説明

電気化学デバイス及び高分子材料

【課題】コントラスト保持率及び繰返し耐久性の高いエレクトロクロミック表示を行う電気化学デバイスとそれに用いる金属錯体を含む高分子材料を提供する。
【解決手段】対向電極間に、金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料を有する電気化学デバイスであって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする電気化学デバイス。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規な電気化学デバイスとそれに用いる高分子材料に関し、より詳しくはエレクトロクロミック表示を行う電気化学デバイス及びそれに用いる高分子材料に関するものである。
【背景技術】
【0002】
近年、パーソナルコンピューターの動作速度の向上、ネットワークインフラの普及、データストレージの大容量化と低価格化等に伴い、従来、紙等の印刷物で提供されたドキュメントや画像等の情報を、より簡便な電子情報として入手、電子情報を閲覧する機会が益々増大している。
【0003】
この様な電子情報の閲覧手段として、従来の液晶ディスプレイやCRT(ブラウン管)、また近年では、有機エレクトロルミネッセンスディスプレイ等の発光型ディスプレイが主として用いられているが、特に、電子情報がドキュメント情報の場合、比較的長時間にわたってこの閲覧手段を注視する必要があり、これらの行為は人間に優しい手段とは言い難く、一般に発光型ディスプレイの欠点として、フリッカーで目が疲労する、持ち運びに不便、読む姿勢が制限され、静止画面に視線を合わせる必要が生じる、長時間読むと消費電力が嵩む等の課題が知られている。
【0004】
これらの欠点を補う表示手段として、外光を利用し、像保持の為に電力を消費しない電力を消費しない、いわゆるメモリー性を有する反射型ディスプレイが知られているが、下記の理由で十分な性能を有しているとは言い難い。
【0005】
例えば、反射型液晶等の偏光板を用いる方式は、反射率が約40%と低く白表示に難があり、また構成部材の作製に用いる製法の多くは簡便とは言い難い。また、ポリマー分散型液晶は高い電圧を必要とし、また有機物同士の屈折率差を利用しているため、得られる画像のコントラストが十分でない。また、ポリマーネットワーク型液晶は電圧高いことと、メモリー性を向上させるために複雑なTFT回路が必要である等の課題を抱えている。また、電気泳動法による表示素子は、10V以上の高い電圧が必要となり、電気泳動性粒子凝集による耐久性に懸念がある。これらの方法で、カラー表示を行う方法として、カラーフィルターを用いる方法が知られている。原理的に、カラーフィルターの着色のため明るい白表示が得られない。
【0006】
また、低電圧で駆動可能な多色表示が可能な方式として、エレクトロクロミック表示素子(以下、EC方式と略す)やEC方式と金属または金属塩の溶解析出を利用するエレクトロデポジション方式(以下、ED方式と略す)の組み合わせなどの電気化学方式が知られている。これらの方式は簡易な素子構成で形成でき、3V以下の低電圧で駆動できるという利点がある。ED方式は、黒と白のコントラストや黒品質に優れる等の利点があり、様々な方法が開示されており、この様なエレクトロクロミック材料の一例として、ビスターピリジンと種々の金属を用いた高分子材料を用いたエレクトロクロミック素子が知られている(例えば、特許文献1参照。)。このような配位高分子材料は、表示素子の繰り返し耐久性が実用化レベルには到達していないという問題点があった。
【0007】
また、3つの金属原子と同時に相互作用することのできる配位子を用いた配位高分子材料も知られている(例えば、非特許文献1参照。)。しかしながら、該非特許文献1においては、電気化学デバイス、特にエレクトロクロミック表示素子としての利用は、全く想定されていない。
【特許文献1】特表2007−112957号公報
【非特許文献1】Langmuir、2007、12179−12184
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、上記課題に鑑みなされたものであり、その目的は、コントラスト保持率及び繰返し耐久性の高いエレクトロクロミック表示を行う電気化学デバイスとそれに用いる金属錯体を含む高分子材料を提供することにある。
【課題を解決するための手段】
【0009】
本発明の上記目的は、以下の構成により達成される。
【0010】
1.対向電極間に、金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料を有する電気化学デバイスであって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする電気化学デバイス。
【0011】
2.前記配位子の少なくとの1種は、分子内に−SH、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも1つの基を有することを特徴とする前記1に記載の電気化学デバイス。
【0012】
3.前記配位子の少なくとの1種は、金属と結合した際に負電荷を有することを特徴とする前記1または2に記載の電気化学デバイス。
【0013】
4.前記配位子の少なくとの1種は、構造中に金属錯体を有することを特徴とする前記1〜3のいずれか1項に記載の電気化学デバイス。
【0014】
5.前記配位子の少なくとの1種は、5員複素環単環を有することを特徴とする前記1〜4のいずれか1項に記載の電気化学デバイス。
【0015】
6.前記配位子の少なくとの1種は、下記一般式(1)で表される化合物であることを特徴とする前記1〜5のいずれか1項に記載の電気化学デバイス。
【0016】
【化1】

【0017】
〔式中、Aは窒素、酸素、硫黄、リンまたは炭素原子であり、環の構成要素の一部であって他の構成要素と一緒になって5員環または6員環を形成する。Wは置換基あるいは配位座を含む連結基を表し、pは1〜4の整数であって、pが2以上の場合、Wはそれぞれ異なっていても良い。Dは配位原子あるいは配位原子団を表し、LはAを含む環とDとの連結基を表し、mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。〕
7.金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料であって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする高分子材料。
【0018】
8.前記配位子の少なくとの1種は、分子内に−SH、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも1つの基を有することを特徴とする前記7に記載の高分子材料。
【0019】
9.前記配位子の少なくとの1種は、金属と結合した際に負電荷を有することを特徴とする前記7または8に記載の高分子材料。
【0020】
10.前記配位子の少なくとの1種は、構造中に金属錯体を有することを特徴とする前記7〜9のいずれか1項に記載の高分子材料。
【0021】
11.前記配位子の少なくとの1種は、5員複素環単環を有することを特徴とする前記7〜10のいずれか1項に記載の高分子材料。
【0022】
12.前記配位子の少なくとの1種は、下記一般式(1)で表される化合物であることを特徴とする前記7〜11のいずれか1項に記載の高分子材料。
【0023】
【化2】

【0024】
〔式中、Aは窒素、酸素、硫黄、リンまたは炭素原子であり、環の構成要素の一部であって他の構成要素と一緒になって5員環または6員環を形成する。Wは置換基あるいは配位座を含む連結基を表し、pは1〜4の整数であって、pが2以上の場合、Wはそれぞれ異なっていても良い。Dは配位原子あるいは配位原子団を表し、LはAを含む環とDとの連結基を表し、mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。〕
【発明の効果】
【0025】
本発明により、コントラスト保持率及び繰返し耐久性の高いエレクトロクロミック表示を行う電気化学デバイスとそれに用いる金属錯体を含む高分子材料を提供することができた。
【発明を実施するための最良の形態】
【0026】
以下、本発明を実施するための最良の形態について詳細に説明する。
【0027】
本発明者は、上記課題に鑑み鋭意検討を行った結果、対向電極間に、金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料を有する電気化学デバイスであって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする電気化学デバイスにより、繰り返し耐久性の高い電気化学デバイスを実現できることを見出し、本発明に至った。
【0028】
以下、本発明の詳細について説明する。
【0029】
本発明の電気化学デバイスとは、電子ペーパー装置や電界効果トランジスタ、基板部品配線、液晶表示装置など電流駆動あるいは電圧駆動を行う電気化学デバイスを表し、より具体的には、エレクトロクロミック型の電子ペーパー表示装置等の表示素子を示す。
【0030】
《高分子材料》
本発明の高分子材料は、少なくとも一種の金属原子と、少なくとも一種の2つ以上の金属原子と結合可能な配位子を含み、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする。
【0031】
本発明に係る金属原子は、各配位子と結合生成可能であれば、特に限定されないが、好ましくは周期表第1族から第14族に含まれる金属元素であって、また第4周期から第6周期上の金属元素であることが好ましく、コスト等の点から第4周期または第5周期の金属元素であることがより好ましい。これら金属元素の中でも、具体的にはMn、Fe、Co、Ni、Cu、Zn、Ru、Osであることが好ましく、より好ましくはMn、Fe、Co、Ruであって、更にはMn、Fe、Ruから選択されることがより好ましい。また金属原子の種類は一種類であっても二種類以上を用いても良く、多色表示のためには二種類以上の金属原子を用いることが好ましい。
【0032】
本発明に係る金属原子と結合可能な配位子は、2つ以上の金属原子と結合を生成することが可能である配位子であって、かつ配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする。このような配位子を用いた場合、配位子−金属−配位子−・・・−金属−配位子あるいは金属−配位子−金属−・・・−配位子−金属のように金属と配位子の結合生成により金属錯体化合物の高分子化が可能であり、本発明の高分子材料はこのような金属と配位子の組み合わせにより生成される金属錯体高分子材料を表す。
【0033】
本発明において配位座とは、1つの金属に対していくつの配位原子で結合するかを表し、例えば、トリス(2,2′−ビピリジン)ルテニウム錯体の場合、2,2′−ビピリジンの配位座は2座であり、ニッケルサレン錯体の場合、サレンの配位座は4座である。
【0034】
本発明における配位子は、配位座が2座以上であり、加えて、3つ以上の金属原子と結合可能な配位子Aを含むことを特徴とする。一般に、配位座が多いほど金属錯体の安定性は増すが、錯体分子の自由度が減少するため、4座以下の配位座であることが好ましい。
【0035】
本発明の高分子材料において、更に好ましい態様としては、一種の3座以上の配位座を有する配位子と少なくとも一種の前記配位子とは異なる構造を有する3座以上の配位子を含むことである。このように異なる構造を有する複数の配位子を組み合わせて用いることで、複数の金属種を用いた場合にも金属種ごとを選択的に結合させることが可能になり、エレクトロクロミックを利用した吸収スペクトル変化を効率的、選択的に行うことが可能である。また、一種の配位子に基板への吸着能を持たせることで、本発明の高分子材料を基板上へ固定化することも可能である。また、配位座が2つの配位子のみを用いた場合、高分子材料は二次元的な広がりを有するが、配位座が2つの配位子と3つの配位子を組み合わせて用いることで、3次元的な構造を導入することが可能となり、水系溶剤あるいは有機溶剤に対して合成した高分子材料の溶解性を調整することが可能である。
【0036】
本発明において、複数種の配位子を混合する場合、基板などへの固定化の面では少なくとも一種の配位子が吸着基を含むことが好ましく、高分子材料の溶解性を調整する目的では配位座を3つあるいは3つ以上有する配位子を含むことが好ましく、吸着基を有する配位子と配位座が3つ以上の配位子および2座配位子を組み合わせて用いることがより好ましい。
【0037】
本発明の高分子材料を形成する配位子において、配位原子および配位原子団は任意に選択することが可能である。代表的な配位原子としては窒素原子、酸素原子、硫黄原子、りん原子が挙げられ、配位原子団としてはピリジン環、キノリン環、ピラゾール環、トリアゾール環、ピラゾロン環、チアジゾール環、ベンゾイミダゾール環などの複素環、カルボキシル基、水酸基、アルコキシ基、メルカプト基、イミノ基、アミノ基、エーテル、スルフィド(チオエーテル)、ホスフィンなどが挙げられる。本発明の高分子材料を形成する配位子において、配位子は金属と結合した際に、中性であっても良いし、負電荷を有していても良いが、負電荷を有することがより好ましい。配位子が負電荷を有する場合、配位原子および配位原子団が負電荷を有しても良いし、配位原子および配位原子団を除いた構造中に負電荷を有していても良い。後者の場合、配位子の構造中にスルホン酸基、カルボキシル基、リン酸基を有することが好ましい。また金属との結合を強めるためには少なくとも一種の配位原子および配位原子団が負電荷を有することが好ましい。また更に本発明の高分子材料を形成する少なくとも一種の配位子は5員複素環単環を含むことが好ましい。また同様に本発明の高分子材料を形成する配位子において、少なくとも一種の配位子はピロール、インドール、イソインドール、ピラゾール、インダゾール、イミダゾール、トリアゾール、ベンゾトリアゾール、オキサゾール、ベンゾオキサゾール、チアゾール、ベンゾチアゾールのいずれかあるいは複数を配位原子団として含むことが好ましい。このような5員複素環を有する配位子を用いることで、高分子材料の安定性を向上させることが可能であり、またエレクトロクロミック素子に用いた場合には作動電圧を変化させることが可能となる。
【0038】
本発明の高分子材料を形成する配位子において、少なくとも一種の配位子は分子内に−SH、−COOH、−P−O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも一つの基を有することが好ましい。このような基は、吸着基として働き、前述のように基板上へ本発明の高分子材料を固定化することができる。また、本発明の高分子材料の溶解性を調整することも可能である。
【0039】
また、本発明の高分子材料は、種々の配位子と金属との組み合わせにより生じる電荷を中和するためにカウンターイオン(対イオン)を有していても良い。このようなカウンターイオンとしては、特に限定されないが、ハロゲンイオン、硝酸イオン、硫酸イオン、酢酸イオン、過塩素酸イオン、トルエンスルホン酸イオン、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、テトラフルオロホウ酸イオン、テトラフェニルホウ酸イオン、ヘキサフルオロりん酸イオン、チオシアン酸イオンなどのほか、(CFSO、(CSO、および(CSOなどのイミド塩類も好適に使用することができる。また、本発明の高分子材料においては、これらカウンターイオンを複数同時に用いることもでき、種々のカウンターイオンの調整によって高分子材料の水あるいは有機溶媒に対する溶解性を調整することができる。
【0040】
本発明の高分子材料を形成する配位子において、構造内に金属錯体を形成可能な配位子もしくは金属錯体を含有した配位子を混合して用いることも同様に好ましい。このような構造内に含まれる金属錯体の構造としては、具体的にはサレンなどの多座キレート錯体、ポルフィリン、フタロシアニンなどの環状錯体およびフェロセン、チタノセンなどの有機金属錯体などが挙げられ、より好ましくは有機金属錯体であって、フェロセンであることが更に好ましい。このような配位子を用いることで、本発明の高分子材料における電荷移動速度を調整することが可能であり、また電子源、正孔源として用いることもできるため好ましい。また更には本発明の高分子材料の耐熱性向上にも効果を示すため好ましい。
【0041】
本発明の高分子材料を形成する配位子の1つの好ましい態様は、下記一般式(1)で表される構造を有することである。
【0042】
【化3】

