説明

電池用電極、双極型電池用電極及び双極型電池

【課題】内部短絡が発生しても短絡部位に電流が集中して流れることを抑制でき、充放電時に電極の耐久性が低下することを抑制できる電池用電極を提供する。
【解決手段】導電性を有する集電体11の表面に活物質層13、15が形成された電池用電極において、活物質層13、15を、分割された複数の分割活物質部13a、13b、13c、…、15a、15b、15c、…と、分割活物質部を相互に連結するイオン導電部13I、15Iとで構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電池用電極、双極型電池用電極及び双極型電池に関する。
【背景技術】
【0002】
従来、集電体の表面に形成する電極パターンの形成密度を、放熱性の悪いところ(集電体の中央部分)では放熱性の良いところ(集電体の外周部分)に比較して相対的に低くし、電池の温度分布を均一化させた技術がある(下記特許文献1の記載を参照)。この技術では、電極パターンを分割して形成し、電極パターンに対応して電極層(正極層と負極層)を相互に分離している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−53088号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載されている技術によれば、電極パターンが分割して形成されているため、電池に内部短絡が発生した場合に短絡部位が限定され、短絡部位に電流が集中して流れることが抑制できる。
【0005】
しかし、電池の充放電時には、分割して形成されている電極パターンそれぞれへのイオンの拡散が不均一になるため、各電極パターンの充電深度及び放電深度に差が生じ、電極の耐久性が低下する。
【0006】
本発明は、内部短絡が発生しても短絡部位に電流が集中して流れることを抑制でき、充放電時に電極の耐久性が低下することも抑制できる電池用電極、双極型電池用電極及び双極型電池の提供を目的とする。
【課題を解決するための手段】
【0007】
本発明は、上記の目的を達成するためになされたものであり、導電性を有する基材の表面に活物質層が形成された電池用電極であり、活物質層は、分割された複数の分割活物質部と、分割活物質部を相互に連結するイオン導電部とから構成される。
【発明の効果】
【0008】
本発明によれば、活物質層が複数の分割活物質部に分割されているので、内部短絡が発生しても短絡部位に電流が集中して流れることを抑制することができる。
【0009】
また、分割活物質部はイオン導電部で相互に連結されているので、イオン導電部を通して分割活物質部間をイオンが移動できるようになり、分割活物質部にイオンが均一に分散する。このために、活物質層の充電深度及び放電深度が均一になり、電極の耐久性の低下が抑制される。
【図面の簡単な説明】
【0010】
【図1】実施形態1に係る双極型リチウムイオン二次電池の全体構造を模式的に表した断面概略図である。
【図2】実施形態1に係る双極型電極の構造図であり、同図Aは双極型電極の平面図を示し、同図BはAの1−1断面図を示す。
【図3】実施形態1に係る双極型リチウムイオン二次電池の外観を表した斜視図である。
【図4】実施形態2に係る双極型電極の構造図であり、同図Aは双極型電極の平面図を示し、同図BはAの2−2断面図を示す。
【図5】実施形態3に係る双極型電極の構造図であり、同図Aは双極型電極の平面図を示し、同図BはAの3−3断面図を示す。
【図6】比較例1に係る双極型電極の構造図であり、同図Aは双極型電極の平面図を示し、同図BはAの4−4断面図を示す。
【図7】比較例2に係る双極型電極の構造図であり、同図Aは双極型電極の平面図を示し、同図BはAの5−5断面図を示す。
【発明を実施するための形態】
【0011】
以下に、好ましい実施形態として双極型リチウムイオン二次電池を説明する。しかし、以下の実施形態のみに制限されるものではない。図面の説明において同一の要素には同一の符号を付し、重複する説明は省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
[実施形態1]
図1は、実施形態1に係る双極型リチウムイオン二次電池の全体構造を模式的に表した断面概略図である。図1に示す双極型リチウムイオン二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、電池外装材29の内部に封止された構造を有する。
【0012】
図1に示すように、双極型リチウムイオン二次電池10の発電要素21は、集電体11の一方の面に電気的に結合した正極活物質層13が形成され、集電体11の反対側の面に電気的に結合した負極活物質層15が形成された複数の双極型電極23を有する。
【0013】
各双極型電極23は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。このとき、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極23及び電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に電解質層17が挟まれて配置されている。
【0014】
互いに隣接する正極活物質層13、電解質層17、及び負極活物質層15は、一つの単電池層19を構成する。したがって、双極型リチウムイオン二次電池10は、単電池層19が積層されてなる構成を有するともいえる。また、電解質層17からの電解液の漏れによる液絡を防止する目的で、単電池層19の外周部には絶縁部31が配置されている。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。ただし、正極側の最外層集電体11aの両面に正極活物質層13が形成されてもよい。同様に、負極側の最外層集電体11bの両面に負極活物質層15が形成されてもよい。
【0015】
さらに、双極型リチウムイオン二次電池10は、正極側の最外層集電体11aに隣接して正極集電板25が配置され、正極集電板25が延長されて電池外装材29から導出している。一方、負極側の最外層集電体11bに隣接して負極集電板27が配置され、同様に
負極集電板27が延長されて電池外装材29から導出している。
【0016】
双極型リチウムイオン二次電池10は、通常、各単電池層19の周囲に絶縁部31が設けられる。この絶縁部31は、電池内で隣り合う集電体11同士が接触したり、発電要素21における単電池層19の端部が僅かに不揃いであったりすることに起因する短絡の発生を防止する目的で設けられる。
【0017】
なお、単電池層19の積層回数は、所望する電圧に応じて調節する。また、双極型リチウムイオン二次電池10では、電池の厚さを極力薄くしても十分な出力が確保できれば、単電池層19の積層回数を少なくしてもよい。双極型リチウムイオン二次電池10でも、使用する際の外部からの衝撃に耐えるため、環境劣化を防止するために、発電要素21を電池外装材29に減圧封入し、正極集電板25及び負極集電板27を電池外装材29の外部に引出した構造とするのがよい。
【0018】
