説明

電源回路装置およびそれを用いたバックライト装置

【課題】 液晶表示装置の画面に生じるビートノイズやちらつき等を防ぐために、液晶表示装置の垂直同期周波数と同期することのないデューティー信号を生成させる。
【解決手段】 電源回路装置内に振動センサ22を設置して、圧電トランス12の時分割駆動による振動状態と停止状態との繰り返し周波数を検出する。そしてこの周波数をもとに、三角波生成回路18に接続された周波数調整用の抵抗20の値を制御する。これにより、圧電トランス12の繰り返し周波数が、負荷13が用いられる液晶表示装置の垂直同期周波数と同期する可能性がある周波数域内の値とならないように制御することが可能となる。従って、経年変化や周囲温度の変化などがあっても前記不具合の発生を防止することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶表示装置に搭載されるバックライト装置の駆動用電源として用いられる電源回路装置、およびそれを用いたバックライト装置に関する。
【背景技術】
【0002】
近年、フラットパネルディスプレイは薄型、軽量といった利点により需要が急速に拡大している。その中でも液晶表示装置は小型、薄型、低消費電力などの特徴があり、携帯電話の表示画面やノート型パーソナルコンピュータのディスプレイなどに応用されている。また最近では大画面テレビジョンなどへの応用も盛んに行なわれている。
【0003】
液晶表示装置では、液晶自体が発光しないことから液晶パネルの背面にバックライト装置を設置して、その発光による透過光を液晶パネルにより制御することで画像表示を行っている。バックライト装置には光源として冷陰極管、熱陰極管、外部電極管などの放電管が用いられるが、このうち冷陰極管は小口径で細長い形状の放電管を実現できることからバックライト装置の薄型化を図ることができ、しかも製品寿命が長いという特徴を有するために、多くのバックライト装置で光源として採用されている。
【0004】
冷陰極管を代表とする放電管を駆動するためには、一般に高電圧の交流電流が必要である。従ってバックライト装置の電源回路は外部から供給される低電圧の直流電流を放電管駆動用の交流、高電圧の電流に変換する必要があり、そのために昇圧トランスを有する昇圧型インバータ回路が用いられている。この昇圧トランスとしては、近年では安全性が高く、小型、薄型、高変換効率であるといった優位性を持つことなどから、圧電トランスの採用が増加している。
【0005】
圧電トランスは巻線式のトランスとは異なり、電気エネルギーを一度機械エネルギーに変換し、それを再び電気エネルギーに変換することで高効率な電圧変換を実現する素子である。圧電トランスは一般に圧電セラミックにより形成され、ローゼン型と称される、矩形板の形状をなすタイプが主に用いられている。ローゼン型の圧電トランスは、圧電セラミックの矩形板に一次側として厚さ方向、二次側として長さ方向にそれぞれ分極を施したもので、矩形板の振動により二次側では大きな電圧を得ることができる。ここで圧電トランスの昇圧比はその駆動周波数に依存する。従って圧電トランスの出力電圧を高くしたい場合にはその駆動周波数を圧電トランスの共振周波数に近づけることで昇圧比を上げることができ、また低くしたい場合には共振周波数から遠ざけることで昇圧比を下げることが可能である。このように、駆動周波数を変化させることによって圧電トランスの出力電圧を所望の値となるように制御することができる。この駆動周波数の制御のために、前記の昇圧型インバータ回路が用いられる。
【0006】
特許文献1には、圧電トランスを用いて放電管を点灯させる電源回路に関する従来例が記載されている。特許文献1に記載の電源回路は、冷陰極管を用いた液晶表示装置のバックライト装置の駆動電源への応用を念頭に置いたものであって、このうち特許文献1の第3の実施例には、時分割駆動により圧電トランスが負荷に入力する平均出力電力を制御する場合の例が示されている。図5に、特許文献1の第3の実施例における電源回路のブロック図を示す。
【0007】
図5において、冷陰極管などの放電管である負荷53を点灯させるために、圧電トランス52には駆動回路51から駆動用の交流電流が入力される。この入力された交流電流は圧電トランス52によって昇圧されたのち、負荷53に入力されて放電管を点灯させて消費される。交流電流の入力により負荷53に流れる負荷電流は、負荷電流比較回路54に入力される。負荷電流比較回路54では入力された負荷電流に対して電流−電圧変換が行われ、変換された電圧は予め与えられている所定の負荷電流値に対応する基準電圧Vrefと比較される。負荷電流比較回路54は周波数掃引発振器55に接続されており、周波数掃引発振器55では、負荷電流比較回路54における負荷電流の比較結果に応じて負荷53の点灯時における駆動信号の周波数が調節される。
【0008】
周波数掃引発振器55は駆動回路51からの出力である駆動用の交流電圧の周波数を決定するための素子であり、負荷53を点灯させる際に、圧電トランス52からの交流電流の周波数を掃引させるべく駆動周波数を変化させる役割を有する。この駆動周波数は一般に数十kHzないし数百kHzの高周波である。負荷53の点灯後の交流電流の周波数は、負荷電流比較回路54における基準電圧Vrefとの比較結果によって決定されることは前記の通りである。
【0009】
また、時分割駆動制御回路56は放電管である負荷53の輝度を調節するために設けられた素子であり、圧電トランス52を時分割駆動とすることで、負荷53の駆動時の点灯期間と消灯期間の時間比率を設定する。この放電管の点灯、消灯の時間比率を調節することにより、負荷53の輝度の調節を行う。時分割駆動制御回路56では、デューティー設定端子Vdutyに入力された輝度の調節のための信号に基づき、駆動回路51の駆動、非駆動の各期間の時間比率を制御している。この輝度の調節のための信号(以下デューティー信号)は一般に数百Hz程度の矩形波である。
【0010】