【0043】
式中、Aは窒素原子、酸素原子、硫黄原子、リン原子または炭素原子を表し、他の構成要素とともに5員環あるいは6員環を形成し、また金属原子と結合を生成する。この時形成される環は芳香族環であっても非芳香族環であっても良いが、好ましくは芳香族環であることであって、さらには複素芳香族環であるがより好ましい。
【0044】
Wは、置換基あるいは配位座を含む連結基を表す。置換基として具体的にはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、ブテニル基、オクテニル基等)、シクロアルケニル基(例えば、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基等)、アルキニル基(例えば、プロパルギル基、エチニル基、トリメチルシリルエチニル基等)、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、m−クロロフェニル基、o−ヘキサデカノイルアミノフェニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等)、複素環オキシ基(例えば、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基、ピリジルオキシ基、チアゾリルオキシ基、オキサゾリルオキシ基、イミダゾリルオキシ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、2−ナフチルオキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、1−ナフチルチオ基等)、複素環チオ基(例えば、ピリジルチオ基、チアゾリルチオ基、オキサゾリルチオ基、イミダゾリルチオ基、フリルチオ基、ピロリルチオ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基、モルフォリノスルホニル基、ピロリジノスルホニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、ホルミルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、3,4,5−トリ−n−オクチルオキシフェニルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基、モルフォリノカルボニル基、ピペラジノカルボニル基等)、アルカンスルフィニル基またはアリールスルフィニル基(例えば、メタンスルフィニル基、エタンスルフィニル基、ブタンスルフィニル基、シクロヘキサンスルフィニル基、2−エチルヘキサンスルフィニル基、ドデカンスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルカンスルホニル基またはアリールスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基、ブタンスルホニル基、シクロヘキサンスルホニル基、2−エチルヘキサンスルホニル基、ドデカンスルホニル基、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、N−メチルアニリノ基、ジフェニルアミノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、シリルオキシ基(例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基等)、アミノカルボニルオキシ基(例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基等)、アルコキシカルボニルオキシ基(例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基等)、アリールオキシカルボニルオキシ基(例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチル−メトキシカルボニルアミノ基等)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基等)、スルファモイルアミノ基(例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基等)、メルカプト基、アリールアゾ基(例えば、フェニルアゾ基、ナフチルアゾ基、p−クロロフェニルアゾ基等)、複素環アゾ基(例えば、ピリジルアゾ基、チアゾリルアゾ基、オキサゾリルアゾ基、イミダゾリルアゾ基、フリルアゾ基、ピロリルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基等)、イミノ基(例えば、N−スクシンイミド−1−イル基、N−フタルイミド−1−イル基等)、ホスフィノ基(例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基等)、ホスフィニル基(例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基等)、ホスフィニルオキシ基(例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基等)、ホスフィニルアミノ基(例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基等)、シリル基(例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基等)、シアノ基、ニトロ基、ヒドロキシル基、スルホ基、カルボキシル基等が挙げられる。pは1〜4の整数であって、pが2以上の場合、置換基あるいは配位座を含む連結基であるWは、それぞれ異なっていても良いし、同一であっても良い。
【0045】
Dは配位原子あるいは配位原子団を表し、代表的な配位原子としては窒素原子、酸素原子、硫黄原子、りん原子が挙げられ、配位原子団としてはピリジン環、キノリン環、ピラゾール環、トリアゾール環、ピラゾロン環、チアジゾール環、ベンゾイミダゾール環などの複素環、カルボキシル基、水酸基、アルコキシ基、メルカプト基、イミノ基、アミノ基、エーテル、スルフィド(チオエーテル)、ホスフィンなどが挙げられる。
【0046】
LはAを含む環とDの連結基を表し、連結基として働くものであれば自由に選択することができ、また任意の位置に置換基を有していても良いし、一部をヘテロ原子で置換されていても良い。連結基として好ましくは炭化水素連結基であり、より好ましくは、直鎖、分岐あるいは環状のアルキルレン基、アリーレン基であり、更に好ましくは直鎖のアルキルレン基であって、メチレン基であることが更に好ましい。
【0047】
mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。
【0048】
以下に、本発明の高分子材料の形成に用いられる配位子の具体例を例示するが、本発明はこれらに限定されない。
【0049】
はじめに、本発明に係る3つ以上の金属原子と結合可能な配位子Aの具体例である例示化合物(1)〜(12)を以下に示す。
【0050】
【化4】

【0051】
【化5】

【0052】
【化6】

【0053】
次いで、本発明に係る3つ以上の金属原子と結合可能な配位子Aと併用可能なその他の2つ以上の金属原子と結合可能な配位子の具体例である例示化合物(13)〜(69)を以下に示す。
【0054】
【化7】

【0055】
【化8】

【0056】
【化9】

【0057】
【化10】

【0058】
【化11】

【0059】
【化12】

【0060】
【化13】

【0061】
【化14】

【0062】
【化15】

【0063】
【化16】

【0064】
【化17】

【0065】
【化18】

【0066】
【化19】

【0067】
本発明に係る上記配位子は、Dalton Trans.,2003、2069−2079やChem.Lett.,1999、1129−1130、および鈴木カップリング、Stillカップリングなど公知の方法を用いて合成できる。
【0068】
また、本発明の高分子材料は、上記配位子および金属塩を溶媒中あるいは無溶媒下で混合することによって合成できる。具体的には、配位子と金属塩とを酢酸等の水系溶媒またはメタノール、エタノール、ジメチルホルムアミド等の有機溶媒中、室温あるいは加熱することで得られる。これら反応条件は、選択される配位子、金属塩および溶媒によって異なるが、当業者であれば容易に条件を想到できる。ポリマー形成後、得られた混合物を更に加熱してもよく、加熱によって溶媒を蒸発させ、粉体にしたり薄膜にしたりすることも可能である。このときの配位子、金属のモル比は、用いる配位子の種類によって任意に選択することが可能であるが、より好ましくは配位子:金属=1:1〜1:3(モル比)であり、より好ましくは1:1〜1:1.5、さらに好ましくは1:1〜1:1.2である。
【0069】
更には、本発明の高分子材料は、電解質中に含有されていても、電極表面上に固定化されていてもよい。電極表面上に固定化する方法は、本発明の高分子材料を形成する配位子に電極表面と化学吸着または物理吸着する基を導入する方法や単純に本発明の高分子材料を含有する溶液を塗布、乾燥して電極表面上に薄膜を形成する方法などが挙げられる。
【0070】
また、本発明の高分子材料は、本発明の電気化学デバイスに含有されている限り、その使用法、効能については限定されない。詳細については下記に説明するが、好ましくはエレクトロクロミック化合物、メディエーター化合物として用いられることが好ましく、より好ましくはメディエーター化合物として用いられることであって、メディエーター化合物としても対極反応物質として用いられることが最も好ましい。
【0071】
《電気化学デバイス》
次いで、本発明のエレクトロクロミック方式の電気化学デバイスの各構成要素について説明する。
【0072】
〔電気化学デバイスの基本的な構成〕
本発明の電気化学デバイスにおいては、表示部には、透明基板上に一つの対向電極が設けられている。表示部に近い対向電極の一つである電極1にはITO電極等の透明電極、他方の非表示側の電極2には導電性電極が設けられている。電極1と電極2とで構成される対向電極間には、電解質、電気化学的な酸化還元反応により可逆的に変色する化合物を含有する。対向電極間に正負両極性の電圧を印加することにより電気化学的な酸化還元反応により可逆的に変色する化合物の酸化・還元による着色・消色反応により、白及び各種着色状態を可逆的に切り替えることができる。
【0073】
〔基板〕
(表示側の透明基板)
本発明に用いられる透明基板とは、可視光に対する透過率が少なくとも50%以上、より好ましくは80%以上である基板である。このような透明基板としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート、)、ポリイミド、ポリメタクリル酸メチル、ポリスチレン、ポリプロピレン、ポリエチレン、ポリアミド、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリエーテルスルホン、シリコン樹脂、ポリアセタール樹脂、フッ素樹脂、セルロース誘導体、ポリオレフィンなどの高分子のフィルムや板状基板、ガラス基板などが好ましく用いられる。
【0074】
(非表示側の対向基板)
対向基板については、上記の表示側透明基板に用いられる透明基板に加え、金属基板、セラミック基板等の無機基板など不透明な基板を用いることもできる。
【0075】
〔電極構成〕
(表示側透明電極)
透明電極としては、透明で電気を通じるものであれば特に制限はない。例えば、Indium Tin Oxide(ITO:インジウム錫酸化物)、Indium Zinc Oxide(IZO:インジウム亜鉛酸化物)、フッ素ドープ酸化スズ(FTO)、酸化インジウム、酸化亜鉛、白金、金、銀、ロジウム、銅、クロム、炭素、アルミニウム、シリコン、アモルファスシリコン、BSO(Bismuth Silicon Oxide)等が挙げられる。
【0076】
また、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリパラフェニレン、ポリセレノフェニレン等、およびそれらの修飾化合物を単独あるいは混合して用いることができる。
【0077】
表面抵抗値としては、100Ω/□以下が好ましく、10Ω/□以下がより好ましい。
【0078】
透明電極の厚みは特に制限はないが、0.1〜20μmであるのが一般的である。
【0079】
(透明多孔質電極)
透明電極の一つとして、上記透明電極層の上にナノ多孔質化構造を有するナノ多孔質電極を設けることができる。このナノ多孔質電極は、電気化学デバイスを形成した際に実質的に透明で、エレクトロクロミック材料等の電気活性物質を担持することができる。
【0080】
本発明でいうナノ多孔質化構造とは、層中にナノメートルサイズの孔が無数に存在し、ナノ多孔質化構造内を電解質中に含まれるイオン種が移動可能な状態のことを言う。
【0081】
このようなナノ多孔質電極の形成方法としては、ナノ多孔質電極を構成する微粒子を含んだ分散物をインクジェット法、スクリーン印刷法、ブレード塗布法などで層状に形成した後に、所定の温度で加熱、乾燥、焼成することよって多孔質化する方法や、スパッタ法、CVD法、大気圧プラズマ法などで電極層を構成した後に、陽極酸化、光電気化学エッチングすることによってナノ多孔質化する方法などが挙げられる。また、ゾルゲル法や、Adv.Mater.2006,18,2980−2983に記載された方法でも、形成することができる。
【0082】
ナノ多孔質電極を構成する微粒子の主成分は、Cu、Al、Pt、Ag、Pd、Au等の金属やITO、SnO、TiO、ZnO等の金属酸化物やカーボンナノチューブ、グラッシーカーボン、ダイヤモンドライクカーボン、窒素含有カーボン等の炭素電極から選択することができ、好ましくは、ITO、SnO、TiO、ZnO等の金属酸化物から選択されることである。
【0083】
ナノ多孔質電極が透明性を有するためには、平均粒子径が5nm〜10μm程度の微粒子を用いることが好ましい。微粒子の形状は不定形、針状、球形など任意の形状のものを用いることができる。
【0084】
ナノ多孔質電極の膜厚は、0.1〜10μmの範囲であることが好ましく、より好ましくは0.25〜5μmの範囲である。
【0085】
(対向電極)
対向電極は、電気を通じるものであれば、特に制限されず用いることができる。
【0086】
前記透明電極と同じ材料に加え、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金、カーボン等、透明性を有しない材料でも好ましく用いることができる。
【0087】
(多孔質カーボン電極)
吸着担持可能な多孔質カーボン電極としては、黒鉛質、難黒鉛化炭素質、易黒鉛化炭素質、複合炭素体や、ホウ素、窒素、りん等を炭素にドープして焼成した炭素化合物、等が挙げられる。炭素粒子の形状としては、メソフェーズ小球体、繊維状黒鉛が挙げられる。メソフェーズ小球体はコールタールピッチなどを350〜500℃で焼成することで得られ、これら小球体をさらに分級して高温焼成で黒鉛化すると良好な多孔質炭素電極が得られる。また、ピッチ系、PAN系、および気相成長繊維から、繊維状黒鉛を得ることができる。
【0088】
(グリッド電極)
本発明に係る対向電極のうち少なくとも一方の電極として、グリッド電極(補助電極)を付帯させることができる。
【0089】
補助電極は、主となる電極部より電気抵抗が低い材料を用いることが好ましい。例えば、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金等を好ましく用いることができる。
【0090】
補助電極は、主となる電極部と基板との間と、主となる電極部の基板と反対側の表面とのいずれに設置することもできる。いずれにしても、補助電極が主となる電極部と電気的に接続していればよい。
【0091】
補助電極の配置パターンには、特に制限はない。直線状、メッシュ状、円形など、求められる性能に応じて適宜形成することが可能である。主となる電極部が複数の部分に分割されている場合には、分割された電極部同士を接続する形で設けてもよい。ただし、主となる電極部が表示側の基板に設けられた透明電極の場合、補助電極は、電気化学デバイスの視認性を阻害しない形状と頻度で設けることが求められる。
【0092】
補助電極を形成する方法としては、公知の方法を用いることができる。例えば、フォトリソグラフィ法でパターニングしたり、印刷法やインクジェット法、電解メッキや無電解メッキ、銀塩感光材料を用いて露光、現像処理したりしてパターン形成する方法でも良い。
【0093】
本発明において、補助電極パターンのライン幅やライン間隔は、任意の値で構わないが、導電性を高くするためにはライン幅を太くする必要がある。一方、透明電極に補助電極を付帯させる場合には、視認性の観点から、電気化学デバイス観察側から見た補助電極の面積被覆率は30%以下が好ましく、さらに好ましくは10%以下である。
【0094】
このように、透過率と導電性の点から、補助電極のライン幅は1μm以上、100μm以下が好ましく、ライン間隔は50μmから1000μmが好ましい。
【0095】
(電極の形成方法)
上記説明した透明電極、金属補助電極を形成する方法としては、公知の方法を用いることができる。例えば、基板上にスパッタリング法等でマスク蒸着するか、全面形成した後に、フォトリソグラフィ法でパターニングしてもよい。
【0096】
また、電解メッキや無電解メッキ、印刷法や、インクジェット法によっても電極形成が可能である。
【0097】
インクジェット方式を用いて基板上にモノマー重合能を有する触媒層を含む電極パターンを形成した後に、該触媒により重合されて重合後に導電性高分子層になりうるモノマー成分を付与して、モノマー成分を重合し、さらに、該導電性高分子層の上に銀等の金属メッキを行うことにより金属電極パターンを形成することもでき、フォトレジストやマスクパターンを使用することがないので、工程を大幅に簡略化できる。
【0098】
電極材料を塗布にて形成する場合は、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法、スクリーン印刷法等の公知の方法を用いることができる。
【0099】
インクジェット方式の中でも、下記の静電インクジェット方式は、高粘度の液体を高精度に連続的に印字することが可能であり、透明電極や金属補助電極の形成に好ましく用いられる。インクの粘度は、好ましくは30mPa・s以上であり、更に好ましくは100mPa・s以上である。
【0100】
〈静電インクジェット方式〉
本発明の電気化学デバイスにおいては、複合電極の透明電極及び金属補助電極の少なくとも1方が、帯電した液体を吐出する内部直径が30μm以下のノズルを有する液体吐出ヘッドと、前記ノズル内に溶液を供給する供給手段と、前記ノズル内の溶液に吐出電圧を印加する吐出電圧印加手段とを備えた液体吐出装置を用いて形成されることができる。
【0101】
さらに前記ノズル内の溶液が当該ノズル先端部から凸状に盛り上がった状態を形成する凸状メニスカス形成手段を設けた吐出装置を用いて形成することができる。
【0102】
また、前記凸状メニスカス形成手段を駆動する駆動電圧の印加及び吐出電圧印加手段による吐出電圧の印加を制御する動作制御手段を備え、この動作制御手段は、前記吐出電圧印加手段による吐出電圧の印加を行わせつつ液滴の吐出に際して前記凸状メニスカス形成手段の駆動電圧の印加を行わせる第一の吐出制御部を有する液体吐出装置を用いることもできる。
【0103】
また、前記凸状メニスカス形成手段の駆動及び吐出電圧印加手段による電圧印加を制御する動作制御手段を備え、この動作制御手段は、前記凸状メニスカス形成手段による溶液の盛り上げ動作と前記吐出電圧の印加とを同期させて行う第二の吐出制御部を有することを特徴とする液体吐出装置を用いること、前記動作制御手段は、前記溶液の盛り上げ動作及び吐出電圧の印加の後に前記ノズル先端部の液面を内側に引き込ませる動作制御を行う液面安定化制御部を有する液体吐出装置を用いることも好ましい形態である。
【0104】
この様な静電インクジェットを用いて電極パターンを作製することにより、オンデマンド性に優れ、廃棄材料が少なく、寸法精度に優れた電極を得ることができ有利である。
【0105】
〔TFTへの適用〕
本発明の高分子材料は、TFTに適用することができる。TFTは、液晶ディスプレイ等で用いられている公知の半導体製造技術で使用されている材料を適宜選択して用いることができ、さらに特開平10−125924号、同10−135481号、同10−190001号、特開2000−307172等に記載されている有機化合物から成る有機TFTを用いてもよい。
【0106】
画素ごとに形成されたTFTは、図示しない配線によって選択され、対応する透明画素電極を制御する。TFTは画素間のクロストークを防止するのに極めて有効である。TFTは例えば透明画素電極の一角を占めるように形成されるが、透明画素電極がTFTと積層方向で重なる構造であってもよい。TFTには、具体的には、ゲート線とデータ線が接続され、各ゲート線に各TFTのゲート電極が接続され、データ線には各TFTのソース・ドレインの一方が接続され、そのソース・ドレインの他方は透明画素電極に電気的に接続される。なお、TFT以外の駆動素子は液晶ディスプレイ等の平面型電気化学デバイスに用いられているマトリックス駆動回路で、透明基板上に形成できるものであれば他の材料でもよい。
【0107】
図1は、本発明の高分子材料が適用可能な電気化学デバイスであるTFTの一例を示すブロック図である。
【0108】
各画素に対応する透明画素電極12と、これに対応するTFT13とがマトリックス状に配されており、容量の対向電極側が共通電極となる。TFT13のゲート電極にはゲート線(走査線配線)140が接続され、TFT13のソース、ドレインの他方はデータ線(信号線配線)150に接続されている。TFT13のソース、ドレインの他方は透明画素電極12に接続される。ゲート線140はゲート線駆動回路120に接続され、データ線150はデータ線駆動回路100、110に接続されている。ゲート線駆動回路120とデータ線駆動回路110、110とは信号制御部130に接続されている。
【0109】
〔電解質〕
本発明の電気化学デバイスにおいては、対向電極間に、電解質を含有する。
【0110】
本発明でいう「電解質」とは、一般に、水などの溶媒に溶けて溶液がイオン伝導性を示す物質(以下、「狭義の電解質」という。)をいうが、本発明の説明においては、狭義の電解質に電解質、非電解質を問わず他の金属、化合物等を含有させた混合物を電解質(「広義の電解質」)という。
【0111】
(電解質溶媒)
電解質溶媒としては、一般に電気化学セルや電池に用いられ、本発明で用いられるエレクトロクロミック化合物を初め、電気化学的な酸化還元反応により可逆的に溶解析出する金属塩化合物、プロモーター等各種添加剤を溶解できる溶媒であればいずれも使用することができる。
【0112】
具体的には、無水酢酸、メタノール、エタノール、テトラヒドロフラン、プロピレンカーボネート、ニトロメタン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホアミド、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、γ−バレロラクトン、スルホラン、ジメトキシエタン、プロピオンニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、ジメチルアセトアミド、メチルピロリジノン、ジメチルスルホキシド、ジオキソラン、スルホラン、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸エチルジメチル、リン酸トリブチル、リン酸トリペンチルリン酸トリへキシル、リン酸トリヘプチル、リン酸トリオクチル、リン酸トリノニル、リン酸トリデシル、リン酸トリス(トリフフロロメチル)、リン酸トリス(ペンタフロロエチル)、リン酸トリフェニルポリエチレングリコール、及びポリエチレングリコール等が使用可能である。特に本発明に係る有機溶媒としては、電解質を形成した後、揮発を起こさず電解質に留まることができる沸点が120〜300℃の範囲にある有機溶媒であることが好ましく、例えば、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、γ−ブチルラクトン、テトラメチル尿素、スルホラン、ジメチルスルホキシド、1,3−ジメチル−2−イミダゾリジノン、2−(N−メチル)−2−ピロリジノン、ヘキサメチルホスホルトリアミド、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、N−メチルアセトアミド、N,N−ジメチルホルムアミド、N−メチルホルムアミド、ブチロニトリル、プロピオニトリル、アセチルアセトン、4−メチル−2−ペンタノン、無水酢酸、ジメトキシエタン、ジエトキシフラン、テトラヒドロフラン、エチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル、トリクレジルホスフェート、2−エチルヘキシルホスフェート、ジオクチルフタレート、ジオクチルセバケート等を挙げることができる。
【0113】
上記有機溶媒の中でも、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、γ−ブチルラクトン等のカルボン酸エステル系化合物を用いることが好ましい。
【0114】
さらに、常温溶融塩も溶媒として使用可能である。前記常温溶融塩とは、溶媒成分が含まれないイオン対のみからなる常温において溶融している(即ち、液状の)イオン対からなる塩であり、通常、融点が20℃以下であり、20℃を越える温度で液状であるイオン対からなる塩を示す。常温溶融塩はその1種を単独で使用することができ、また2種以上を混合しても使用することもできる。
【0115】
これら電解質用溶媒は、その1種を単独で使用しても良いし、また2種以上を混合して使用しても良い。
【0116】
〈一般式(S1)、(S2)で表される化合物〉
本発明の電気化学デバイスにおいては、電解質が、下記一般式(S1)または(S2)で表される化合物を含有することが好ましい。
【0117】
【化20】