以上、本発明の好ましい実施形態として双極型リチウムイオン二次電池を説明したが、本発明の後述する構造の電極を適用し得る電池は上記のものに限られない。例えば、電池を構造・形態で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池など特に制限されず、従来公知のいずれの構造にも適用できる。
【0019】
同様に電池を電解質の形態で区別した場合にも、本発明の適用に特に制限はない。例えば、非水電解液をセパレータに含浸させた液体電解質型電池、ポリマー電池とも称される高分子ゲル電解質型電池及び固体高分子電解質(全固体電解質)型電池のいずれにも適用できる。高分子ゲル電解質及び固体高分子電解質に関しては、これらを単独で使用することもできるし、これら高分子ゲル電解質や固体高分子電解質をセパレータに含浸させて使用することもできる。
【0020】
また、電池の電極材料または電極間を移動する金属イオンで見た場合にも、特に制限されず、公知のいずれの電極材料等にも適用されうる。例えば、リチウムイオン二次電池、ナトリウムイオン二次電池、カリウムイオン二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池、ニッケル水素電池などが挙げられる。好ましくは、リチウムイオン二次電池である。これは、リチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成でき、車両の駆動電源用や補助電源用として優れているためである。
【0021】
上述の双極型電極23は、双極型リチウムイオン二次電池10で内部短絡が発生したとしても、短絡部位に電流が集中して流れることを抑制し、さらに、双極型リチウムイオン二次電池10の充放電時に双極型電極23の耐久性が低下することを抑制する機能を備えている。この機能を実現するために、正極活物質層13及び負極活物質層15の平面方向の抵抗率が積層方向(厚み方向)の抵抗率に比較して大きくなるように特別な構成を採用している。
【0022】
図2は、実施形態1に係る双極型電極の構造図であり、同図Aは双極型電極の平面図を示し、同図BはAの1−1断面図を示す。なお、この図では双極型電極の構造を理解し易くするために、凹凸部分の寸法比率を誇張して示してある。
【0023】
実施形態1に係る双極型電極23は、導電性を有する集電体11の一方の面に正極活物質層13が形成され、集電体11の反対側の面に負極活物質層15が形成されている。
【0024】
正極活物質層13及び負極活物質層15は、平板状の正極活物質層13及び負極活物質層15の表面にそれらの活物質層の厚みよりも浅い複数の溝を一定の間隔で二次元方向に形成した構造を有する。
【0025】
これらの溝によって、正極活物質層13の表面に、複数の分割活物質部13a、13b、13c、…が形成される。また、これらの溝が到達せずに残った部分によって、これらの分割活物質部13a、13b、13c、…を相互に連結するイオン導電部13Iが形成される。同様に、これらの溝によって、負極活物質層15の表面に、複数の分割活物質部15a、15b、15c、…が形成される。また、これらの溝が到達せずに残った部分によって、これらの分割活物質部15a、15b、15c、…を相互に連結するイオン導電部15Iが形成される。つまり、正極活物質層13の分割活物質部13a、13b、13c、…と負極活物質層15の分割活物質部15a、15b、15c、…は、溝によって分割されている島状の部分である。一方、正極活物質層13及び負極活物質層15のイオン導電部13I、15Iは、溝の深さよりも深い部分に位置して分割活物質部13a、13b、13c、…、分割活物質部15a、15b、15c、…を支える一体化した連続する部分(図2の厚みD1、D2の部分)である。
【0026】
なお、これらの溝は、たとえばエンボスロールを用いたプレス加工によって形成する。しかし、エンボス加工には限らず、活物質を集電体11の表面上にインクジェット方式で堆積させることによって、正極活物質層13及び負極活物質層15を形成するようにしても良い。インクジェット方式を用いた場合、まず平板状のイオン導電部を形成し、その上に面方向に相互に一定間隔あけて島状の分割活物質部を二次元方向に形成する。
【0027】
図2Aに示すように、正極活物質層13は、イオン導電部13I上に、溝によって相互に一定間隔隔てた分割活物質部13a、13b、13c、…が二次元方向に周期的に配置された構成を有している。図示してはいないが、負極活物質層15も、イオン導電部15I上に、溝によって相互に一定間隔隔てた分割活物質部15a、15b、15c、…が二次元方向に周期的に配置された構成を有している。
【0028】
このように、正極活物質層13及び負極活物質層15が複数の分割活物質部を有すると、電流は、溝が邪魔して分割活物質部間を自由に流れることはできず、イオン導電部を介して流れることになる。分割活物質部を有すると、正極活物質層13及び負極活物質層15の平面方向の抵抗率が積層方向の抵抗率よりも大きくなり、双極型リチウムイオン二次電池10で内部短絡が発生したとしても、短絡部位に電流が集中して流れることが抑制できる。
【0029】
また、図2Bに示すように、正極活物質層13のイオン導電部13Iは集電体11の一方の面に電気的に結合され、また、負極活物質層15のイオン導電部15Iは集電体11の反対側の面に電気的に結合される。したがって、分割活物質部13a、13b、13c、…は集電体11の表面でイオン導電部13Iによって連結され、分割活物質部15a、15b、15c、…は集電体11の表面でイオン導電部15Iによって連結される。
【0030】
このように、イオン導電部13Iとイオン導電部15Iが集電体11側に位置するように正極活物質層13及び負極活物質層15を配置すると、分割活物質部13a、13b、13c、…と分割活物質部15a、15b、15c、…は電解質層17側に位置される。このため、分割活物質部13a、13b、13c、…間と分割活物質部15a、15b、15c、…間の溝は、電解液の注入の際に電解液をセパレータに含浸させるための流路となる。したがって、電解液の含浸性能を向上させることができ、双極型リチウムイオン二次電池10の生産性が向上する。
【0031】
正極活物質層13及び負極活物質層15はシリコンまたはシリコン化合物から構成することができる。特に、負極活物質層15をシリコンまたはシリコン化合物から構成すると、電池容量を大きくすることができる。その一方、充放電時の膨張、収縮が大きいために、高容量を狙って大面積化すると、集電体11との間で応力ヒステリシスが生じ、双極型電極23に反りが発生する。負極活物質層15に溝があると、その溝で充放電時の膨張、収縮を吸収することができるようになり、集電体11との間で生じる応力ヒステリシスが抑制され、双極型電極23の反りが起こらなくなる。
【0032】
上記の場合、正極活物質層13の分割活物質部13a、13b、13c、…とイオン導電部13Iとは一体的に形成している。したがって、イオン導電部13Iは分割活物質部13a、13b、13c、…と同じ活物質を含んでいる。なお、分割活物質部13a、13b、13c、…をイオン導電部13Iと別体として、イオン導電部13Iの上に形成しても良い。この場合、分割活物質部13a、13b、13c、…とイオン導電部13Iは異なる材料で形成しても良い。しかし、充放電時に双極型電極23の耐久性が低下することを抑制するためには、イオン導電部13Iに活物質を含むことが必要である。イオン導電部13Iが活物質を含んでいると、分割活物質部13a、13b、13c、…間にイオンが均一に分布することになるので、正極活物質層13の充電深度及び放電深度が均一になり、双極型電極23の耐久性の低下が抑制できる。
