、実施例1に準じて、正極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0179】
[比較例1]
実施例1準じて、20μm厚のアルミニウム箔集電体を走行スピード8m/分で走行させながら、集電体の片面に、上記塗料をダイコーターにより塗布した。
【0180】
続いて、以下の乾燥工程によって、正極スラリーの乾燥を行った。
【0181】
まず、予熱工程(1〜2)の各ゾーンの炉内温度140℃、上ノズル(スリット幅:5mm、D1:50mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量100Nm/min(循環風量50Nm/minと外部から導入する空気量50Nm/min)の条件で昇温を行った。
【0182】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度135℃、上ノズル(スリット幅:5mm、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全ノズルからの吹き出し風量200Nm/m(循環風量25Nm/minと外部から導入する空気量175Nm/min)の条件で定率蒸発を行った。
【0183】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度140℃、上ノズル(スリット幅:5mm、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全ノズルからの吹き出し風量120Nm/min(循環風量105Nm/minと外部から導入する空気量15Nm/min)の条件で減率蒸発を行った。
【0184】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は21重量%(残留NMP量は79重量%)、定率蒸発工程での蒸発NMP量は78重量%(残留NMP量は1重量%)、減率蒸発工程での蒸発NMP量は0.97重量%(残留NMP量は0.03重量%)であった。
【0185】
また、減率蒸発工程が終了したときの正極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
【0186】
また、実施例1に準じて、正極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0187】
[比較例2]
実施例10準じて、10μm厚の圧延銅箔集電体を走行スピード8m/分で走行させながら、集電体の片面に、上記塗料をダイコーターにより塗布した。
【0188】
続いて、以下の乾燥工程によって、負極スラリーの乾燥を行った。
【0189】
まず、予熱工程(1〜2)の炉内温度140℃、上ノズル(開口率5%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全吹き出し風量50Nm/min(循環風量30Nm/minと外部から導入する空気量20Nm/min)の条件で昇温を行った。
【0190】
続いて、定率蒸発工程(第3乾燥ゾーン〜第6乾燥ゾーン)の各ゾーンの炉内温度130℃、上ノズル(開口率5%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全ノズルからの吹き出し風量100Nm/m(循環風量10Nm/minと外部から導入する空気量90Nm/min)の条件で定率蒸発を行った。
【0191】
さらに、減率蒸発工程(第7乾燥ゾーンと第8乾燥ゾーン)の各ゾーンの炉内温度135℃、上ノズル(開口率5%、D1:25mm)及び下ノズル(スリット幅:5mm、D2:10mm)の全ノズルからの吹き出し風量100Nm/min(循環風量80Nm/minと外部から導入する空気量20Nm/min)の条件で減率蒸発を行った。
【0192】
この結果、乾燥炉に持込むNMP量(残留NMP量は100重量%)に対し、予熱工程での蒸発NMP量は10重量%(残留NMP量は90重量%)、定率蒸発工程での蒸発NMP量は89重量%(残留NMP量は1重量%)、減率蒸発工程での蒸発NMP量は0.97重量%(残留NMP量は0.03重量%)であった。
【0193】
また、減率蒸発工程が終了したときの正極電極層内に残留しているNMP含有量をガスクロマトグラフィーで分析したところ、0.03重量%であることを確認した。
また、実施例10に準じて、負極電極の表面を観察し、さらに、プレス後の電極活物質層の密着強度を測定した。
【0194】
表4は、実施例1〜8、17、18及び比較例1における密着強度及びすべての結着材の積分強度に対する、集電体近傍部での結着材の積分強度の割合を表している。表4から、本発明に係る電極製造装置を用いることで、すべての結着材の積分強度に対する集電体近傍部での結着材の積分強度の割合が30%以上を有し、また密着強度の高い電極を製造することができた。
【0195】
また、表5は実施例9〜16及び比較例2における密着強度及び電極層中央部における平均D/G値(Rb)に対する電極層表層近傍部における平均D/G値(Rs)の割合(Rs/Rb)を表している。表5から、本発明に係る電極製造装置を用いることで、Rs/Rbが2以下で、密着強度の高い電極を製造することができた。
【0196】
【表4】