【0118】
上記一般式(S1)において、Lは酸素原子またはアルキレン基を表し、Rs11〜Rs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。
【0119】
【化21】

【0120】
上記一般式(S2)において、Rs21、Rs22は、各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。
【0121】
はじめに、一般式(S1)で表される化合物の詳細について説明する。
【0122】
前記一般式(S1)において、Lは酸素原子またはアルキレン基を表し、Rs11〜Rs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表し、これらの置換基は更に任意の置換基で置換されていても良い。
【0123】
アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。
【0124】
以下、一般式(S1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。
【0125】
【化22】

【0126】
次いで、一般式(S2)で表される化合物の詳細について説明する。
【0127】
前記一般式(S2)において、Rs21、Rs22は各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。
【0128】
アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。
【0129】
以下、一般式(S2)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。
【0130】
【化23】

【0131】
上記例示した一般式(S1)及び一般式(S2)で表される化合物の中でも、特に、例示化合物(S1−1)、(S1−2)、(S2−3)が好ましい。
【0132】
さらに本発明で用いることのできる溶媒としては、J.A.Riddick,W.B.Bunger,T.K.Sakano,“Organic Solvents”,4th ed.,John Wiley & Sons(1986)、Y.Marcus,“Ion Solvation”,John Wiley & Sons(1985)、C.Reichardt,“Solvents and Solvent Effects in Chemistry”,2nd ed.,VCH(1988)、G.J.Janz,R.P.T.Tomkins,“Nonaqueous Electorlytes Handbook”,Vol.1,Academic Press(1972)に記載の化合物を挙げることができる。
【0133】
(支持電解質)
本発明の電気化学デバイスにおいて用いることができる支持電解質としては、電気化学の分野又は電池の分野で通常使用される塩類、酸類、アルカリ類が使用できる。
【0134】
塩類としては、特に制限はなく、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩;4級アンモニウム塩;環状4級アンモニウム塩;4級ホスホニウム塩などが使用できる。
【0135】
塩類の具体例としては、ハロゲンイオン、SCN、ClO、BF、CFSO、(CFSO、(CSO、PF、AsF、CHCOO、CH(C)SO、および(CSOから選ばれる対アニオンを有するLi塩、Na塩、あるいはK塩が挙げられる。
【0136】
また、ハロゲンイオン、SCN、ClO、BF、CFSO、(CFSO、(CSO、PF、AsF、CHCOO、CH(C)SO、および(CSOから選ばれる対アニオンを有する4級アンモニウム塩、具体的には、(CHNBF、(CNBF、(n−CNBF、(CNBr、(CNClO、(n−CNClO、CH(CNBF、(CH(CNBF、(CHNSOCF、(CNSOCF、(n−CNSOCF
更には、
【0137】
【化24】

【0138】
等が挙げられる。
【0139】
また、ハロゲンイオン、SCN、ClO、BF、CFSO、(CFSO、(CSO、PF、AsF、CHCOO、CH(C)SO、および(CSOから選ばれる対アニオンを有するホスホニウム塩、具体的には、(CHPBF、(CPBF、(CPBF、(CPBF等が挙げられる。また、これらの混合物も好適に用いることができる。
【0140】
本発明の支持電解質としては環状4級アンモニウム塩が好ましく、特に4級スピロアンモニウム塩が好ましい。また対アニオンとしてはClO、BF、CFSO、(CSO、PFが好ましく、特にBFが好ましい。
【0141】
電解質塩の使用量は任意であるが、一般的には、電解質塩は溶媒中に上限としては20mol/L以下、好ましくは10mol/L以下、さらに好ましくは5mol/L以下存在していることが望ましく、下限としては通常0.01mol/L以上、好ましくは0.05mol/L以上、さらに好ましくは0.1mol/L以上存在していることが望ましい。
【0142】
固体電解質の場合には、電子伝導性やイオン伝導性を示す以下の化合物を、電解質中に含むことができる。
【0143】
パーフルオロスルホン酸を含むフッ化ビニル系高分子、ポリチオフェン、ポリアニリン、ポリピロール、トリフェニルアミン類、ポリビニルカルバゾール類、ポリメチルフェニルシラン類、CuS、AgS、CuSe、AgCrSeR等のカルコゲニド、CaF、PbF、SrF、LaF、TlSn、CeF等の含F化合物、LiSO、LiSiO、LiPO等のLi塩、ZrO、CaO、Cd、HfO、Y、Nb、WO、Bi、AgBr、AgI、CuCl、CuBr、CuBr、CuI、LiI、LiBr、LiCl、LiAlCl、LiAlF、AgSBr、CNHAg、RbCu16Cl13、RbCuCl10、LiN、LiNI、LiNBr等の化合物が挙げられる。
【0144】
(イオン性液体)
本発明でいうイオン液体とは、常温溶融塩とも言われ、融点が100℃以下の塩である。この塩は同数のカチオンとアニオンから構成されており、分子構造によって融点が室温以下の物質も数多く存在し、これらは溶媒をまったく加えなくても室温で液体状態である。イオン性液体は、強い静電的な相互作用をもっているため蒸気圧がほとんどないことが大きな特徴であり、高温でも蒸発がなく揮発しない。
【0145】
本発明に用いるイオン性液体としては、一般的に研究・報告されている物質ならばどのようなものでも構わない。特に有機のイオン性液体は、室温を含む幅広い温度領域で液体を示す分子構造がある。
【0146】
本発明で好適に用いることができるイオン性液体は、式Qで表され、20〜100℃、好ましくは20〜80℃、より好ましくは20〜60℃、さらに好ましくは20〜40℃、特に20℃で液体として存在する塩のことを指し、粘度(25℃)は、常温で融体である限り特に制限されないが、好ましくは1〜200mPa・sである。さらに、式中Q+で表されるカチオン成分はオニウムカチオンが好ましく、さらに好ましくはアンモニウムカチオン、イミダゾリウムカチオン、ピリジニウムカチオン、スルホニウムカチオン及びホスホニウムカチオンである。
【0147】
上述のイオン性液体について具体的に詳述すると、上式中のQとしては、R、R、R、R=CR、R=CR[ここで、RからRは、互いに独立して、水素、飽和または不飽和の炭素数1〜12のアルキル基、炭素数3〜8のシクロアルキル基、炭素数6〜10のアリール基または炭素数7〜11のアラルキル基、R−X−(R−Y−)−(式中、Rは炭素数4以下のアルキル基、Rは炭素数4以下のアルキレン基、XおよびYは酸素原子または硫黄原子、nは0〜10の整数を示す)を表し、これらの基は置換基を有していても良い]から成る群から選択されるアンモニウムおよび/またはホスホニウムイオン、R=CR−R−RC=N、R−R−S、R=CR−R−RC=P(ここで、R、RおよびRは、前記で定義したものと同じであり、そしてRは、炭素数1〜6のアルキレンまたはフェニレン基を表し、これらの基は置換基を有していても良い)から成る群から選択される第四級アンモニウムおよび/またはホスホニウムイオン、さらには下記一般式で表される窒素、硫黄および燐原子から選ばれる原子を1、2または3個含む窒素、硫黄および燐原子含有複素環から誘導されるアンモニウムイオン、スルホニウムイオンまたはホスホニウムイオンなどを挙げることができる。
【0148】
【化25】