【0033】
上記のことは負極活物質層15についても同様に言える。
【0034】
正極活物質層13のイオン導電部13Iの厚さD1は、正極活物質層13の平面方向の抵抗が平面状に連続する正極活物質層の平面方向の抵抗の4倍以上の抵抗となる厚さであることが好ましい。このことは、負極活物質層15のイオン導電部15Iの厚さD2に対しても同様に言える。正極活物質層13及び負極活物質層15の平面方向の抵抗が大きくなると、双極型リチウムイオン二次電池10で内部短絡が発生したとしても、短絡部位に電流が集中して流れることが抑制できる。
【0035】
イオン導電部13Iの厚さD1とイオン導電部15Iの厚さD2は、溝の深さを変えることによって調整することができる。溝を深くすると、イオン導電部13Iの厚さD1とイオン導電部15Iの厚さD2が薄くなるので、正極活物質層13及び負極活物質層15の平面方向の抵抗が大きくなる。したがって、溝を深くした方が、短絡部位に電流が集中して流れることの抑制効果が大きくなる。
【0036】
正極活物質層13及び負極活物質層15の平面方向の抵抗は、分割活物質部13a、13b、13c、…の配置間隔L1、分割活物質部15a、15b、15c、…の配置間隔L2を変えることによっても調整することができる。分割活物質部13a、13b、13c、…の配置間隔L1と分割活物質部15a、15b、15c、…の配置間隔L2を大きくすれば、正極活物質層13及び負極活物質層15の平面方向の抵抗が大きくなる。イオン導電部13Iとイオン導電部15I幅、すなわち溝の幅が大きくなるからである。
【0037】
このように、実施形態1では、正極活物質層13と負極活物質層15の形状を、図2Bに示したように断面を櫛型状とし、図2Aに示したように分割活物質部を周期的に配置する。分割物質部の配置間隔、イオン導電部の厚さのそれぞれを個々に、または複数組み合わせることによって、正極活物質層13と負極活物質層15の平面方向の抵抗が平面状に連続する正極活物質層と負極活物質層の平面方向の抵抗の4倍以上20倍以下となるようにすることが好ましい。
【0038】
4倍以上となるようにしているのは、双極型リチウムイオン二次電池10で内部短絡が発生したときに、短絡部位に電流が集中して流れることを効果的に抑制するためである。また、20倍以下としているのは、分割活物質部間にイオンが均一に分布できるようにして、充放電時に双極型電極23の耐久性が低下することを抑制するためである。
【0039】
なお、以上で例示した正極活物質層13と負極活物質層15の形状は、分割活物質部を一定の間隔を隔てて平面方向に周期的に配置したものであるが、これに限らず、分割活物質部を一方向に連続するストライプ状に一定間隔で配置することも可能である。
【0040】
また、以上で例示した正極活物質層13と負極活物質層15の形状は、いずれも分割活物質部を一定の間隔を隔てて周期的に配置したものであるが、正極活物質層13または負極活物質層15のいずれか一方をこのような形状とし、他方は単なる平板状としても良い。この場合、活物質の抵抗率がより低い方の活物質層に分割活物質部を形成するようにする。このようにすれば、双極型リチウムイオン二次電池10で内部短絡が発生したときに、短絡部位に電流が集中して流れることを効果的に抑制することができるからである。
【0041】
さらに、集電体11としては、平面方向の抵抗率が積層方向(厚み方向)の抵抗率に比較して大きい、導電性樹脂集電体を用いることが好ましい。双極型リチウムイオン二次電池10で内部短絡が発生したときに、短絡部位に電流が集中して流れることを効果的に抑制することができるからである。
【0042】
以上で説明した双極型電極23は、双極型電池用の電極であるが、本発明に係る電池用電極は双極型電池に限定されるものではなく、様々な種類の二次電池の電極としても適用することができる。例えば、非水電解液をセパレータに含浸させた液体電解質型電池、ポリマー電池とも称される高分子ゲル電解質型電池及び固体高分子電解質(全固体電解質)型電池のいずれにも適用できる。
【0043】
図1に示す双極型リチウムイオン二次電池の主要な構成部材について説明する。
【0044】
(集電体)
集電体を形成する樹脂は、特に制限はなく、従来公知の非導電性高分子材料または導電性高分子材料を制限なく使用することができる。好ましい非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE))、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)、シリコン樹脂、セルロース、及びエポキシ樹脂などが挙げられる。また、好ましい導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、及びポリオキサジアゾールなどが挙げられる。これらの非導電性高分子材料または導電性高分子材料は、1種を単独で使用してもよいし、2種以上を組み合わせて混合物として使用しても構わない。
【0045】
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性または耐電位性に優れた材料として、金属及び導電性カーボンなどが挙げられる。
【0046】
金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、及びKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。これらの金属は、集電体表面に形成される正極または負極の電位に対して耐性を有する。これらのうち、Ni、Ti、Al、Cu、Pt、Fe、及びCrからなる群から選択される少なくとも1種の金属を含む合金であることがより好ましい。
【0047】
合金としては、具体的には、ステンレス鋼(SUS)、インコネル(登録商標)、ハステロイ(登録商標)、及びその他Fe−Cr系合金、Ni−Cr合金等が挙げられる。これらの合金を用いることにより、より高い耐電位性が得られうる。
【0048】
(活物質層)
[正極活物質層及び負極活物質層]
活物質層は活物質を含み、必要に応じてその他の添加剤をさらに含む。
【0049】
正極活物質層は正極活物質を含む。正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni−Co−Mn)O及びこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。なお、上記以外の正極活物質が用いられてもよいことはもちろんである。
【0050】
負極活物質層は負極活物質を含む。負極活物質としては、例えば、グラファイト、ソフトカーボン、ハードカーボン等の炭素材料、リチウム−遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム−遷移金属複合酸化物が、負極活物質として用いられる。なお、上記以外の負極活物質が用いられてもよいことはもちろんである。
【0051】
各活物質層に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜20μmである。