【0197】
【表5】

【符号の説明】
【0198】
1 電極製造装置、
30 乾燥炉、
33 多孔板ノズル、
55 赤外線発熱体、
100、200 電極、
101、201 集電体、
102、202 塗布層、
103、203 電極層、
110、210 電極スラリー、
111、211 活物質、
112、212 結着材、
113、213 導電性付与剤、
114、214 溶媒、
A01 集電体近傍部、
A02 電極層表層近傍部、
A03 電極層中央部、
S04 予熱工程、
S05 定率蒸発工程、
S06 減率蒸発工程

【特許請求の範囲】
【請求項1】
集電体に電極層が重なる電極であって、
電極層の集電体が重なる側の領域は、前記集電体が重なる側と反対の表層側の領域よりも、前記電極層に含まれる結着材の成分濃度が高い電極。
【請求項2】
前記電極層の全体の厚さを1としたとき、前記電極層の集電体が重なる側から1/4までの領域である集電体近傍部に、すべての前記結着材のラマン分光法で測定した際の特定の波長帯に現れるピーク強度の積算値である積分強度のうち20〜40%が存在する請求項1に記載の電極。
【請求項3】
前記集電体近傍部は、前記電極層の集電体が重なる側と反対の表層側から1/4までの領域である電極層表層近傍部よりも、前記結着材の積分強度が高い請求項2に記載の電極。
【請求項4】
前記電極層の全体の厚さを1としたとき、電極層の空気と接している表層側から1/4までの領域である電極層表層近傍部に、前記表層側を基準として1/4から1までの領域である電極層中央部よりも、導電性付与剤の濃度が高い領域がある請求項1〜請求項3のいずれか1項に記載の電極。
【請求項5】
ラマン分光法で測定した炭素のGバンドに対するDバンドのピークの強度比である平均D/G値が、前記電極層表層近傍部にてRs、前記電極層中央部にてRbであるときに、2.0≧Rs/Rbの関係を満たす請求項4に記載の電極。
【請求項6】
活物質、結着材、導電性付与剤及び溶媒を含む電極スラリーを集電体に塗布することによって形成された塗布層を、乾燥炉の中において乾燥して、前記集電体に電極層が重なる電極を製造する電極製造方法であって、
電極スラリーを予熱する予熱工程と、
電極スラリーの乾燥速度が一定である定率蒸発工程と、
電極スラリーの乾燥速度が電極スラリーの含溶媒率の減少に依存して、徐々に減少する減率蒸発工程と、
を有する電極製造方法。
【請求項7】
前記予熱工程、前記定率蒸発工程及び減率蒸発工程における、各工程が終了したときの電極スラリーに残留している溶媒量がそれぞれ100〜90重量%、95〜1重量%、5〜0.01%の範囲にある請求項6に記載の電極製造方法。
【請求項8】
前記定率蒸発工程は、第1定率蒸発工程及び第2定率蒸発工程を有し、各工程が終了したときの電極スラリーに残留している溶媒量がそれぞれ95〜65重量%、65〜1重量%の範囲にある請求項7に記載の電極製造方法。
【請求項9】
前記減率蒸発工程が終了した後の前記電極スラリーに残留している溶媒量は0.1重量%以下である請求項6〜請求項8のいずれか1項に記載の電極製造方法。
【請求項10】
活物質、結着材、導電性付与剤及び溶媒を含む電極スラリーを集電体に塗布することによって形成された塗布層を、乾燥炉の中において乾燥して、前記集電体に電極層が重なる電極を製造する請求項6〜請求項9のいずれか1項に記載の電極製造方法に用いる電極製造装置であって、
前記電極スラリーの塗布層が形成された面を熱風によって加熱乾燥するための熱風の出口に多数の孔が開いた多孔板ノズルを有し、前記多孔板ノズルは開口率10%以上である電極製造装置。
【請求項11】
前記電極スラリーの塗布層が形成された面を加熱乾燥するための赤外線発熱体を有する請求項10に記載の電極製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−89573(P2013−89573A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−232173(P2011−232173)
【出願日】平成23年10月21日(2011.10.21)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】