【0149】
式中RおよびRはこの上で定義した通りであり、Zは、N、N=C、S、PあるいはP=Cを含む4〜10員環を構成しうる原子を指し、この構成する原子には置換基を有していても良い。
【0150】
上述の中でRからRの具体的な例はとしては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの直鎖又は分枝を有するアルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルなどのシクロアルキル基、無置換あるいはハロゲン原子(例えば、F、Cl、Br、I)、水酸基、低級アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等の各基)、カルボキシル基、アセチル基、プロパノイル基、チオール基、低級アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ等の各基)、アミノ基、低級アルキルアミノ基、ジ低級アルキルアミノ基などの置換基を1〜3個有するフェニル、ナフチル、トルイル、キシリル等のアリール基、ベンジルなどのアラルキル基などを挙げることができる。また、Rの具体的な例としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル基などのアルキル基などが挙げられ、Rとしてはメチレン、エチレン、プロピレン、ブチレン基などのアルキレン基などを挙げることができる。さらにRの具体的な例はとしては、メチレン、エチレン、プロピレン、ブチレンなどのアルキレン基、フェニレンなどのフェニレン基などを挙げることができる。
【0151】
また、式中のAで表される対アニオンとしては、ヘキサフルオロ燐酸塩、ヘキサフルオロアンチモン酸塩、ヘキサフルオロヒ酸塩、フルオロスルホン酸塩、テトラフルオロホウ酸塩、硝酸塩、アルキルスルホン酸塩、フッ化アルキルスルホン酸塩または水素硫酸塩を表す。
【0152】
さらに、WO95/18456号、特開平8−259543号、特開2001−243995号、電気化学第65巻11号923頁(1997年)、EP−718288号、J.Electrochem.Soc.,Vol.143,No.10,3099(1996)、Inorg.Chem.1996,35,1168〜1178等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩なども本発明に応じては適時選択して用いることができる。
【0153】
(固体電解質)
本発明においては、電解液に種々の材料を添加した固体電解質を用いることもできる。
【0154】
一般に固体電解質としてマトリクスポリマーを添加した真性固体電解質やとは化学架橋剤やゲル化剤を添加したゲル電解質などが知られている。
【0155】
このようなマトリクスポリマーとして具体的には、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリアリールエーテルスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリフェニレンスルホキシド、ポリパラフェニレン、ポリアリーレン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール、ポリイミド、ポリアミド、ポリアミドイミド、ポリメチルメタクリレート、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリカーボネート、ポリアクリロニトリルなどが挙げられ、これらを主鎖構造として有している樹脂であっても分岐構造として有している樹脂があってもよい。
【0156】
高分子固体電解質層はマトリックスポリマーとの他に支持電解質を溶解して形成され、その電解質としては、リチウム塩、例えばLiCl、LiBr、LiI、LiBF、LiClO、LiPF、LiCFSO等や、カリウム塩、例えば、KCl、KI、KBr等や、ナトリウム塩、例えば、NaCl、NaI、NaBr、或いはテトラアルキルアンモニウム塩、例えば、ほうフッ化テトラエチルアンモニウム、過塩素酸テトラエチルアンモニウム、ほうフッ化テトラブチルアンモニウム、過塩素酸テトラブチルアンモニウム、テトラブチルアンモニウムハライド等を挙げることができる。上述の4級アンモニウム塩のアルキル鎖長は同じであっても異なっていてもよく、必要に応じて1種のみでもよいし、2種以上組み合わせて用いてもよい。
【0157】
高分子固体電解質層を形成する際には、可塑剤を加えることもできる。好ましい可塑剤としては、マトリクスポリマーが親水性の場合には、水、エチルアルコール、イソプロピルアルコールおよびこれらの混合物等が好ましく、疎水性の場合にはプロピレンカーボネート、ジメチルカーボネート、エチレンカーボネート、γ−ブチロラクトン、アセトニトリル、スルホラン、ジメトキシエタン、エチルアルコール、イソプロピルアルコール、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、n−メチルピロリドンおよびこれらの混合物が好ましい。さらに架橋剤として、重合性ポリアルキレンオキサイドを添加、架橋させることで、ポリマー固体電解質の膜強度を向上させ、また、室温でのイオン伝導性を向上させることができるため、有効である。
【0158】
また、支持電解質としてゲル状電解質を用いることもできる。電解質が非水系の場合、特開平11−185836号公報の段落番号〔0057〕〜〔0059〕に記載のオイルゲル化剤などを用いことができる。
【0159】
本発明において、電解質には、上記電解質溶媒及び支持電解質以外に、下記の様な化合物を添加しても良い。
【0160】
(金属塩化合物)
本発明における金属塩化合物とは、対向電極上の少なくとも1方の電極上で、該対向電極の駆動操作で、溶解・析出を行うことができる金属種を含む塩であれば、如何なる化合物であってもよい。好ましい金属種は、銀、ビスマス、銅、ニッケル、鉄、クロム、亜鉛等であり、特に好ましいのは銀、ビスマスである。
【0161】
〈銀塩化合物〉
本発明に係る銀塩化合物とは、銀または、銀を化学構造中に含む化合物、例えば、酸化銀、硫化銀、金属銀、銀コロイド粒子、ハロゲン化銀、銀錯体化合物、銀イオン等の化合物の総称であり、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、アニオン性、カチオン性等の荷電状態種は、特に問わない。
【0162】
本発明の電気化学デバイスにおいては、ヨウ化銀、塩化銀、臭化銀、酸化銀、硫化銀、クエン酸銀、酢酸銀、ベヘン酸銀、p−トルエンスルホン酸銀、トリフルオロメタンスルホン酸銀、メルカプト類との銀塩、イミノジ酢酸類との銀錯体、等の公知の銀塩化合物を用いることができる。これらの中でハロゲンやカルボン酸や銀との配位性を有する窒素原子を有しない化合物を銀塩として用いるのが好ましく、例えば、p−トルエンスルホン酸銀が好ましい。
【0163】
本発明に係る電解質に含まれる金属イオン濃度は、0.2モル/kg≦[Metal]≦2.0モル/kgが好ましい。金属イオン濃度が0.2モル/kg以上であれば、十分な濃度の銀溶液となり所望の駆動速度を得ることができ、2モル/kg以下であれば析出を防止し、低温保存時での電解質液の安定性が向上する。
【0164】
〈ハロゲンイオン、金属イオン濃度比〉
本発明の電気化学デバイスにおいては、電解質に含まれるハロゲンイオンまたはハロゲン原子のモル濃度を[X](モル/kg)とし、前記電解質に含まれる銀または銀を化学構造中に含む化合物の銀の総モル濃度を[Metal](モル/kg)としたとき、下式(1)で規定する条件を満たすことが好ましい。
【0165】
式(1):0≦[X]/[Metal]≦0.1
本発明でいうハロゲン原子とは、ヨウ素原子、塩素原子、臭素原子、フッ素原子のことをいう。[X]/[Metal]が0.1よりも大きい場合は、金属の酸化還元反応時に、X→Xが生じ、Xは析出した金属と容易にクロス酸化して析出した金属を溶解させ、メモリー性を低下させる要因の1つになるので、ハロゲン原子のモル濃度は金属銀のモル濃度に対してできるだけ低い方が好ましい。本発明においては、0≦[X]/[Metal]≦0.001がより好ましい。ハロゲンイオンを添加する場合、ハロゲン種については、メモリー性向上の観点から、各ハロゲン種モル濃度総和が[I]<[Br]<[Cl]<[F]であることが好ましい。
【0166】
〈銀塩溶剤〉
本発明においては、金属塩(特に銀塩)の溶解析出を促進するために、銀塩溶剤を用いることができる。銀塩溶剤とは、電解質中で銀を可溶化できる化合物であればいかなる化合物であってもよい。例えば、銀と配位結合を生じさせたり、銀と弱い供給結合を生じさせたりするような、銀と相互作用を示す化学構造種を含む化合物等と共存させて、銀または銀を含む化合物を可溶化物に変換する手段を用いるのが一般的である。前記化学種として、ハロゲン原子、メルカプト基、カルボキシル基、イミノ基等が知られているが、本発明においては、チオエーテル基を含有する化合物及びメルカプトアゾール類は、銀溶剤として有用に作用しかつ、共存化合物への影響が少なく溶媒への溶解度が高い特徴がある。
【0167】
〈一般式(G−1)または一般式(G−2)で表される化合物〉
本発明の電気化学デバイスにおいては、電解質が、下記一般式(G−1)または一般式(G−2)で表される化合物の少なくとも1種を含有することが好ましい。一般式(G−1)及び(G−2)で表される化合物は、本発明において銀の溶解析出を生じさせるため、電解質中での銀の可溶化を促進する化合物である。
【0168】
一般式(G−1)
Rg11−S−Rg12
上記一般式(G−1)において、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。
【0169】
【化26】

【0170】
上記一般式(G−2)において、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。
【0171】
前記一般式(G−1)において、Rg11、Rg12は各々置換または無置換の炭化水素基を表すが、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。
【0172】
炭化水素基に置換可能な基としては、例えば、アミノ基、グアニジノ基、4級アンモニウム基、ヒドロキシル基、ハロゲン化合物、カルボン酸基、カルボキシレート基、アミド基、スルフィン酸基、スルホン酸基、スルフェート基、ホスホン酸基、ホスフェート基、ニトロ基、シアノ基等を挙げることができる。
【0173】
以下、本発明において適用可能な一般式(G−1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。
【0174】
G1−1:CHSCHCHOH
G1−2:HOCHCHSCHCHOH
G1−3:HOCHCHSCHCHSCHCHOH
G1−4:HOCHCHSCHCHSCHCHSCHCHOH
G1−5:HOCHCHSCHCHOCHCHOCHCHSCHCHOH
G1−6:HOCHCHOCHCHSCHCHSCHCHOCHCHOH
G1−7:HCSCHCHCOOH
G1−8:HOOCCHSCHCOOH
G1−9:HOOCCHCHSCHCHCOOH
G1−10:HOOCCHSCHCHSCHCOOH
G1−11:HOOCCHSCHCHSCHCHSCHCHSCHCOOH
G1−12:HOOCCHCHSCHCHSCHCH(OH)CHSCHCHSCHCHCOOH
G1−13:HOOCCHCHSCHCHSCHCH(OH)CH(OH)CHSCHCHSCHCHCOOH
G1−14:HCSCHCHCHNH
G1−15:HNCHCHSCHCHNH
G1−16:HNCHCHSCHCHSCHCHNH
G1−17:HCSCHCHCH(NH)COOH
G1−18:HNCHCHOCHCHSCHCHSCHCHOCHCHNH
G1−19:HNCHCHSCHCHOCHCHOCHCHSCHCHNH
G1−20:HNCHCHSCHCHSCHCHSCHCHSCHCHNH
G1−21:HOOC(NH)CHCHCHSCHCHSCHCHCH(NH)COOH
G1−22:HOOC(NH)CHCHSCHCHOCHCHOCHCHSCHCH(NH)COOH
G1−23:HOOC(NH)CHCHOCHCHSCHCHSCHCHOCHCH(NH)COOH
G1−24:HN(O=)CCHSCHCHOCHCHOCHCHSCHC(=O)NH
G1−25:HN(O=)CCHSCHCHSCHC(=O)NH
G1−26:HNHN(O=)CCHSCHCHSCHC(=O)NHNH
G1−27:HC(O=)NHCHCHSCHCHSCHCHNHC(=O)CH
G1−28:HNOSCHCHSCHCHSCHCHSONH
G1−29:NaOSCHCHCHSCHCHSCHCHCHSONa
G1−30:HCSONHCHCHSCHCHSCHCHNHSOCH
G1−31:HN(NH)CSCHCHSC(NH)NH・2HBr
G1−32:HN(NH)CSCHCHOCHCHOCHCHSC(NH)NH・2HCl
G1−33:HN(NH)CNHCHCHSCHCHSCHCHNHC(NH)NH・2HBr
G1−34:〔(CHNCHCHSCHCHSCHCHN(CH2+・2Cl
【0175】
【化27】

【0176】
【化28】

【0177】
上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に、例示化合物G1−2が好ましい。
【0178】
次いで、本発明に係る一般式(G2)で表される化合物について説明する。
【0179】
前記一般式(G2)において、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。
【0180】
一般式(G2)において、Mで表される金属原子としては、例えば、Li、Na、K、Mg、Ca、Zn、Ag等が挙げられ、4級アンモニウムとしては、例えば、NH、N(CH、N(C、N(CH1225、N(CH1633、N(CHCH等が挙げられる。
【0181】
一般式(G2)のZを構成成分とする含窒素複素環としては、例えば、テトラゾール環、トリアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、インドール環、オキサゾール環、ベンゾオキサゾール環、ベンズイミダゾール環、ベンゾチアゾール環、ベンゾセレナゾール環、ナフトオキサゾール環等が挙げられる。
【0182】
一般式(G2)において、Rg21で表される置換基としては、特に制限は無いが、例えば下記の様な置換基が挙げられる。
【0183】
ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)アルキル基(例えば、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、オクチル、ドデシル、ヒドロキシエチル、メトキシエチル、トリフルオロメチル、ベンジル等)、アリール基(例えば、フェニル、ナフチル等)、アルキルカルボンアミド基(例えば、アセチルアミノ、プロピオニルアミノ、ブチロイルアミノ等)、アリールカルボンアミド基(例えば、ベンゾイルアミノ等)、アルキルスルホンアミド基(例えば、メタンスルホニルアミノ基、エタンスルホニルアミノ基等)、アリールスルホンアミド基(例えば、ベンゼンスルホニルアミノ基、トルエンスルホニルアミノ基等)、アリールオキシ基(例えば、フェノキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ、ブチルチオ等)、アリールチオ基(例えば、フェニルチオ基、トリルチオ基等)、アルキルカルバモイル基(例えばメチルカルバモイル、ジメチルカルバモイル、エチルカルバモイル、ジエチルカルバモイル、ジブチルカルバモイル、ピペリジルカルバモイル、モルホリルカルバモイル等)、アリールカルバモイル基(例えば、フェニルカルバモイル、メチルフェニルカルバモイル、エチルフェニルカルバモイル、ベンジルフェニルカルバモイル等)、アルキルスルファモイル基(例えば、メチルスルファモイル、ジメチルスルファモイル、エチルスルファモイル、ジエチルスルファモイル、ジブチルスルファモイル、ピペリジルスルファモイル、モルホリルスルファモイル等)、アリールスルファモイル基(例えば、フェニルスルファモイル、メチルフェニルスルファモイル、エチルフェニルスルファモイル、ベンジルフェニルスルファモイル等)、アルキルスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル、4−クロロフェニルスルホニル、p−トルエンスルホニル等)アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル等)、アリールオキシカルボニル基(例えばフェノキシカルボニル等)、アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチロイル等)、アリールカルボニル基(例えば、ベンゾイル基、アルキルベンゾイル基等)、アシルオキシ基(例えば、アセチルオキシ、プロピオニルオキシ、ブチロイルオキシ等)、複素環基(例えば、オキサゾール環、チアゾール環、トリアゾール環、セレナゾール環、テトラゾール環、オキサジアゾール環、チアジアゾール環、チアジン環、トリアジン環、ベンズオキサゾール環、ベンズチアゾール環、インドレニン環、ベンズセレナゾール環、ナフトチアゾール環、トリアザインドリジン環、ジアザインドリジン環、テトラアザインドリジン環基等)が挙げられる。これらの置換基はさらに置換基を有するものを含む。
【0184】
次に、一般式(G2)で表される化合物の好ましい具体例を示すが、本発明はこれらの化合物に限定されるものではない。
【0185】
【化29】