【0052】
正極活物質層及び負極活物質層は、バインダを含んでもよい。活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり活物質層に使用が可能となる。これらのバインダは、1種単独で用いてもよいし、2種以上併用してもよい。
【0053】
活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5〜15質量%であり、より好ましくは1〜10質量%である。
【0054】
活物質層に含まれうるその他の添加剤としては、例えば、導電助剤、電解質塩(リチウ
ム塩)、イオン伝導性ポリマー等が挙げられる。
【0055】
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
【0056】
電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
【0057】
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系及びポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
【0058】
正極活物質層及び負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水溶媒二次電池についての公知の知見を適宜参照することにより、調整されうる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、2〜100μm程度である。
【0059】
(電解質層)
電解質層を構成する電解質としては、液体電解質またはポリマー電解質が用いられうる。液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられうる有機溶媒としては、例えば、エチレンカーボネート(EC)やプロピレンカーボネート(PC)等のカーボネート類が例示される。また、支持塩(リチウム塩)としては、LiBETI等の電極の活物質層に添加されうる化合物が同様に採用されうる。
【0060】
一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない真性ポリマー電解質に分類される。
【0061】
ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質が注入されてなる構成を有する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。
【0062】
なお、電解質層が液体電解質やゲル電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜が挙げられる。
【0063】
真性ポリマー電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が真性ポリマー電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。
【0064】
ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
【0065】
(最外層集電体)
最外層集電体の材質としては、例えば、金属や導電性高分子が採用されうる。電気の取り出しやすさの観点からは、好適には金属材料が用いられる。具体的には、例えば、アルミニウム、ニッケル、鉄、ステンレス鋼、チタン、銅などの金属材料が挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、あるいはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性、電池作動電位という観点からは、アルミニウム、銅が好ましい。
【0066】
(タブ及びリード)
電池外部に電流を取り出す目的で、タブを用いてもよい。タブは最外層集電体や集電板に電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
【0067】
タブを構成する材料は、特に制限されず、リチウムイオン二次電池用のタブとして従来用いられている公知の高導電性材料が用いられうる。タブの構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。より好ましくは軽量、耐食性、高導電性の観点からアルミニウム、銅などである。なお、正極タブと負極タブとでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。
【0068】
正極端子リード及び負極端子リードに関しても、必要に応じて使用する。正極端子リード及び負極端子リードの材料は、公知のリチウムイオン二次電池で用いられる端子リードを用いることができる。なお、電池外装材から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
【0069】
(電池外装材)
電池外装材としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロン(登録商標)をこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
【0070】
(絶縁部)
絶縁部は、電解質層からの電解液の漏れによる液絡を防止する。また、絶縁部は、電池内で隣り合う集電体どうしが接触したり、発電要素における単電池層の端部の僅かな不揃いなどに起因する短絡が起こったりするのを防止する目的で設けられる。
【0071】
絶縁部を構成する材料としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性などを有するものであればよい。例えば、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴムなどが用いられうる。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性などの観点から、ポリエチレン樹脂やポリプロピレン樹脂が、絶縁部の構成材料として好ましく用いられる。
【0072】
なお、上記の双極型リチウムイオン二次電池は、従来公知の製造方法により製造することができる。
【0073】
図3は、実施形態1に係る双極型リチウムイオン二次電池の外観を表した斜視図である。
【0074】
図3に示すように、双極型リチウムイオン二次電池10は、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ25、負極タブ27が引き出されている。正極タブ25は、図1に示した双極型リチウムイオン二次電池10の正極集電板が延長されたものであり、負極タブ27は、双極型リチウムイオン二次電池10の負極集電板が延長されたものである。
【0075】
発電要素21は、双極型リチウムイオン二次電池10の電池外装材29によって包まれ、その周囲は熱融着されている。発電要素21は、正極タブ25および負極タブ27を外部に引き出した状態で密封されている。ここで、発電要素21は、双極型リチウムイオン二次電池10の発電要素21であり、正極活物質層13、電解質層17および負極活物質層15で構成される単電池層19が複数積層されたものである。