【0186】
【化30】

【0187】
上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に、例示化合物G2−12、G2−18が好ましい。
【0188】
(電解質添加の増粘剤)
本発明の電気化学デバイスにおいては、電解質に増粘剤を使用することができ、例えば、ゼラチン、アラビアゴム、ポリ(ビニルアルコール)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、セルロースアセテート、セルロースアセテートブチレート、ポリ(ビニルピロリドン)、ポリ(アルキレングリコール)、カゼイン、デンプン、ポリ(アクリル酸)、ポリ(メチルメタクリル酸)、ポリ(塩化ビニル)、ポリ(メタクリル酸)、コポリ(スチレン−無水マレイン酸)、コポリ(スチレン−アクリロニトリル)、コポリ(スチレン−ブタジエン)、ポリ(ビニルアセタール)類(例えば、ポリ(ビニルホルマール)及びポリ(ビニルブチラール))、ポリ(エステル)類、ポリ(ウレタン)類、フェノキシ樹脂、ポリ(塩化ビニリデン)、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(ビニルアセテート)、セルロースエステル類、ポリ(アミド)類、ポリビニルブチラール、ブチラール樹脂等が挙げられる。
【0189】
これらの増粘剤は2種以上を併用して用いてもよい。また、特開昭64−13546号公報の71〜75頁に記載の化合物を挙げることができる。これらの中で好ましく用いられる化合物は、各種添加剤との相溶性と白色粒子の分散安定性向上の観点から、ポリビニルアルコール類、ポリビニルピロリドン類、ヒドロキシプロピルセルロース類、ポリアルキレングリコール類である。
【0190】
〔エレクトロクロミック化合物〕
本発明に係る電解質液には、エレクトロクロミック特性を有するエレクトロクロミック化合物を使用することができる。
【0191】
本発明に係るエレクトロクロミック化合物(EC化合物)としては、電気化学的な酸化反応及び還元反応の少なくとも一方により発色又は消色する作用を示す限り特に制限はなく、目的に応じて適宜選択することができる。EC化合物としては、酸化タングステン、酸化イリジウム、酸化ニッケル、酸化コバルト、酸化バナジウム、酸化モリブデン、酸化チタン、酸化インジウム、酸化クロム、酸化マンガン、プルシアンブルー、窒化インジウム、窒化錫、窒化塩化ジルコニウム等の無機化合物に加え、有機金属錯体、導電性高分子化合物及び有機色素が知られている。
【0192】
エレクトロクロミック特性を示す有機金属錯体としては、例えば、金属−ビピリジル錯体、金属フェナントロリン錯体、金属−フタロシアニン錯体、希土類ジフタロシアニン錯体、フェロセン系色素などが挙げられる。
【0193】
エレクトロクロミック特性を示す導電性高分子化合物としては、例えば、ポリピロール、ポリチオフェン、ポリイソチアナフテン、ポリアニリン、ポリフェニレンジアミン、ポリベンジジン、ポリアミノフェノール、ポリビニルカルバゾール、ポリカルバゾール及びこれらの誘導体などが挙げられる。
【0194】
また、例えば、特開2007−112957号に記載されているような、ビスターピリジン誘導体と金属イオンから成る高分子材料もエレクトロクロミック特性を示す。
【0195】
エレクトロクロミック特性を示す有機色素としては、ビオロゲン等ピリジニウム系化合物、フェノチアジン等アジン系色素、スチリル系色素、アントラキノン系色素、ピラゾリン系色素、フルオラン系色素、ドナー/アクセプター型化合物類(例えば、テトラシアノキノジメタン、テトラチアフルバレン)等が挙げられる。その他、酸化還元指示薬、pH指示薬として知られている化合物を用いることもできる。
【0196】
(色調によるEC化合物の分類)
本発明に係るEC化合物は、色調変化の点で分類すると、下記3つのクラスに分けられる。
【0197】
クラス1:酸化還元によりある特定の色から別の色に変化するEC化合物。
【0198】
クラス2:酸化状態で実質無色であり、還元状態である特定の着色状態を示すEC化合物。
【0199】
クラス3:還元状態で実質無色であり、酸化状態である特定の着色状態を示すEC化合物。
【0200】
本発明の電気化学デバイスにおいては、目的及び用途により上記クラス1からクラス3のEC化合物を適宜選択することができる。
【0201】
〈クラス1のEC化合物〉
クラス1のEC化合物は、酸化還元によりある特定の色から別の色に変化するEC化合物であり、その取り得る酸化状態において、二色以上の表示が可能な化合物である。
【0202】
クラス1に分類される化合物としては、例えば、Vは酸化状態から還元状態へ変化することで橙色から緑色に変化し、同様にRhは黄色から暗緑色に変化する。
【0203】
有機金属錯体の多くはクラス1に分類され、ルテニウム(II)ビピリジン錯体、例えばトリス(5,5′−ジカルボキシルエチル−2,2′−ビピリジン)ルテニウム錯体は+2〜−4価の間で、順にオレンジ色から、紫、青、緑青色、褐色、赤錆色、赤へと変化する。希土類ジフタロシアニン類の多くも、このようなマルチカラー特性を示す。例えばルテチウムジフタロシアニンの場合、酸化に従い順次、紫色から青、緑、赤橙色へと変化する。
【0204】
また、導電性ポリマーもその多くは、クラス1に分類される。例えば、ポリチオフェンは酸化状態から還元状態へ変化することで青から赤へと変化し、ポリピロールは褐色から黄色へと変化する。また、ポリアニリン等では、マルチカラー特性を示し酸化状態の紺色から順に青色、緑色、淡黄色へと変化する。
【0205】
クラス1に分類されるEC化合物は、単一の化合物で、多色表示が可能であると言うメリットを有するが、反面実質無色と言える状態を作れないと言う欠点を有する。
【0206】
〈クラス2のEC化合物〉
クラス2のEC化合物は、酸化状態で無色乃至は極淡色であり、還元状態である特定の着色状態を示す化合物である。
【0207】
クラス2に分類される無機化合物としては、下記化合物が挙げられ、各々還元状態でカッコ内に示した色を示す。WO(青)、MnO(青)、Nb(青)、TiO(青)等。
【0208】
クラス2に分類される有機金属錯体としては、例えば、トリス(バソフェナントロリン)鉄(II)錯体が挙げられ、還元状態で赤色を示す。
【0209】
クラス2に分類される有機色素としては、特開昭62−71934号、特開2006−71765号等に記載されている化合物、例えば、テレフタル酸ジメチル(赤)、4,4′−ビフェニルカルボン酸ジエチル(黄色)、1,4−ジアセチルベンゼン(シアン)、あるいは特開平1−230026号、特表2000−504764号等に記載されているテトラゾリウム塩化合物等が挙げられる。
【0210】
クラス2に分類される色素として、最も代表的な化合物はビオロゲン等ピリジニウム系化合物で有る。ビオロゲン系化合物は表示が鮮明であること、置換基を変えることなどにより色のバリエーションを持たせることが可能であることなどの長所を有しているため、有機色素の中では最も盛んに研究されている。発色は、還元で生じた有機ラジカルに基く。
【0211】
ビオロゲン等ピリジニウム系化合物としては、例えば、特表2000−506629号を初めとして下記特許に記載されている化合物が挙げられる。
【0212】
特開平5−70455号、特開平5−170738号、特開2000−235198号、特開2001−114769号、特開2001−172293号、特開2001−181292号、特開2001−181293号、特表2001−510590号、特開2004−101729号、特開2006−154683号、特表2006−519222号、特開2007−31708号、2007−171781号、2007−219271号、2007−219272号、特開2007−279659号、特開2007−279570号、特開2007−279571号、特開2007−279572号等。
【0213】
以下に、本発明に用いることができるビオロゲン等のピリジニウム化合物を例示するが、これらに限定されるものでは無い。
【0214】
【化31】

【0215】
【化32】

【0216】
〈クラス3のEC化合物〉
クラス3のEC化合物は、還元状態で無色乃至は極淡色であり、酸化状態である特定の着色状態を示す化合物である。
【0217】
クラス3に分類される無機化合物としては、例えば、酸化イリジウム(暗青色)、プルシアンブルー(青)等が挙げられる(各々酸化状態でカッコ内に示した色を呈する)。
【0218】
クラス3に分類される導電性ポリマーとしては、例は少ないが、例えば、特開平6−263846号に記載のフェニルエーテル系化合物が挙げられる。
【0219】
クラス3に分類される色素としては多数の色素が知られているが、スチリル系色素、フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系色素、イミダゾール、オキサゾール、チアゾール等のアゾール系色素等が好ましい。
【0220】
以下に、本発明に用いることができるスチリル系色素、及びアジン系色素、アゾール系色素を例示するが、これらに限定されるものでは無い。
【0221】
【化33】

【0222】
【化34】

【0223】
本発明の好ましい態様においては、前記EC色素と共に電気化学的な酸化還元反応により可逆的に溶解析出する金属塩を併用し、黒表示、白表示及び黒以外の着色表示の3色以上の多色表示を行う。この場合、該金属塩が還元されて黒表示を行う為、EC色素としては酸化により発色するクラス3のEC化合物が好ましく、特に、発色の多様性、低駆動電圧、メモリー性等の点でアゾール系色素が好ましい。
【0224】
〔一般式(L)で表される化合物〕
本発明において、最も好ましい色素は、下記一般式(L)で表される化合物である。
【0225】
以下、本発明に係る前記一般式(L)で表されるエレクトロクロミック化合物について説明する。
【0226】
【化35】

【0227】
上記一般式(L)において、Rlは置換もしくは無置換のアリール基を表し、Rl、Rlは各々水素原子または置換基を表す。Xは>N−Rl、酸素原子または硫黄原子を表し、Rlは水素原子、または置換基を表す。
【0228】
Rlが置換基を有するアリール基を表す場合、置換基としては特に制限は無く、例えば以下のような置換基が挙げられる。
【0229】
アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基等)、シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基等)、アルケニル基、シクロアルケニル基、アルキニル基(例えば、プロパルギル基等)、グリシジル基、アクリレート基、メタクリレート基、芳香族基(例えば、フェニル基、ナフチル基、アントラセニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スリホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、エタンスルホンアミド基、ブタンスルホンアミド基、ヘキサンスルホンアミド基、シクロヘキサンスルホンアミド基、ベンゼンスルホンアミド基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、フェニルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、ウレタン基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、フェニルウレイド基、2−ピリジルウレイド基等)、アシル基(例えば、アセチル基、プロピオニル基、ブタノイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基、ピリジノイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、メチルウレイド基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、フェニルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、アニリノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、沃素原子等)、シアノ基、ニトロ基、スルホ基、カルボキシル基、ヒドロキシル基、ホスホノ基(例えば、ホスホノエチル基、ホスホノプロピル基、ホスホノオキシエチル基)等を挙げることができる。また、これらの基はさらにこれらの基で置換されていてもよい。
【0230】
Rlとしては、置換もしくは無置換のフェニル基が好ましく、更に好ましくは置換もしくは無置換の2−ヒドロキシフェニル基または4−ヒドロキシフェニル基である。
【0231】
R1、Rlで表される置換基としては特に制限は無く、前記Rlのアリール基上への置換基として例示した置換基等が挙げられる。好ましくはRl、Rlは置換基を有しても良い、アルキル基、シクロアルキル基、芳香族基、複素環基である。Rl、Rlは互いに連結して、環構造を形成しても良いRl、Rlの組み合わせとしては、双方共に置換基を有しても良いフェニル基、複素環基である場合、若しくは何れか一方が置換基を有しても良いフェニル基、複素環基であり、他方が置換基を有しても良いアルキル基の組み合わせである。
【0232】
Xとして好ましくは>N−Rlである。Rlとして好ましくは、水素原子、アルキル基、芳香族基、複素環基、アシル基であり、より好ましくは水素原子、炭素数1〜10のアルキル基、炭素数5〜10のアリール基、アシル基である。
【0233】
本発明の電気化学デバイスにおいては、上記一般式(L)で表される化合物が、電極表面と化学吸着または物理吸着する吸着性基を有していることが好ましい。本発明でいう化学吸着とは、電極表面との化学結合による比較的強い吸着状態であり、本発明でいう物理吸着とは、電極表面と吸着物質との間に働くファンデルワールス力による比較的弱い吸着状態である。
【0234】
本発明において、吸着性基としては化学吸着性の基である方が好ましく、化学吸着する吸着性基としては、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)が好ましい。
【0235】
一般式(L)で表されるアゾール色素の中でも、特に下記一般式(L2)で表されるイミダゾール系色素が特に好ましい。
【0236】
【化36】

【0237】
上記一般式(L2)において、Rl21、Rl22は脂肪族基、脂肪族オキシ基、アシルアミノ基、カルバモイル基、アシル基、スルホンアミド基、スルファモイル基を表し、R123は芳香族基または芳香族複素環基を表し、Rl24は水素原子、脂肪族基、芳香族基、芳香族複素環基を表し、RL25は水素原子、脂肪族基、芳香族基、アシル基を表す。
【0238】
これらRl21からRl25で表される基は、更に任意の置換基で置換されていても良い。ただし、Rl21からRl25で表される基の少なくとも1つは、その部分構造として−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)を有する。
【0239】
一般式(L2)において、Rl21、Rl22で表される基としては、アルキル基(特に分岐アルキル基)、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基が好ましい。Rl23としては置換若しくは無置換のフェニル基、5員もしくは6員環複素環基(例えばチエニル基、フリル基、ピロリル基、ピリジル基等)が好ましい。Rl24としては置換若しくは無置換の、フェニル基、5員もしくは6員環複素環基、アルキル基が好ましい。Rl25としては、特に、水素原子またはアリール基が好ましい。
【0240】
また、一般式(L2)で表される化合物を電極上に固定する際、これらRl21〜Rl25で示される基の少なくともひとつに、部分構造として、−P=O(OH)、−Si(OR)(Rは、アルキル基を表す)を有することが好ましく、特に、Rl23若しくはRl24で示される基の部分構造として−Si(OR)(Rは、アルキル基を表す)を有することが好ましい。
【0241】
以下、一般式(L2)で表されるEC色素の具体的化合物例、及び一般式(L2)には該当しないが、一般式(L)に含まれるEC色素の具体例を示すが、本発明はこれら例示する化合物にのみ限定されるものではない。
【0242】
【化37】

【0243】
【化38】

【0244】
【化39】

【0245】
【化40】

【0246】
【化41】

【0247】
【化42】

【0248】
【化43】

【0249】
【化44】

【0250】
【化45】

【0251】
【化46】

【0252】
【化47】

【0253】
これらエレクトロクロミック化合物は、電極、特に閲覧側(表示側)の電極に固定化させることが好ましい。閲覧側電極に固定化されることにより、閲覧濃度の向上を得ることができる。
【0254】
〔プロモーター〕
本発明の電気化学デバイスにおいては、電気化学的な酸化還元反応により可逆的に変色する化合物の電気化学反応を促進するために、酸化還元されうる補助化合物(以下、プロモーターと記す)を添加することが好ましい。プロモーターは酸化還元反応の結果として、可視領域(400〜700nm)の光学濃度が変化しないものでもよいし、変化するもの、即ち前記電気化学的な酸化還元反応により可逆的に変色する化合物であってもよく、電極上に固定化されていてもよく、電解質液中に添加されていてもよい。これらプロモーターは例えば、対極反応物質としての利用あるいは、酸化還元メディエーターとしての利用が考えられる。
【0255】
例えば、表示電極側で電気化学的な酸化還元反応により可逆的に変色する化合物を酸化(あるいは還元)発色させる場合、対向電極側でプロモーターの還元(あるいは酸化)反応を利用することによって、低い駆動電圧で高い発色濃度を得ることが可能となる。このようにプロモーターを対極反応物質として利用する場合、電気化学的な酸化還元反応により可逆的に変色する化合物とは逆の酸化還元活性を有するプロモーターを、対向電極上に固定化して用いることが好ましい。プロモーターを対極物質として用いる場合、プロモーターは酸化還元反応の結果として可視領域(400〜700nm)の光学濃度が変化しないものが好ましい。ただし、本発明の好ましい態様において記載したように、電気化学デバイス中に白色散乱物を用いて、プロモーターによる発色を遮蔽するような態様の場合、可視領域(400〜700nm)の光学濃度が変化するプロモーター、即ち電気化学的な酸化還元反応により可逆的に変色する化合物を用いてもよい。このような構成の態様は、プロモーターの選択が容易となり好ましい。また別の態様として、表示電極側の電気化学的な酸化還元反応により可逆的に変色する化合物と同色の発色を示すプロモーターを用いることは、好ましい態様の一つである。
【0256】
一方、酸化還元メディエーターは有機電解合成の分野等で一般に用いられている材料である。有機化合物はそれぞれ固有の酸化電位に加えて、電解法や電解条件にも依存する酸化過電圧を有しており、陽極電位がこれらを合せた酸化電位より高いときに、実際上酸化反応が起こる。陽極電位に実験上の限界があることから、直接法で全ての基質を酸化することは不可能である。高い酸化電位を有する基質を酸化する場合、基質から陽極への電子移動は起こらない。この反応系に低電位で陽極に対して電子移動(酸化)が起こるようなメディエーターを共存させると、まずはメディエーターが酸化され、酸化されたメディエーターによって基質が酸化されて生成物が得られる。この反応系の利点は、基質の酸化電位よりも低い陽極電位で基質を酸化することが可能であることと、酸化されたメディエーターは、基質を酸化してもとのメディエーターに戻るため、理論的には触媒量として作用することである。また低電位での酸化が可能となるため、基質や生成物の分解等も抑えられる。
【0257】
本発明において、例えば前記基質として酸化発色する電気化学的な酸化還元反応により可逆的に変色する化合物を用いる場合、触媒量の酸化メディエーターを共存させることにより、低い駆動電圧で電気化学デバイスを駆動することが可能となり、電気化学デバイスの耐久性が高まる。また表示の切り替え速度の向上、高い発色効率が得られる等の利点がある。同様に、還元メディエーターと、還元発色する電気化学的な酸化還元反応により可逆的に変色する化合物の組み合わせでも、上記効果が得られる。
【0258】
本発明の電気化学デバイスにおいては、有機電解合成の分野で示されているように、単一のメディエーターを用いてもよいし、複数のメディエーターを組み合わせて用いてもよい。本発明においてプロモーターをメディエーターとして用いる場合、電気化学的な酸化還元反応により可逆的に変色する化合物を表示電極上に固定化し、その近傍にプロモーターを局在化させて用いることが好ましい。
【0259】
本発明においては、プロモーターを対極反応物質として用いてもよく、またメディエーターとして用いてもよい。また両者の目的で、複数のプロモーターを同時に組み合わせて用いてもよい。
【0260】
プロモーターとしては、特に制限はなく、目的に応じて適宜選択することができる。特に対極反応物質として利用する場合には、公知の電気化学的な酸化還元反応により可逆的に変色する化合物を利用することが可能である。また、酸化還元メディエーターとして利用する場合は、電気化学的な酸化還元反応により可逆的に変色する化合物の特性に合わせ、有機合成化学協会誌第43巻第6号(「電気エネルギーを利用する有機合成」特集号)(1985)等に記載されている公知のメディエーターを適宜選択して用いることができる。
【0261】
本発明に用いることができる好ましいプロモーターとしては、例えば、以下のような化合物が挙げられる。
【0262】
1)TEMPO(2,2,6,6−テトラメチルピペリジニル−N−オキシル)等に代表されるN−オキシル誘導体、N−ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等、N−O結合を有する化合物、
2)ガルビノキシル等、0−位に嵩高い置換基を導入したアリロキシ遊離基を有する化合物、
3)フェロセン等のメタロセン誘導体、
4)ベンジル(ジフェニルエタンジオン)誘導体、
5)テトラゾリウム塩/ホルマザン誘導体、
6)フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系化合物、
7)ビオロゲン等ピリジニウム化合物、
その他、ベンゾキノン誘導体、ベルダジル等ヒドラジル遊離基化合物、チアジル遊離基化合物、ヒドラゾン誘導体、フェニレンジアミン誘導体、トリアリルアミン誘導体、テトラチアフルバレン誘導体、テトラシアノキノジメタン誘導体、チアントレン誘導体等もプロモーターとして用いることができる。
【0263】
本発明の電気化学デバイスにおいては、上記1)から7)の範疇のプロモーターが好ましく、特に1)が好ましい。
【0264】
以下、1)の範疇の化合物について詳細に説明する。
【0265】
N−オキシル(ニトロキシドラジカルとも呼ばれる)とは、ヒドロキシルアミンの酸素−水素結合がラジカル的に開裂して生じた酸素中心ラジカルである。ニトロキシドラジカルは、下記スキームに示すように2つの可逆的な酸化還元対を有することが知られている。ニトロキシドラジカルは1電子酸化によりオキソアンモニウムカチオンとなり、これが還元されてラジカルを再生する。またニトロキシドラジカルは1電子還元によりアミノキシアニオンとなり、これが酸化されてラジカルを再生する。従って、ニトロキシドラジカルはp型の対極反応物質、若しくはn型対極反応物質として機能することができる。またオキソアンモニウムカチオンは高い酸化能を有しており、ロイコ色素等の酸化が可能である為、メディエーターとして機能し得る。
【0266】
【化48】

【0267】
N−オキシル誘導体は、電解質液中に含有されていても、電極表面上に固定化されていてもよい。電極表面上に固定化する方法は、N−オキシル誘導体に電極表面と化学吸着または物理吸着する基を導入する方法やN−オキシル誘導体をポリマー化して電極表面上に薄膜を形成する方法などが挙げられる。尚、N−オキシル誘導体はN−オキシルラジカルの状態で添加しても良く、またN−ヒドロキシ化合物の状態、更にはオキソアンモニウムカチオンの状態で添加しても良い。
【0268】
N−オキシル誘導体としては、TEMPO(2,2,6,6−テトラメチルピペリジニル−N−オキシル)をはじめとして、各種置換基を置換した誘導体が市販されている。また、公知の文献に従って、ポリマーを含め、各種誘導体を容易に合成することができる。
【0269】
一般に、ニトロキシドラジカルのα位炭素に水素が置換している場合、容易にヒドロキシアミンとニトロンへ不均化してしまうことが知られている。このため、TEMPOのN−オキシル基α位の4つのメチル基は、安定ラジカルとして存在する上での必須の構造と言えるが、逆にこれら4つのメチル基の立体障害によって、反応性が落ちる場合がある。これら活性低下を引き起こさない点で、アザアダマンタンN−オキシル誘導体、或いはアザビシクロN−オキシル誘導体が好ましい。
【0270】
次に、N−ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等について説明する。下記スキームに示すように、N−ヒドロキシフタルイミド(NHPI)の電極酸化により生じたフタルイミドN−オキシル(PINO)は、2級アルコールを酸化してケトンを生成する。即ち、NHPIが酸化メディエーターとして機能することが報告されている(Chem.Commun.,1983,479.)。この例から分かるように、NHPI/PINOの酸化還元対は、本発明の電気化学デバイスにおいても、対極反応物質或いはメディエーターとして機能することが理解されよう。またNHPI同様、ヒドロキサム酸誘導体、トリヒドロキシイミノシアヌル酸(THICA)も、プロモーターとして用いることができる。
【0271】
これらの化合物を用いて、本発明の電気化学デバイスを作製する場合、N−OHの状態で添加することが好ましい。N−OHの状態で電気化学デバイスを作製した後、電気化学デバイスを駆動させて酸化をすることでラジカルが生成する。
【0272】
【化49】

【0273】
上記1)の範疇で示されるプロモーターとしては、下記一般式(M1)で表すことができ、下記一般式(M2)〜(M6)で表されるプロモーターが好ましい。特に、一般式(M6)で表される多環式N−オキシル誘導体が好ましい。尚、一般式(M1)〜(M5)で表されるプロモーターは各種市販されており、容易に入手することができる。また公知の文献に従って、各種誘導体を容易に合成することができる。一般式(M6)で示されるプロモーターは、J.Am.Chem.Soc.,128,8412(2006)及びTetrahedron Letters 49 (2008) 48−52を参考として合成することができる。
【0274】
また、これらをポリマー化したプロモーターは、例えば、特開2004−227946号公報、同2004−228008号公報、同2006−73240号公報、同2007−35375号公報、同2007−70384号公報、同2007−184227号公報、同2007−298713号公報等を参考にして合成することができる。
【0275】
はじめに、一般式(M1)で表される化合物について説明する。
【0276】
【化50】

【0277】
上記一般式(M1)において、Rm11及びRm12は各々独立に置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、複素環基若しくは>C=O、>C=S、>C=N−Rm13を介して窒素原子と結合する基を表す。Rm13は水素原子、若しくは置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基または複素環基を表す。また、Rm11及びRm12は互いに連結して、環状構造を形成しても良い。
【0278】
脂肪族炭化水素基には、鎖状及び環状のものが包含され、鎖状のものには直鎖状のもの及び分岐状のものが包含される。このような脂肪族炭化水素基には、メチル、エチル、ビニル、プロピル、イソプロピル、プロペニル、ブチル、iso−ブチル、tert−ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、iso−ヘキシル、シクロヘキシル、シクロヘキセニル、オクチル、iso−オクチル、シクロオクチル、2,3−ジメチル−2−ブチル等の各基が挙げられる。
【0279】
芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられ、複素環基としては、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等が挙げられる。
【0280】
これら置換基は更に置換基を有していても良い。それらの置換基には、特に制限は無く例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、ブテニル基、オクテニル基等)、シクロアルケニル基(例えば、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基等)、アルキニル基(例えば、プロパルギル基、エチニル基、トリメチルシリルエチニル基等)、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、m−クロロフェニル基、o−ヘキサデカノイルアミノフェニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等)、複素環オキシ基(例えば、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基、ピリジルオキシ基、チアゾリルオキシ基、オキサゾリルオキシ基、イミダゾリルオキシ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、2−ナフチルオキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、1−ナフチルチオ基等)、複素環チオ基(例えば、ピリジルチオ基、チアゾリルチオ基、オキサゾリルチオ基、イミダゾリルチオ基、フリルチオ基、ピロリルチオ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基、モルフォリノスルホニル基、ピロリジノスルホニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、ホルミルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、3,4,5−トリ−n−オクチルオキシフェニルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基、モルフォリノカルボニル基、ピペラジノカルボニル基等)、アルカンスルフィニル基またはアリールスルフィニル基(例えば、メタンスルフィニル基、エタンスルフィニル基、ブタンスルフィニル基、シクロヘキサンスルフィニル基、2−エチルヘキサンスルフィニル基、ドデカンスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルカンスルホニル基またはアリールスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基、ブタンスルホニル基、シクロヘキサンスルホニル基、2−エチルヘキサンスルホニル基、ドデカンスルホニル基、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、N−メチルアニリノ基、ジフェニルアミノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、シリルオキシ基(例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基等)、アミノカルボニルオキシ基(例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基等)、アルコキシカルボニルオキシ基(例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基等)、アリールオキシカルボニルオキシ基(例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチル−メトキシカルボニルアミノ基等)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基等)、スルファモイルアミノ基(例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基等)、メルカプト基、アリールアゾ基(例えば、フェニルアゾ基、ナフチルアゾ基、p−クロロフェニルアゾ基等)、複素環アゾ基(例えば、ピリジルアゾ基、チアゾリルアゾ基、オキサゾリルアゾ基、イミダゾリルアゾ基、フリルアゾ基、ピロリルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基等)、イミノ基(例えば、N−スクシンイミド−1−イル基、N−フタルイミド−1−イル基等)、ホスフィノ基(例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基等)、ホスフィニル基(例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基等)、ホスフィニルオキシ基(例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基等)、ホスフィニルアミノ基(例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基等)、シリル基(例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基等)、シアノ基、ニトロ基、ヒドロキシル基、スルホ基、カルボキシル基等が挙げられる。
【0281】
一般式(M1)で表される化合物は、これら置換基で連結された二量体、三量体等の多量体であっても良く、また重合体で有ってもよい。
【0282】
次いで、一般式(M2)で表される化合物について説明する。
【0283】
【化51】

【0284】
上記一般式(M2)において、Rm21、Rm22、Rm23、Rm24は、各々独立に水素原子若しくは置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、前記一般式(M1)におけるそれぞれと同義である。
【0285】
は環状構造を形成するのに必要な原子群を表し、5員環若しくは6員環を形成するのが好ましい。Zは更に置換基を有していても良く、それらの置換基としては、前記一般式(M1)で例示したのと同様の置換基が挙げられる。また、Rm21〜Rm24及びZを構成する原子は互いに連結して、環状構造を形成しても良く、例えば、窒素原子と共にアザノルボルネン構造、アザアダマンタン構造等の多環式構造を取っても良い。
【0286】
一般式(M2)で表される化合物の環構造としては、ピペリジン環、若しくはピロリジン環、アザアダマンタン環が好ましい。
【0287】
次いで、一般式(M3)で表される化合物について説明する。
【0288】
【化52】

【0289】
本発明においては、本発明に係るN−オキシル誘導体が、一般式(M3)で表される化合物であることが好ましい態様の1つである。
【0290】
上記一般式(M3)において、Rm31は直接、若しくは酸素原子、窒素原子、硫黄原子を介してカルボニル炭素原子に置換する、置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表し、Rm32は置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、一般式(M1)におけるそれぞれと同義である。また、Rm31及びRm32は互いに連結して、環状構造を形成してもよい。
【0291】
一般式(M3)において、Rm32は芳香族炭化水素基が好ましく、特に置換基を有しても良いフェニル基が好ましい。フェニル基上の置換基としては、シアノ基、アルコキシカルボニル基、トリフルオロメチル基等の電子吸引性基が好ましい。Rm31としては、カルボニル炭素原子に直接結合したフェニル基若しくは脂肪族炭化水素基が好ましく、特に、分岐アルキル基及びシクロアルキル基が好ましい。なお、一般式(M3)で表される化合物はN−OHの状態で添加し、電気化学デバイスを作製するのが好ましい。
【0292】
次いで、一般式(M4)で表される化合物について説明する。
【0293】
【化53】

【0294】
本発明においては、本発明に係るN−オキシル誘導体が、上記一般式(M4)で表される化合物であることが好ましい態様の1つである。
【0295】
上記一般式(M4)において、Zは環状構造を形成するのに必要な原子群を表し、5員環若しくは6員環を形成するのが好ましい。Zは更に置換基を有していても良く、それらの置換基としては、一般式(M1)で例示した置換基が挙げられる。また、Zは縮合環で有っても良い。なお、一般式(M4)で表される化合物はN−OHの状態で添加し、電気化学デバイスを作製するのが好ましい。
【0296】
次いで、一般式(M5)で表される化合物について説明する。
【0297】
【化54】

【0298】
本発明においては、本発明に係るN−オキシル誘導体が、前記一般式(M5)で表される化合物であることが好ましい態様の1つである。
【0299】
上記一般式(M5)において、Rm51〜Rm55は各々独立に置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、一般式(M1)におけるそれぞれと同義である。
【0300】
一般式(M5)において、Rm51は芳香族炭化水素基が好ましく、特に置換基を有しても良いフェニル基が好ましい。フェニル基上の置換基としてはシアノ基、アルコキシカルボニル基、トリフルオロメチル基等の電子吸引性基が好ましい。Rm52〜Rm55としては、炭素数1〜6のアルキル基が好ましく、メチル基が特に好ましい。
【0301】
次いで、一般式(M6)で表される化合物について説明する。
【0302】
【化55】