【0076】
なお、双極型リチウムイオン二次電池10は、積層型の扁平な形状のものに制限されず、巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよい。また、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよい。円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いても良いし、従来の円筒缶(金属缶)を用いても良いなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。これにより軽量化が達成される。
【0077】
また、図3に示すタブの引き出しに関しても、特に制限されるものではなく、正極タブ25と負極タブ27とを同じ辺から引き出すようにしても良いし、正極タブ25と負極タブ27をそれぞれ複数に分けて、各辺から取り出すようにしてもよい。また、巻回型のリチウムイオン二次電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
【0078】
上記双極型リチウムイオン二次電池は、電気自動車、ハイブリッド電気自動車、燃料電池車、ハイブリッド燃料電池自動車などの大容量電源として、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に好適に利用することができる。
【0079】
以上の実施形態1では次のような効果を奏する。
(a)正極活物質層13及び負極活物質層15が複数の分割活物質部を有すると、正極活物質層13及び負極活物質層15の平面方向の抵抗率が積層方向の抵抗率よりも大きくなるため、内部短絡が発生したとしても、短絡部位に電流が集中して流れることが抑制できる。
(b)イオン導電部13Iとイオン導電部15Iが集電体11側に位置するように正極活物質層13及び負極活物質層15を配置すると、分割活物質部13a、13b、13c、…間と分割活物質部15a、15b、15c、…間の溝は、電解液の注入の際に電解液をセパレータに含浸させるための流路となる。したがって、電解液の含浸性能を向上させることができ、双極型リチウムイオン二次電池10の生産性が向上する。
(c)負極活物質層15をシリコンまたはシリコン化合物から構成すると、電池容量を大きくすることができる。
(d)負極活物質層15に溝があると、その溝で充放電時の膨張、収縮を吸収することができるようになり、集電体11との間で生じる応力ヒステリシスが抑制され、双極型電極23の反りが起こらなくなる。
(e)イオン導電部が活物質を含んでいると、分割活物質部間にイオンが均一に分布することになるので、正極活物質層13及び負極活物質層15の充電深度及び放電深度の均一化が図られ、双極型電極23の耐久性の低下が抑制できる。
(f)正極活物質層13及び負極活物質層15のイオン導電部の厚さを薄くして、正極活物質層13及び負極活物質層15の平面方向の抵抗を大きくすると、内部短絡が発生したとしても、短絡部位に電流が集中して流れることが抑制できる。
(g)平面方向の抵抗率が積層方向の抵抗率に比較して大きい、導電性樹脂集電体を用いると、内部短絡が発生したときに、短絡部位に電流が集中して流れることを効果的に抑制することができる。
(h)実施形態1に係る双極型電極23を双極型リチウムイオン二次電池10に用いることによって、内部短絡が発生しても短絡部位に電流が集中して流れることを抑制できる。また、充放電時に電極の耐久性が低下することも抑制できる。したがって、安全かつ信頼性の高い双極型リチウムイオン二次電池を得ることができる。
[実施形態1の変形例]
実施形態1では、分割活物質部とイオン導電部とが一体的に形成されているものを例示した。しかし、完全に分割した分割活物質部とイオン導電部とを別々に、同一の材料または異なる材料で形成し、完全に分割されている分割活物質同士の一部をイオン導電部で連結するようにしても良い。
[実施形態2]
図4は、実施形態2に係る双極型電極の構造図であり、同図Aは双極型電極の平面図を示し、同図BはAの2−2断面図を示す。なお、この図では双極型電極の構造を理解し易くするために、凹凸部分の寸法比率を誇張して示してある。
【0080】
実施形態2に係る双極型電極23は、実施形態1の双極型電極23の構成と全く同一である。実施形態1では、図2に示すように、正極活物質層13のイオン導電部13Iは集電体11の一方の面に電気的に結合され、また、負極活物質層15のイオン導電部15Iは集電体11の反対側の面に電気的に結合された。つまり、正極活物質層13及び負極活物質層15は、イオン導電部13I側とイオン導電部15I側が集電体11の表面に配置された。
【0081】
実施形態2では、図4に示すように、正極活物質層13及び負極活物質層15を鉛直方向に180°回転している。したがって、分割活物質部13a、13b、13c、…、15a、15b、15c、…は集電体11の表面に配置される。分割活物質部13a、13b、13c、…、15a、15b、15c、…は集電体11に接する面に対向する正極活物質層13及び負極活物質層15の表面でイオン導電部13I、15Iによって連結される。
【0082】
実施形態2では、上記のように、正極活物質層13及び負極活物質層15の配置が実施形態1と異なるだけで、正極活物質層13及び負極活物質層15の構成自体はまったく同一である。したがって、正極活物質層13及び負極活物質層15の構成や効果についての説明は省略する。
【0083】
実施形態2に係る双極型電極23では、正極活物質層13及び負極活物質層15のイオン導電部13I、15Iが集電体11に接する面とは反対側の面に形成している。このため、正極活物質層13及び負極活物質層15の表面が平板状で滑らかになるため、電解質層17を振動などによって傷つけることがなくなる。このことは、加振試験を行っても短絡の発生が抑制されていることによっても裏づけられている。
【0084】
以上の実施形態2では、実施形態1の効果に加えて次のような効果を奏する。
(I)実施形態2に係る双極型電極23では、正極活物質層13及び負極活物質層15の表面が平板状で滑らかになるため、電解質層17を振動などによって傷つけることがなくなる。
[実施形態3]
図5は、実施形態3に係る双極型電極の構造図であり、同図Aは双極型電極の平面図を示し、同図BはAの3−3断面図を示す。なお、この図では双極型電極の構造を理解し易くするために、凹凸部分の寸法比率を誇張して示してある。
【0085】
実施形態3に係る双極型電極23は、導電性を有する集電体11の一方の面に正極活物質層13が形成され、集電体11の反対側の面に負極活物質層15が形成されている。
【0086】
正極活物質層13は、複数の分割活物質部13a、13b、13c、…が完全に分離した状態で集電体11上に配置される。また、負極活物質層15は、複数の分割活物質部15a、15b、15c、…が完全に分離した状態で集電体11上に配置される。
【0087】
正極活物質層13及び負極活物質層15は、集電体11上に、複数の分割活物質部13a、13b、13c、…及び複数の分割活物質部15a、15b、15c、…を一定の間隔で二次元方向に形成した構造を有する。
【0088】