【0303】
上記一般式(M6)において、Rm61及びRm62は各々独立に水素原子若しくは置換基を有しても良い脂肪族炭化水素基を表す。Rm61及びRm62としては、水素原子若しくは、炭素数4以下の直鎖アルキル基が好ましく、Rm61及びRm62の少なくとも一方が水素原子であることが好ましい。
【0304】
、Z及びZは、各々環状構造を形成するのに必要な原子群(例えば、炭素、窒素、酸素、イオウ等)を表し、各々5員環若しくは6員環を形成するのが好ましい。Z、Z及びZは更に置換基を有していても良い。
【0305】
nは0または1を表すが、n=0の時、一般式(M6)はビシクロ化合物を表し、n=1の場合は、トリシクロ化合物を表す。
【0306】
一般式(M6)で表される化合物としては、n=1が好ましく、特に、アザアダマンタン誘導体が好ましい。
【0307】
以下に、本発明で用いることのできるプロモーターの具体例を示すが、これらに限定されるものでは無い。
【0308】
【化56】

【0309】
【化57】

【0310】
【化58】

【0311】
【化59】

【0312】
【化60】

【0313】
【化61】

【0314】
〔多孔質白色散乱層〕
本発明においては、表示コントラスト及び白表示反射率をより高める観点から多孔質白色散乱層を有することができる。
【0315】
本発明に適用可能な多孔質白色散乱層は、電解質溶媒に実質的に溶解しない水系高分子と白色顔料との水混和物を塗布乾燥して形成することができる。
【0316】
本発明でいう電解質溶媒に実質的に溶解しないとは、−20℃から120℃の温度において、電解質溶媒1kgあたりの溶解量が0g以上、10g以下である状態と定義し、重量測定法、液体クロマトグラムやガスクロマトグラムによる成分定量法等の公知の方法により溶解量を求めることができる。
【0317】
本発明において、電解質溶媒に実質的に溶解しない水系高分子としては、水溶性高分子、水系溶媒に分散した高分子を挙げることができる。水溶性化合物としては、ゼラチン、ゼラチン誘導体等の蛋白質またはセルロース誘導体、澱粉、アラビアゴム、デキストラン、プルラン、カラギーナン等の多糖類のような天然化合物や、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、アクリルアミド重合体やそれらの誘導体等の合成高分子化合物が挙げられる。ゼラチン誘導体としては、アセチル化ゼラチン、フタル化ゼラチン、ポリビニルアルコール誘導体としては、末端アルキル基変性ポリビニルアルコール、末端メルカプト基変性ポリビニルアルコール、セルロース誘導体としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等が挙げられる。更に、リサーチ・ディスクロージャー及び特開昭64−13546号の(71)頁〜(75)頁に記載されたもの、また、米国特許第4,960,681号、特開昭62−245260号等に記載の高吸水性ポリマー、すなわち−COOMまたは−SOM(Mは水素原子またはアルカリ金属)を有するビニルモノマーの単独重合体またはこのビニルモノマー同士もしくは他のビニルモノマー(例えばメタクリル酸ナトリウム、メタクリル酸アンモニウム、アクリル酸カリウム等)との共重合体も使用される。これらのバインダーは2種以上組み合わせて用いることもできる。
【0318】
本発明においては、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン系化合物を好ましく用いることができる。
【0319】
水系溶媒に分散した高分子としては、天然ゴムラテックス、スチレンブタジエンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、イソプレンゴム等のラテックス類、ポリイソシアネート系、エポキシ系、アクリル系、シリコン系、ポリウレタン系、尿素系、フェノール系、ホルムアルデヒド系、エポキシ−ポリアミド系、メラミン系、アルキド系樹脂、ビニル系樹脂等を水系溶媒に分散した熱硬化性樹脂を挙げることができる。これらの高分子のうち、特開平10−76621号に記載の水系ポリウレタン樹脂を用いることが好ましい。
【0320】
本発明の水系高分子の平均分子量は、重量平均で10,000〜2,000,000の範囲が好ましく、より好ましくは30,000〜500,000の範囲である。
【0321】
本発明で適用可能な白色顔料としては、例えば、二酸化チタン(アナターゼ型あるいはルチル型)、硫酸バリウム、炭酸カルシウム、酸化アルミニウム、酸化亜鉛、酸化マグネシウムおよび水酸化亜鉛、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、アルカリ土類金属塩、タルク、カオリン、ゼオライト、酸性白土、ガラス、有機化合物としてポリエチレン、ポリスチレン、アクリル樹脂、アイオノマー、エチレン−酢酸ビニル共重合樹脂、ベンゾグアナミン樹脂、尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂、ポリアミド樹脂などが単体または複合混合で、または粒子中に屈折率を変化させるボイドを有する状態で使用されてもよい。
【0322】
本発明では、上記白色粒子の中でも、二酸化チタンが好ましく用いられ、特に無機酸化物(Al、AlO(OH)、SiO等)で表面処理した二酸化チタン、これらの表面処理に加えてトリメチロールエタン、トリエタノールアミン酢酸塩、トリメチルシクロシラン等の有機物処理を施した二酸化チタンがより好ましく用いられる。
【0323】
これらの白色粒子のうち、高温時の着色防止、屈折率に起因する素子の反射率の観点から、酸化チタンまたは酸化亜鉛を用いることがより好ましい。
【0324】
本発明において、水系化合物と白色顔料との水混和物は、公知の分散方法に従って白色顔料が水中分散された形態が好ましい。水系化合物/白色顔料の混合比は、容積比で1〜0.01が好ましく、より好ましくは、0.3〜0.05の範囲である。
【0325】
多孔質白色散乱層の膜厚は、5〜50μmの範囲であることが好ましく、より好ましくは10〜30μmの範囲である。
【0326】
アルコール系溶剤としては、メタノール、エタノール、イソプロパノール等の水との溶解性が高い化合物が好ましく用いられ、水/アルコール系溶剤との混合比は、質量比で0.5〜20の範囲が好ましく、より好ましくは2〜10の範囲である。
【0327】
本発明において、水系化合物と白色顔料との水混和物を塗布する媒体は、電気化学デバイスの対向電極間の構成要素上であればいずれの位置でもよいが、対向電極の少なくとも1方の電極面上に付与することが好ましい。
【0328】
媒体への付与の方法としては、例えば、塗布方式、液噴霧方式、気相を介する噴霧方式として、圧電素子の振動を利用して液滴を飛翔させる方式、例えば、ピエゾ方式のインクジェットヘッドや、突沸を利用したサーマルヘッドを用いて液滴を飛翔させるバブルジェット(登録商標)方式のインクジェットヘッド、また空気圧や液圧により液を噴霧するスプレー方式等が挙げられる。
【0329】
塗布方式としては、公知の塗布方式より適宜選択することができる。例えば、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースローラーコーター、トランスファーローラーコーター、カーテンコーター、ダブルローラーコーター、スライドホッパーコーター、グラビアコーター、キスロールコーター、ビードコーター、キャストコーター、スプレイコーター、カレンダーコーター、押し出しコーター等が挙げられる。
【0330】
媒体上に付与した水系化合物と白色顔料との水混和物の乾燥は、水を蒸発できる方法であればいかなる方法であってもよい。例えば、熱源からの加熱、赤外光を用いた加熱法、電磁誘導による加熱法等が挙げられる。また、水蒸発は減圧下で行ってもよい。
【0331】
本発明でいう多孔質とは、前記水系化合物と白色顔料との水混和物を電極上に塗布乾燥して多孔質の白色散乱物を形成した後、該散乱物上に、銀または銀を化学構造中に含む化合物を含有する電解質液を与えた後に対向電極で挟み込み、対向電極間に電位差を与え、銀の溶解析出反応を生じさせることが可能で、イオン種が電極間で移動可能な貫通状態のことを言う。
【0332】
本発明の電気化学デバイスでは、上記説明した水混和物を塗布乾燥中または乾燥後に、硬化剤により水系化合物の硬化反応を行うことが望ましい。
【0333】
本発明で用いられる硬膜剤の例としては、例えば、米国特許第4,678,739号の第41欄、同第4,791,042号、特開昭59−116655号、同62−245261号、同61−18942号、同61−249054号、同61−245153号、特開平4−218044号等に記載の硬膜剤が挙げられる。より具体的には、アルデヒド系硬膜剤(ホルムアルデヒド等)、アジリジン系硬膜剤、エポキシ系硬膜剤、ビニルスルホン系硬膜剤(N,N′−エチレン−ビス(ビニルスルホニルアセタミド)エタン等)、N−メチロール系硬膜剤(ジメチロール尿素等)、ほう酸、メタほう酸あるいは高分子硬膜剤(特開昭62−234157号等に記載の化合物)が挙げられる。水系化合物としてゼラチンを用いる場合は、硬膜剤の中で、ビニルスルホン型硬膜剤やクロロトリアジン型硬膜剤を単独または併用して使用することが好ましい。また、ポリビニルアルコールを用いる場合はホウ酸やメタホウ酸等の含ホウ素化合物の使用が好ましい。
【0334】
これらの硬膜剤は、水系化合物1g当たり0.001〜1g、好ましくは0.005〜0.5gが用いられる。また、膜強度を上げるため熱処理や、硬化反応時の湿度調整を行うことも可能である。
【0335】
〔その他の添加剤〕
本発明の電気化学デバイスの製造方法で作製される電気化学デバイスの電解質液には、その他各種性能を向上させる目的で、様々な添加剤を使用することができる。それらは目的に応じて選択され、特に制限されるものではない。
【0336】
各種の化学増感剤、貴金属増感剤、感光色素、強色増感剤、カプラー、高沸点溶剤、カブリ防止剤、安定剤、現像抑制剤、漂白促進剤、定着促進剤、混色防止剤、ホルマリンスカベンジャー、色調剤、硬膜剤、界面活性剤、増粘剤、可塑剤、スベリ剤、紫外線吸収剤、イラジエーション防止染料、フィルター光吸収染料、防ばい剤、ポリマーラテックス、重金属、帯電防止剤、マット剤等を、必要に応じて含有させることができる。
【0337】
上述したこれらの添加剤は、より詳しくは、リサーチ・ディスクロージャー(以下、RDと略す)第176巻Item/17643(1978年12月)、同184巻Item/18431(1979年8月)、同187巻Item/18716(1979年11月)及び同308巻Item/308119(1989年12月)に記載されている。
【0338】
これら三つのリサーチ・ディスクロージャーに示されている化合物種類と記載箇所を以下に掲載した。
【0339】
添加剤 RD17643 RD18716 RD308119
頁 分類 頁 分類 頁 分類
化学増感剤 23 III 648右上 96 III
増感色素 23 IV 648〜649 996〜8 IV
減感色素 23 IV 998 IV
染料 25〜26 VIII 649〜650 1003 VIII
現像促進剤 29 XXI 648右上
カブリ抑制剤・安定剤
24 IV 649右上 1006〜7 VI
増白剤 24 V 998 V
硬膜剤 26 X 651左 1004〜5 X
界面活性剤 26〜7 XI 650右 1005〜6 XI
帯電防止剤 27 XII 650右 1006〜7XIII
可塑剤 27 XII 650右 1006 XII
スベリ剤 27 XII
マット剤 28 XVI 650右 1008〜9 XVI
バインダー 26 XXII 1003〜4 IX
支持体 28 XVII 1009 XVII
上記の添加剤は、保護層、フィルター層、ハレーション防止層、クロスオーバー光カット層、バッキング層等の補助層を設け、それら補助層中に含有させることも可能である。
【0340】
〔その他の構成要素〕
本発明の電気化学デバイスには、必要に応じて、シール剤、柱状構造物、スペーサー粒子を用いる。
【0341】
(シール剤)
シール剤は、外に漏れないように封入するためのものであり封止剤とも呼ばれ、エポキシ樹脂、ウレタン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、エン−チオール系樹脂、シリコン系樹脂、変性ポリマー樹脂等の、熱硬化型、光硬化型、湿気硬化型、嫌気硬化型等の硬化タイプを用いることができる。
【0342】
(柱状構造物)
柱状構造物は、基板間の強い自己保持性(強度)を付与し、例えば、格子配列等の所定のパターンに一定の間隔で配列された、円柱状体、四角柱状体、楕円柱状体、台形柱状体等の柱状構造物を挙げることができる。また、所定間隔で配置されたストライプ状のものでもよい。この柱状構造物はランダムな配列ではなく、等間隔な配列、間隔が徐々に変化する配列、所定の配置パターンが一定の周期で繰り返される配列等、基板の間隔を適切に保持でき、且つ、画像表示を妨げないように考慮された配列であることが好ましい。柱状構造物は電気化学デバイスの表示領域に占める面積の割合が1〜40%であれば、電気化学デバイスとして実用上十分な強度が得られる。
【0343】
(スペーサー)
一対の基板間には、該基板間のギャップを均一に保持するためのスペーサーが設けられていてもよい。このスペーサーとしては、樹脂製または無機酸化物製の球体を例示できる。また、表面に熱可塑性の樹脂がコーティングしてある固着スペーサーも好適に用いられる。基板間のギャップを均一に保持するために柱状構造物のみを設けてもよいが、スペーサー及び柱状構造物をいずれも設けてもよいし、柱状構造物に代えて、スペーサーのみをスペース保持部材として使用してもよい。スペーサーの直径は柱状構造物を形成する場合はその高さ以下、好ましくは当該高さに等しい。柱状構造物を形成しない場合はスペーサーの直径がセルギャップの厚みに相当する。
【0344】
〔電解質液の付与法〕
本発明においては、電解質液を付与する方法としては、塗布法、印刷法、ディスペンサ法で、基板上に設けることができる。塗布法としては、押し出し塗布法、ディツプコーティング法、スプレー法、スピンコーティング法などが知られている。印刷法としては、グラビア印刷法、スクリーン印刷法、オフセット印刷法、凸版印刷法、インクジェット法などを用いることができる。
【0345】
(スクリーン印刷)
印刷法の中でも特にスクリーン印刷は、高粘度成分の付与だけでなく、シール剤や前記各種構造物を形成する際にも用いることが可能である。
【0346】
スクリーン印刷法は、所定のパターンが形成されたスクリーンを介し、印刷材料(柱状構造物形成のための組成物、例えば、光硬化性樹脂など)を載せる。そして、スキージを所定の圧力、角度、速度で移動させる。これによって、印刷材料がスクリーンのパターンを介して該基板上に転写される。
【0347】
スクリーン印刷法で柱状構造物を形成する場合、樹脂材料は光硬化性樹脂に限られず、例えば、エポキシ樹脂、アクリル樹脂等の熱硬化性樹脂や熱可塑性樹脂も使用できる。熱可塑性樹脂としては、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリメタクリル酸エステル樹脂、ポリアクリル酸エステル樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂、ポリウレタン樹脂、ポリアクリロニトリル樹脂、ポリビニルエーテル樹脂、ポリビニルケトン樹脂、ポリエーテル樹脂、ポリビニルピロリドン樹脂、飽和ポリエステル樹脂、ポリカーボネート樹脂、塩素化ポリエーテル樹脂等が挙げられる。樹脂材料は樹脂を適当な溶剤に溶解する等してペースト状にして用いることが望ましい。
【0348】
以上のようにして柱状構造物等を基板上に形成した後は、所望によりスペーサーを少なくとも一方の基板上に付与し、一対の基板を電極形成面を対向させて重ね合わせ、空セルを形成する。重ね合わせた一対の基板を両側から加圧しながら加熱することにより、貼り合わせて、表示セルが得られる。
【0349】
〔電気化学デバイスの駆動方法〕
本発明の電気化学デバイスにおいては、析出過電圧以上の電圧印加で黒化銀を析出させ、析出過電圧以下の電圧印加で黒化銀の析出を継続させる駆動操作を行なうことが好ましい。この駆動操作を行なうことにより、書き込みエネルギーの低下や、駆動回路負荷の低減や、画面としての書き込み速度を向上させることができる。一般に電気化学分野の電極反応において過電圧が存在することは公知である。例えば、過電圧については「電子移動の化学−電気化学入門」(1996年 朝倉書店刊)の121ページに詳しい解説がある。本発明の電気化学デバイスも電極と電解質中の銀との電極反応と見なすことができるので、銀溶解析出においても過電圧が存在することは容易に理解できる。過電圧の大きさは交換電流密度が支配するので、本発明のように黒化銀が生成した後に析出過電圧以下の電圧印加で黒化銀の析出を継続できるということは、黒化銀表面の方が余分な電気エネルギーが少なく容易に電子注入が行なえると推定される。
【0350】
本発明の電気化学デバイスの駆動操作は、単純マトリックス駆動であっても、アクティブマトリック駆動であってもよい。本発明でいう単純マトリックス駆動とは、複数の正極を含む正極ラインと複数の負極を含む負極ラインとが対向する形で互いのラインが垂直方向に交差した回路に、順次電流を印加する駆動方法のことを言う。単純マトリックス駆動を用いることにより、回路構成や駆動ICを簡略化でき安価に製造できるメリットがある。アクティブマトリックス駆動は、走査線、データライン、電流供給ラインが碁盤目状に形成され、各碁盤目に設けられたTFT回路により駆動させる方式である。画素毎にスイッチングが行えるので、階調やメモリー機能などのメリットがあり、例えば、特開2004−29327号の図5に記載されている回路を用いることができる。
【0351】
〔商品適用〕
本発明の電気化学デバイスは、電子書籍分野、IDカード関連分野、公共関連分野、交通関連分野、放送関連分野、決済関連分野、流通物流関連分野等の用いることができる。具体的には、ドア用のキー、学生証、社員証、各種会員カード、コンビニストアー用カード、デパート用カード、自動販売機用カード、ガソリンステーション用カード、地下鉄や鉄道用のカード、バスカード、キャッシュカード、クレジットカード、ハイウェーカード、運転免許証、病院の診察カード、電子カルテ、健康保険証、住民基本台帳、パスポート、ワンタイムパスワード、電子ブック、携帯電話のカバー等各種機器の筐体装飾、キーボード表示、電子棚札、電子POP、電子広告等が挙げられる。特に大画面の表示が求められる電子ブック、電子広告、電子POP等の製造に有効である。
【実施例】
【0352】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
【0353】
実施例1
《高分子材料の合成》
〔合成例1:本発明の高分子材料1の合成〕
例示配位子(15)の0.62gと、例示配位子(4)の0.56gとを、10mlのメタノールに溶解させ、ここに、塩化鉄(III)0.17gを3mlの水に溶解させた溶液を滴下し、室温で24時間反応させた後、溶媒を減圧して除き、本発明の高分子材料1を得た。
【0354】
〔合成例2:本発明の高分子材料2の合成〕
上記高分子材料1の合成と同様にして得られた溶液に、トリフルオロメタンスルホン酸ナトリウ0.18gを加え、12時間加熱還流した。さらにこの溶液を減圧濃縮した後、溶媒をアセトニトリルとした溶液にトリフルオロメタンスルホン酸銀0.60gを加え、5時間加熱還流し、析出した固体をろ別し、ろ液を蒸発させて、カウンターイオンを塩化物イオンからトリフルオロメタンスルホン酸イオンに置換した本発明の高分子材料2を得た。
【0355】
〔合成例3:本発明の高分子材料3の合成〕
例示配位子(19)の0.39gと、例示配位子(1)の0.39gと、例示配位子(54)の0.68gとを、10mlのジメチルホルムアミドに溶解させ、これにアセチルアセトナート鉄(III)0.40gを加え、100℃で5時間加熱攪拌して本発明の高分子材料3を合成した。
【0356】
〔合成例4:本発明の高分子材料4の合成〕
例示配位子(1)の0.38gと、例示配位子(27)の0.57gと、例示配位子(49)の0.22gとを、10mlのジメチルホルムアミドに溶解させ、これに塩化鉄(II)四水和物0.40gを加え、100℃で5時間加熱攪拌し、水を加えて析出物を濾別して、本発明の高分子材料4を合成した。
【0357】
〔合成例5:比較の高分子材料5の合成〕
特開2007−112957号公報に記載の方法と同様にして、例示配位子(15)を0.62gと、酢酸鉄(II)0.18gを用いて、酢酸イオンをカウンターイオンとして有する比較の高分子材料5を得た。
【0358】
実施例2
《電極の作製》
(電極1の作製)
厚さ1.5mmで2cm×4cmのガラス基板上に、ピッチ145μm、電極幅130μmのITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法に従って形成し、透明電極である電極1を得た。
【0359】
(電極2の作製)
上記電極1上に、厚み5μmの二酸化チタン(平均粒子径20nmの粒子を10個程度ネッキング済み)膜を形成し、電極2を得た。
【0360】
(電極3の作製)
エタノール中に、実施例1で合成した本発明の高分子材料1を3質量%溶解した液を、スピンコート法で電極1上に塗布し、85℃で1分間加熱し、溶媒を蒸発させて、電極1上に高分子膜を形成した電極3を得た。
【0361】
(電極4の作製)
上記電極3の作製において、本発明の高分子材料1を、同量の比較の高分子材料5に変更した以外は同様にして、電極1上に高分子膜を形成した電極4を得た。
【0362】
(電極5の作製)
上記電極3の作製において、電極1に代えて電極2を用いた以外は同様にして、電極2上に高分子膜を形成した電極5を得た。
【0363】
(電極6の作製)
エタノール中に、3−アミノプロピルトリメトキシシランを2質量%の濃度で溶解させた溶液に、上記電極2を24時間浸漬させた後、エタノールで洗浄した。次いで、例示配位子(61)を5質量%含有するエタノール溶液を調製し、この溶液に上記電極2を60℃で3時間浸漬し、洗浄、乾燥して電極6を作製した。
【0364】
(電極7の作製)
メタノール30ml中で、例示配位子(1)を0.19gと、例示配位子(38)を0.42gと、例示配位子(60)を0.20gと、塩化鉄(III)を0.20gとを混合させ、この溶液中に電極6を浸漬して24時間反応した後、エタノールで洗浄、乾燥して、電極6上に修飾基を介した高分子膜を形成し電極7を得た。
【0365】
(電極8の作製)
メタノール30ml中で、例示配位子(1)を0.19gと、例示配位子(38)を0.42gと、例示配位子(60)を0.20gと、塩化鉄(III)を0.20gとを混合させ、この溶液中に電極2を浸漬して24時間反応した後、エタノールで洗浄、乾燥して、電極2上に修飾基を介した高分子膜を形成し電極8を得た。
【0366】
《電解液の調製》
(電解液1の調製)
アセトニトリル2.5g中に、過塩素酸テトラブチルアンモニウム0.05gを溶解させて、電解液1を得た。
【0367】
《表示素子の作製》
(表示素子1−1の作製)
周辺部を、平均粒径が40μmのガラス製球形ビーズ状スペーサーを体積分率として10%含むオレフィン系封止剤で縁取りした電極2の上に、ポリビニルアルコール(平均重合度3500、けん化度87%)を2質量%含むイソプロパノール溶液中に、石原産業社製の二酸化チタンCR−90を20質量%添加し、超音波分散機で分散させた混和液を乾燥後の膜厚が20μmになるように塗布し、その後15℃で30分間乾燥して溶媒を蒸発させた後、45℃の雰囲気中で1時間乾燥させた。得られた二酸化チタン層上に平均粒径が20μmのガラス製球形ビーズ状スペーサーを散布した後に、電極1と電極4を貼り合わせ、加熱押圧して空セルを作製した。該空セルに電解液1を真空注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子1−1を作製した。
【0368】
(表示素子1−2〜1−5の作製)
上記表示素子1−1の作製において、表示側電極の構成を表1に記載した構成に変更した以外は同様にして、表示素子1−2〜1−5を得た。
【0369】
《表示素子の評価》
〔コントラスト保持率の評価〕
未駆動の状態の表示素子の反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定して、得られた反射率が極小値を取る波長での反射率の値をRとした。次に、定電圧電源の両端子に作製した表示素子の両電極を接続し、+1.5Vの電圧を3秒間印加した後の反射率を同様にして測定し、Rを求めた波長での反射率をRとした。CR=R/Rとし、CRを表示素子のコントラストの指標とし、+1.5Vの電圧印加の後、0Vの電圧印加と+1.5Vの電圧印加の繰返しを1回駆動とし1回目駆動時のコントラスト指標CRと100回駆動時のコントラスト指標CR100を下記式に従って比較し、各数値を下記に従い5段階評価した。
【0370】
コントラスト保持率(%)=CR100/CR×100
◎:コントラスト保持率が80%以上
○:コントラスト保持率が65%以上、80%未満
△:コントラスト保持率が40%以上、65%未満
×:コントラスト変化は確認できるが、コントラスト保持率が40%未満
××:コントラストの変化が目視で観測できない
以上により得られた結果を、表1に表す。
【0371】
【表1】