複数の分割活物質部13a、13b、13c、…及び複数の分割活物質部15a、15b、15c、…は、正極活物質層13及び負極活物質層15をエンボスロールでプレスし、エンボス加工することによって溝を付け、相互の分割活物質部を完全に分離することによって形成する。
【0089】
正極活物質層13の分割活物質部13a、13b、13c、…のそれぞれの間の溝には、分割活物質部13a、13b、13c、…の抵抗よりも大きな抵抗の活物質13Rを埋め込んで、分割活物質部13a、13b、13c、…同士を連結する。負極活物質層15の分割活物質部15a、15b、15c、…のそれぞれの間の溝には、分割活物質部15a、15b、15c、…の抵抗よりも大きな抵抗の活物質15Rを埋め込んで、分割活物質部15a、15b、15c、…同士を連結する。
【0090】
正極活物質層13の活物質13R及び負極活物質層15の活物質15Rはイオン導電部として機能するものであって、リチウムイオンが注入、流通できる物質である。具体的には、正極活物質層13の活物質13Rとしてニッケル酸リチウムを、負極活物質層15の活物質15Rとしてシリコンをそれぞれ用いる。
【0091】
上記では、複数の分割活物質部13a、13b、13c、…及び複数の分割活物質部15a、15b、15c、…を、エンボスロールを用いたプレス加工によって形成し、それぞれの分割活物質部の間には、活物質13R、15Rを埋め込んだ。しかし、エンボスロールを用いたプレス加工ではなく、分割活物質用の活物質とイオン導電部用の活物質を一定の間隔で交互に、集電体11の表面上にインクジェット方式で堆積させることによって、正極活物質層13及び負極活物質層15を形成するようにしても良い。
【0092】
図5Aに示すように、正極活物質層13は、分割活物質部13a、13b、13c、…の間に活物質13Rが充填される構成を有している。図示してはいないが、負極活物質層15も、正極活物質層13と同様の構成を有している。
【0093】
実施形態3に係る双極型電極23は、正極活物質層13及び負極活物質層15が平坦であり、活物質13Rの充填によって溝が形成されていないので、電解質層17を振動などによって傷つけることがなくなる。このことは、加振試験を行っても短絡の発生が抑制されていることによっても裏づけられている。また、分割活物質部間が高抵抗の活物質で埋まっているので、容量ロスがなくなり、体積あたりのエネルギー密度の向上に繋がる。
【0094】
このように、正極活物質層13及び負極活物質層15が複数の分割活物質部を有し分割活物質間を高抵抗の活物質で埋めると、電流は、分割活物質部間を自由に流れることはできず、高抵抗の活物質を介して流れることになる。この構成によって、正極活物質層13及び負極活物質層15の平面方向の抵抗率が積層方向の抵抗率よりも大きくなり、双極型リチウムイオン二次電池10で内部短絡が発生したとしても、短絡部位に電流が集中して流れることが抑制できる。また、充放電時には高抵抗の活物質によって分割活物質部間にイオンが均一に分布することになるので、正極活物質層13及び負極活物質層15の充電深度及び放電深度が均一になり、双極型電極23の耐久性の低下が抑制できる。
【0095】
正極活物質層13のイオン導電部として機能する活物質13Rの幅W1は、正極活物質層13の平面方向の抵抗が平面状に連続する正極活物質層の平面方向の抵抗の4倍以上の抵抗となる幅であることが好ましい。このことは、負極活物質層15の活物質15Rの幅W2に対しても同様に言える。正極活物質層13及び負極活物質層15の平面方向の抵抗が大きくなると、双極型リチウムイオン二次電池10で内部短絡が発生したとしても、短絡部位に電流が集中して流れることが抑制できる。
【0096】
なお、以上で例示した正極活物質層13と負極活物質層15の形状は、分割活物質部を一定の間隔を隔てて平面方向に周期的に配置し分割活物質部の間に活物質を充填したものである。しかし、これに限らず、分割活物質部を一方向に連続するストライプ状とし、分割物質部を一定間隔で配置しその間に活物質を充填することも可能である。
【0097】
また、以上で例示した正極活物質層13と負極活物質層15の形状は、いずれも分割活物質部を一定の間隔を隔てて周期的に配置し分割活物質部の間に活物質を充填したものであるが、正極活物質層13または負極活物質層15のいずれか一方をこのような形状とし、他方は単なる平板状としても良い。この場合、活物質の抵抗率がより低い方の活物質層に分割活物質部を形成するようにする。このようにすれば、双極型リチウムイオン二次電池10で内部短絡が発生したときに、短絡部位に電流が集中して流れることを効果的に抑制することができるからである。
【0098】
さらに、集電体11としては、平面方向の抵抗率が積層方向(厚み方向)の抵抗率に比較して大きい、導電性樹脂集電体を用いることが好ましい。双極型リチウムイオン二次電池10で内部短絡が発生したときに、短絡部位に電流が集中して流れることを効果的に抑制することができるからである。
【0099】
以上で説明した双極型電極23は、双極型電池用の電極であるが、本発明に係る電池用電極は双極型電池に限らず、様々な種類の二次電池の電極としても適用することができる。例えば、非水電解液をセパレータに含浸させた液体電解質型電池、ポリマー電池とも称される高分子ゲル電解質型電池及び固体高分子電解質(全固体電解質)型電池のいずれにも適用できる。
【0100】
以上の実施形態3では、実施形態1の効果に加えて次のような効果を奏する。
(j)正極活物質層13及び負極活物質層15が平坦であり、溝が形成されていないので、電解質層17を振動などによって傷つけることがなくなる。
(k)分割活物質部間が高抵抗の活物質で埋まっているので、容量ロスがなくなり、体積あたりのエネルギー密度の向上に繋がる。
(l)イオン導電部を分割活物質部の抵抗率よりも大きな抵抗率の活物質で構成することで、正極活物質層13及び負極活物質層15の平面方向の抵抗が大きくなり、内部短絡が発生したとしても、短絡部位に電流が集中して流れることが抑制できる。
【実施例】
【0101】
以下、本発明の効果を実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
<実施例1>
(1)正極層の作成
ニッケル酸リチウム粉末(活物質、累積分布が50%で粒径が10μm、10%で粒径が2μm)、PVDF(ポリフッ化ビニリデン、結着材)、カーボン粉末(導電助剤)をそれぞれ90:5:5(重量比)でNMP(N−メチルピロリドン)に分散させて正極スラリーを作成した。正極スラリーを、ダイコーターで導電フィラー含有樹脂フィルムに塗布し、乾燥して正極層を作成した。なお、上述の累積分布は粒径が小さい方から積分して求めたものである。以下に記載する累積分布も同様である。
(2)負極層の作成
グラファイト粉末(活物質、累積分布が50%で粒径が20μm、10%で粒径が5μm)、PVDF(ポリフッ化ビニリデン、結着材)、カーボン粉末(導電助剤)をそれぞれ90:2:8(重量比)でNMP(N−メチルピロリドン)に分散させて負極スラリーを作成した。負極スラリーを、正極層を作成した後の導電フィラー含有樹脂フィルムの正極層の反対側にダイコーターで塗布し、乾燥して負極層を作成した。
(3)電極の作成
正極層および負極層が作成された導電フィラー含有樹脂フィルムをプレスで圧縮して双極型リチウムイオン二次電池の電極を作成した。プレス後の正極層の厚みは120μmであり、負極層の厚みは130μmであった。
(4)電極の加工
作成した電極をエンボスロール(正方形形状で、ピッチが200μm、幅が50μm、深さが100μm)でプレスし、図2に示したように正極層と負極層がエンボス加工(溝付け加工)された電極を作成した。エンボス加工した後の正極層と負極層は、導電フィラー含有樹脂フィルム側で繋がっている(連結している)ことを確認した。
(5)電池の作成
ポリプロピレン製の厚さ50μmの不織布に、イオン伝導性高分子マトリックスの前駆体である平均分子量7500〜9000のモノマー溶液(ポリエチレンオキシドとポリプロピレンオキシドの共重合体)5重量%、電解液としてEC+DMC(1:3)95重量%、1.0M LiBF4、重合開始剤(BDK)からなるプレゲル溶液を浸漬させる。
【0102】
そして、これらの溶液が浸漬した不織布を石英ガラス基板に挟み込み、紫外線を15分間照射して前駆体を架橋させ、ゲルポリマー電解質層を作成した。その後、上述の電極の負極層上にゲルポリマー電解質層を載せ、その周りにシール材として三層構造のホットメルトを置いた。そして、電極、ゲルポリマー電解質層およびシール材を4層積層し、最外層に電極を積層して積層体を形成した後、シール材に上下から熱と圧力をかけて融着し各層をシールした。
【0103】
最後に、シール後の積層体をラミネートパックで封止し、双極型リチウムイオン二次電池を作成した。
<実施例2>
(1)正極の作成
ニッケル酸リチウム粉末(活物質、累積分布が50%で粒径が10μm、10%で粒径が2μm)、PVDF(ポリフッ化ビニリデン、結着材)、カーボン粉末(導電助剤)をそれぞれ90:5:5(重量比)でNMP(N−メチルピロリドン)に分散させて正極スラリーを作成した。正極スラリーを、ダイコーターでアルミ箔に塗布して正極層を作成し、乾燥し、プレスで圧縮して正極を作成した。プレス後の正極層の厚みは120μmであった。
(2)負極の作成
グラファイト粉末(活物質、累積分布が50%で粒径が20μm、10%で粒径が5μm)、PVDF(ポリフッ化ビニリデン、結着材)、カーボン粉末(導電助剤)をそれぞれ90:2:8(重量比)でNMP(N−メチルピロリドン)に分散させて負極スラリーを作成した。負極スラリーを、ダイコーターで銅箔に塗布して負極層を作成し、乾燥し、プレスで圧縮して負極を作成した。プレス後の負極層の厚みは130μmであった。
(3)電極の加工
作成した正極と負極をエンボスロール(正方形形状で、ピッチが200μm、幅が50μm、深さが100μm)でプレスし、正極層と負極層をエンボス加工(溝付け加工)した。その後、エンボス加工した正極層と負極層が導電フィラー含有樹脂フィルム側になるように、正極(アルミ箔が芯体)−導電フィラー含有樹脂フィルム−負極(銅箔が芯体)の3シートを重ね合わせた。次に、これを真空状態で加熱プレスし、導電フィラー含有樹脂フィルム上に正極層と負極層を熱溶着させた。その後、正極からアルミ箔を、負極から銅箔をそれぞれ剥がすことにより、図4に示したように正極層と負極層のエンボス加工側が導電フィラー含有樹脂フィルムに溶着した電極を作成した。正極層と負極層は、導電フィラー含有樹脂フィルムに溶着している面とは反対側の正極層と負極層の表面で繋がっている(連結している)ことを確認した。
(4)電池の作成
電池の作成は実施例1と同一の方法で行った。
<実施例3>
(1)正極の作成
正極の作成は実施例2と同一の方法で行った。
(2)負極の作成
負極の作成は実施例2と同一の方法で行った。
(3)電極の加工
作成した正極と負極をエンボスロール(正方形形状で、ピッチが2mm、幅が100μm、深さが200μm)でプレスし、正極層と負極層をエンボス加工(溝付け加工)した。エンボス加工した後の正極層と負極層は、それぞれ溝によって細分化されており、細分化された個々の領域は互いに繋がっておらず(連結しておらず)、分離していることを確認した。正極層の溝は、ニッケル酸リチウム粉末(活物質、累積分布が50%で粒径が10μm、10%で粒径が2μm)とPVDF(ポリフッ化ビニリデン、結着材)をそれぞれ95:5(重量比)でNMP(N−メチルピロリドン)に分散させたスラリーをスキージ塗工し、乾燥させることによって埋め込んだ。負極層の溝は、シリコン粉末(活物質、累積分布が50%で粒径が2μm、10%で粒径が0.1μm)、ポリイミド前駆体樹脂(結着材)、カーボン粉末(導電助剤)をそれぞれ85:10:5(重量比)でNMP(N−メチルピロリドン)に分散させたスラリーをスキージ塗工して、乾燥させることによって埋め込んだ。その後、エンボス加工した正極層と負極層が導電フィラー含有樹脂フィルム側になるように、正極(アルミ箔が芯体)−導電フィラー含有樹脂フィルム−負極(銅箔が芯体)の3シートを重ね合わせた。次に、これを真空状態で加熱プレスし、導電フィラー含有樹脂フィルム上に正極層と負極層を熱溶着させた。その後、正極からアルミ箔を、負極から銅箔をそれぞれ剥がすことにより、図5に示したように正極層と負極層の溝にそれぞれ正極層および負極層の抵抗よりも高い抵抗を呈する高抵抗層を埋め込んだ電極を作成した。
(4)電池の作成
電池の作成は実施例1と同一の方法で行った。
<比較例1>
比較例1は、電極の加工(エンボス加工)を行なわない点で実施例1と異なる。電極の平面及び断面は図6A、Bに示すとおりである。図6Aは双極型電極の平面図を示し、図6BはAの4−4断面図を示す。集電体11の両面に配置される正極層13及び負極層15は平板状である。
(1)正極層の作成
正極層の作成は実施例1と同一の方法で行った。
(2)負極層の作成
負極層の作成は実施例1と同一の方法で行った。
(3)電極の作成
電極の作成は実施例1と同一の方法で行った。
(4)電池の作成
電池の作成は実施例1と同一の方法で行った。
<比較例2>
比較例2は、エンボス加工した後の正極層と負極層の細分化された領域がそれぞれ電極層の表面で繋がっておらず、分離している点で実施例2と異なる。電極の平面及び断面は図7A、Bに示すとおりである。図7Aは双極型電極の平面図を示し、図7BはAの5−5断面図を示す。集電体11の両面に配置される正極層13及び負極層15は、エンボスロールでプレスし、正極層と負極層をエンボス加工した。エンボス加工した後の正極層と負極層は、それぞれ溝によって細分化されており、細分化された個々の領域は互いに繋がっていない。正極層13及び負極層15は、集電体11上に、互いに一定の間隔で分離した状態で配置される。
(1)正極の作成
正極の作成は実施例2と同一の方法で行った。
(2)負極の作成
負極の作成は実施例2と同一の方法で行った。
(3)電極の加工
作成した正極と負極をエンボスロール(正方形形状で、ピッチが200μm、幅が50μm、深さが200μm)でプレス加工した。その後、正極(アルミ箔が芯体)−導電フィラー含有樹脂フィルム−負極(銅箔が芯体)の3シートを重ね合わせた。次に、これを真空状態で加熱プレスし、導電フィラー含有樹脂フィルム上に正極層と負極層を熱溶着させた。その後、正極からアルミ箔を、負極から銅箔をそれぞれ剥がすことにより、正極層と負極層がエンボス加工された電極を作成した。エンボス加工した後の正極層と負極層は、それぞれ溝によって細分化されており、細分化された個々の領域は互いに繋がっておらず(連結しておらず)、分離していることを確認した。