【0372】
表1に記載の結果より明らかなように、本発明の高分子材料を表示電極に有する表示素子は、コントラスト保持率に優れていることが分かる。
【0373】
実施例3
《電解液の調製》
(電解液2の調製)
ジメチルスルホキシド2.5g中に、p−トルエンスルホン酸銀0.1gと例示化合物(G2−19)0.2gと過塩素酸テトラブチルアンモニウム0.05gを溶解させ、さらにポリビニルピロリドン(Mw10万)を0.3g、平均粒径が200nmの二酸化チタン1.0gを加え、攪拌しながら真空脱気して、電解液2を得た。
【0374】
《表示素子の作製》
(表示素子2−1の作製)
電極1の周辺部を、平均粒径40μmのガラス製球形ビーズを体積分率として10%含むオレフィン系封止剤で縁取りした上に、対向側電極として電極3を、それぞれストライプ状の電極が直交するように貼り合わせ、さらに加熱押圧して空セルを作製した。該空セルに電解液2を真空注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子2−1を作製した。
【0375】
(表示素子2−2〜2−5の作製)
上記表示素子2−1の作製において、対向側電極の構成を表2に記載した構成に変更した以外は同様にして、表示素子2−2〜2−5を得た。
【0376】
《表示素子の評価》
〔繰返し耐久性の評価〕
未駆動の状態の表示素子の反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定して、波長550nmでの反射率の値をRとした。次に、定電圧電源の両端子に作製した表示素子の両電極を接続し、−1.3Vの電圧を3秒間印加した後の反射率を同様にして測定し、波長550nmでの反射率をR−1.3とした。CR=R−1.3/Rとし、CRを表示素子のコントラストの指標とし、上記の−1.3Vの電圧印加の後、+1.3Vの電圧印加の繰返しを1回駆動とし100回駆動毎にコントラスト指標を測定し、1回目のCR指標と比較してCR指標が80%以下となった繰返し駆動回数を求めた。CRの測定は繰返し駆動回数2000回まで測定を行い、CR指標が初期値の80%以下となった駆動回数が多いほど、表示素子としての耐久性が高いことを示す。
【0377】
【表2】

【0378】
表2に記載の結果より明らかなように、本発明の高分子材料をプロモーター、より詳しくは対極反応物質として対向側電極に用いた表示素子は、高い耐久性を有することが分かる。
【0379】
実施例4
ポリエチレンテレフタレート基板(厚み200μm)上に、本発明の高分子材料3の10質量%メチルエチルケトン溶液を、バーコーター(No.9、ウェット膜厚20μm)を用いてバーコート法により塗布、製膜した後、120℃の環境で減圧乾燥することにより本発明の高分子材料1薄膜を形成した。次いで、この基板にワニ口クリップを用いて単3乾電池および豆電球と直列になるように配置したところ、豆電球は光を発し、本発明の高分子材料3は、導電性を有することを確認することができた。
【図面の簡単な説明】
【0380】
【図1】本発明の高分子材料が適用可能な電気化学デバイスであるTFTの一例を示すブロック図である。
【符号の説明】
【0381】
100、110 データ線駆動回路
120 ゲート線駆動回路
130 信号制御部
140 ゲート線(走査線配線)
150 データ線(信号線配線)

【特許請求の範囲】
【請求項1】
対向電極間に、金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料を有する電気化学デバイスであって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする電気化学デバイス。
【請求項2】
前記配位子の少なくとの1種は、分子内に−SH、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも1つの基を有することを特徴とする請求項1に記載の電気化学デバイス。
【請求項3】
前記配位子の少なくとの1種は、金属と結合した際に負電荷を有することを特徴とする請求項1または2に記載の電気化学デバイス。
【請求項4】
前記配位子の少なくとの1種は、構造中に金属錯体を有することを特徴とする請求項1〜3のいずれか1項に記載の電気化学デバイス。
【請求項5】
前記配位子の少なくとの1種は、5員複素環単環を有することを特徴とする請求項1〜4のいずれか1項に記載の電気化学デバイス。
【請求項6】
前記配位子の少なくとの1種は、下記一般式(1)で表される化合物であることを特徴とする請求項1〜5のいずれか1項に記載の電気化学デバイス。
【化1】

〔式中、Aは窒素、酸素、硫黄、リンまたは炭素原子であり、環の構成要素の一部であって他の構成要素と一緒になって5員環または6員環を形成する。Wは置換基あるいは配位座を含む連結基を表し、pは1〜4の整数であって、pが2以上の場合、Wはそれぞれ異なっていても良い。Dは配位原子あるいは配位原子団を表し、LはAを含む環とDとの連結基を表し、mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。〕
【請求項7】
金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料であって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする高分子材料。
【請求項8】
前記配位子の少なくとの1種は、分子内に−SH、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも1つの基を有することを特徴とする請求項7に記載の高分子材料。
【請求項9】
前記配位子の少なくとの1種は、金属と結合した際に負電荷を有することを特徴とする請求項7または8に記載の高分子材料。
【請求項10】
前記配位子の少なくとの1種は、構造中に金属錯体を有することを特徴とする請求項7〜9のいずれか1項に記載の高分子材料。
【請求項11】
前記配位子の少なくとの1種は、5員複素環単環を有することを特徴とする請求項7〜10のいずれか1項に記載の高分子材料。
【請求項12】
前記配位子の少なくとの1種は、下記一般式(1)で表される化合物であることを特徴とする請求項7〜11のいずれか1項に記載の高分子材料。
【化2】

〔式中、Aは窒素、酸素、硫黄、リンまたは炭素原子であり、環の構成要素の一部であって他の構成要素と一緒になって5員環または6員環を形成する。Wは置換基あるいは配位座を含む連結基を表し、pは1〜4の整数であって、pが2以上の場合、Wはそれぞれ異なっていても良い。Dは配位原子あるいは配位原子団を表し、LはAを含む環とDとの連結基を表し、mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。〕

【図1】
image rotate


【公開番号】特開2010−85570(P2010−85570A)
【公開日】平成22年4月15日(2010.4.15)
【国際特許分類】
【出願番号】特願2008−252756(P2008−252756)
【出願日】平成20年9月30日(2008.9.30)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】