(4)電池の作成
電池の作成は実施例1と同一の方法で行った。
<評価試験方法>
(1)平面方向抵抗測定
電極を幅5cm、長さ10cmの長方形にカットし、実施例1〜3および比較例1、2の電極の各々を、電極の長さ方向の端部を金蒸着したバスバーに挟み込み、長さ10cmあたりの平面方向の直流抵抗を測定した。
(2)容量確認試験
実施例1〜3および比較例1、2の電池で容量確認試験を行った。
【0104】
容量確認試験では、0.1Cの電流で13.5Vまで定電流充電(CC)し、その後定電圧で充電(CV)するという充電方法で15時間の充電を行った後、0.1Cの電流で7.5Vまで放電させて、電圧が7.5Vに低下するまでに放電した電池の容量を測定した。
(3)充放電サイクル試験
実施例1〜3および比較例1、2の電池で充放電サイクル試験を行った。
【0105】
充放電サイクル試験では、0.5Cの電流で13.5Vまで定電流充電(CC)し、その後定電圧で充電(CV)するという充電方法で5時間の充電を行った後、0.5Cの電流で7.5Vまで放電させるというサイクルを一サイクルとした。このサイクルを20回繰り返して、充放電サイクル試験を行った後の電池の容量が行なう前の電池の容量に対して何%保持されているかを示す、サイクル保持率を測定した。
(4)釘刺し試験
実施例1〜3および比較例1、2の電池で釘刺し試験を行った。
【0106】
釘刺し試験では、電池を満充電し、電池の中心部に厚み方向からφ10の鉄製の導電性釘を刺し、釘を刺す前の電池の温度が釘を刺した後何℃上昇するかを示す、電池の発熱温度を測定した。
(5)加振試験
実施例1〜3および比較例1、2の電池で加振試験を行った。
【0107】
加振試験では、0.5Cの電流で13.5Vまで定電流充電(CC)し、その後定電圧で充電(CV)するという充電方法で5時間の充電を行った後、しっかり固定した電池に対して垂直の方向に振幅が3mmで50Hzの単調な振動を200時間加えることにより行った。実施例1〜3および比較例1、2の電池に対してそれぞれ5個ずつの電池を加振試験し、加振試験前と加振試験後の電圧を比較して加振試験前後の電圧差を測定した。
【0108】
これらの試験の結果を下記の表1に示す。
【0109】
【表1】

【0110】
実施例1〜3の電池を構成する電極の平面方向抵抗は、比較例1に対しては12〜15倍程度であり、比較例2に対しては0.5〜0.6倍程度である。内部短絡発生時における短絡部位への電流集中を極力抑えるための対策を採っていない比較例1の電池の電極の平面方向抵抗よりも実施例1〜3の電池の電極の平面方向抵抗は大きい。内部短絡発生時における短絡部位への電流集中を極力抑えるための対策を採っている比較例2の電池の電極の平面方向抵抗よりも実施例1〜3の電池の電極の平面方向抵抗は小さい。
【0111】
実施例1〜3の電池の電極の活物質層が有するイオン導電部の存在が、上記のような平面方向抵抗を呈する役割を担っている。
【0112】
実施例1、2の電池の充放電容量は比較例1、2の電池の充放電容量とほぼ同じである。実施例3の電池の充放電容量は比較例1、2の電池の充放電容量よりも大きくなっている。これは、実施例3の電池では、正極層と負極層の溝にそれぞれ正極層および負極層の抵抗よりも高い抵抗を呈する高抵抗層を埋め込んだためである。
【0113】
実施例1〜3の電池のサイクル保持率は比較例1の電池とほぼ同じである。比較例2の電池と比べると実施例1〜3の電池のサイクル保持率の方が大きくなっている。
【0114】
実施例1〜3の電池の釘刺し試験の結果は、比較例1の電池よりも良好で、比較例2の電池よりも劣っている。比較例1の電池は、内部短絡発生時における短絡部位への電流集中を極力抑えるための対策を採っていないためであり、比較例2の電池は、内部短絡発生時における短絡部位への電流集中を極力抑えるための対策を採っているからである。この試験結果から、内部短絡発生時における短絡部位への電流集中が抑制できていることがわかる。実施例1〜3の電池は、40℃〜50℃程度の温度上昇をする。比較例2の電池に比較して高い温度上昇を許容するのは、これと引き換えに、充放電時における電極の耐久性の低下も抑制することができるようにしているためである。
【0115】
実施例1〜3の電池の加振試験の結果は、実施例2,3の電池の電圧差が比較例1の電池の電圧差とほぼ同じであり、実施例1の電池が比較例2の電池よりも若干降下する電圧が大きくなっている。この試験結果から、充放電時における電極の耐久性の低下が抑制できていることがわかる。
【0116】
以上の試験結果から、実施例1〜3の電池は、比較例1及び2の電池に対して、内部短絡発生時における短絡部位への電流集中が抑制でき、充放電時における電極の耐久性の低下も抑制できる電池であることがわかる。
【符号の説明】
【0117】
10 双極型リチウムイオン二次電池、
11 集電体、
11a、11b 最外層集電体、
13 正極活物質層、
13a、13b、13c、… 分割活物質部、
13I イオン導電部、
13R 活物質、
15 負極活物質層、
15a、15b、15c、… 分割活物質部、
15I イオン導電部、
15R 活物質、
17 電解質層、
19 単電池層、
21 発電要素、
23 双極型電極、
25 正極集電板、
27 負極集電板、
29 電池外装材、
31 絶縁部。

【特許請求の範囲】
【請求項1】
導電性を有する基材の表面に活物質層が形成された電池用電極であって、
前記活物質層は、分割された複数の分割活物質部と、前記分割活物質部を相互に連結するイオン導電部と、から構成されることを特徴とする電池用電極。
【請求項2】
前記イオン導電部の厚さは、前記活物質層の平面方向の抵抗が平面状に連続する活物質層の平面方向の抵抗の4倍以上の抵抗となる厚さであることを特徴とする請求項1に記載の電池用電極。
【請求項3】
前記イオン導電部は活物質を含むことを特徴とする請求項1または2に記載の電池用電極。
【請求項4】
前記分割活物質部は、前記基材の表面で前記イオン導電部によって連結されていることを特徴とする請求項1から3のいずれかに記載の電池用電極。
【請求項5】
前記分割活物質部は、前記基材に接する面に対向する前記活物質層の表面で前記イオン導電部によって連結されていることを特徴とする請求項1から3のいずれかに記載の電池用電極。
【請求項6】
前記イオン導電部は、前記分割活物質部の抵抗よりも大きな抵抗の活物質で前記分割活物質層同士を連結することを特徴とする請求項1に記載の電池用電極。
【請求項7】
請求項1から6のいずれかの電池用電極の基材に樹脂集電体を用いたことを特徴とする双極型電池用電極。
【請求項8】
請求項1から6のいずれかの電池用電極または請求項7の双極型電池用電極を用いたことを特徴とする双極型電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−258435(P2011−258435A)
【公開日】平成23年12月22日(2011.12.22)
【国際特許分類】
【出願番号】特願2010−132640(P2010−132640)
【出願日】平成22年6月10日(2010.6.10)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】