なお時分割駆動制御回路56からの出力は周波数掃引発振器55にも入力されているが、これは消灯期間となった後に、駆動回路51に入力される駆動用の交流電圧の周波数を初期値に戻すためである。周波数掃引発振器55から駆動回路51に出力される駆動周波数はこの入力によってリセットされ、点灯期間の開始時には、掃引が放電管を点灯させるために設定された初期の周波数から必ず開始されることとなる。
【0011】
なお、時分割駆動による前記の放電管の輝度の調節方法は、放電管を点灯させたまま入力される交流電流の電流量を調整してその明るさを調光する方法に比べ、とくに低輝度領域において輝度の調節可能な範囲が広いという特徴を有している。
【0012】
ところで、バックライト装置の光源である放電管を時分割駆動する際に設定される時分割周波数は、前記の通り一般に数百Hz程度である。しかしながら、この時分割周波数が液晶表示装置の垂直同期周波数の整数倍となる周波数の近傍の値となる場合(以下、同期する場合と表記)には、放電管の時分割駆動を行うと、液晶表示装置の画面にビートノイズ(画面に縦の縞模様として発生するノイズ)やちらつき等の不具合が発生する場合があるという問題があった。ここで、放電管の時分割周波数と液晶表示装置の垂直同期周波数とが同期する場合に液晶表示装置の画面に前記不具合が発生する原因の詳細は必ずしも明らかではないが、人間の眼の特性に関わる視覚的な理由と、液晶表示装置の駆動信号の干渉に関わる電気的な理由の双方が関与しているのではないかと考えられる。
【0013】
まず視覚的な理由については以下のように考えられる。1枚の液晶画面の書き換えの際に必要となる応答時間の間は液晶によって放電管からの光が遮られ、ブラックアウトの状態となる。従って放電管の時分割周波数と液晶表示装置の垂直同期周波数とが同期すると、液晶画面のブラックアウトの期間と放電管の消灯期間とが連続するか、もしくはごく短い発光期間を挟んで連続するようになる。このため両者の周波数が同期している場合には、液晶表示装置の画面が事実上長時間消灯した状態が一定間隔で繰り返されることとなり、これが人間の眼には画面のちらつきとして感じられるものと推定される。
【0014】
またビートノイズについては、バックライト装置における放電管の駆動信号が液晶画面の描画のための信号にノイズとして重畳することにより発生すると考えられる。両者の周波数が同期している場合にはノイズによる濃淡の縞模様の位置などが画面上で固定されてしまうため、ビートノイズとして観察されることとなる。また液晶画面の描画信号へのノイズの重畳は、画面のちらつきの発生にも関係している可能性がある。
【0015】
このような液晶表示装置の画面へのビートノイズやちらつきの発生の問題を解決するために、特許文献1の例においては、放電管を時分割駆動する周波数を、液晶表示装置の垂直同期周波数の整数倍となる周波数から上下に10Hzの領域を避けるように設定している。即ち図5における時分割駆動制御回路56のデューティー設定端子Vdutyに入力される輝度調節のための信号を、前記周波数の領域を避けた値に予め設定することにより、液晶表示装置の画面に生じる不具合の発生の抑制を図っている。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特開平8−107678号公報
【発明の概要】
【発明が解決しようとする課題】
【0017】
液晶表示装置の輝度の調節のために、放電管を駆動する圧電トランスを時分割駆動する場合、圧電トランスの駆動回路を構成する時分割駆動制御回路のデューティー設定端子Vdutyに入力されるデューティー信号は、前記の通り一般に数百Hz程度の矩形波である。このデューティー信号には、液晶表示装置の駆動用電源を制御するマザーボードなどで生成された外部信号や、放電管を点灯させる電源回路装置の内部に設けられた三角波生成回路にて作成された三角波をもとに生成された信号が用いられ、一般にPWM(パルス幅変調:Pulse Width Modulation)信号が使用される。
【0018】
ここで電源回路装置の内部で三角波を作成する場合、その周波数は三角波生成回路に接続された周波数調整用のコンデンサの容量および抵抗の値によって決定される。ところが一般にコンデンサの容量の値は長期使用による経年変化や動作時の使用環境の温度(周囲温度)などによって変動することが知られており、その変動に伴って作成される三角波の周波数、即ちデューティー信号の周波数も変動する。この周波数は放電管を時分割駆動する周波数である。従って特許文献1の例のように、予めデューティー信号の周波数を液晶表示装置の垂直同期周波数と同期しない値に設定していたとしても、周囲温度の変化などによって放電管の時分割周波数が変動し、それにより結果として垂直同期周波数との同期が生じる場合があった。この場合には前記のように、液晶表示装置の画面にビートノイズやちらつきが発生する可能性がある。
【0019】
また、時分割駆動制御回路に入力されるデューティー信号として外部からのPWM信号を用いる場合であっても、その外部信号において液晶表示装置の垂直同期周波数との同期の問題がとくに考慮されていない場合や、使用環境などによって周波数が変動する信号を使用している場合は、前記と同様の問題が発生する可能性があった。以上の理由により電源回路装置において、時分割駆動制御回路に入力されるデューティー信号として信頼できる内部信号を用いるとともに、この内部信号が液晶表示装置の垂直同期周波数と決して同期することがないように制御する手段が求められていた。
【0020】
本発明は、液晶表示装置の垂直同期周波数と同期することのないデューティー信号を生成する機能を有し、そのような信号を時分割駆動制御回路に入力する構成を有する電源回路装置、およびそれを用いた液晶表示装置を提案するものである。
【課題を解決するための手段】
【0021】
電源回路装置において、時分割駆動制御回路に入力されるデューティー信号として内部信号を用いる場合には、デューティー信号の元となる三角波は電源回路装置の内部の三角波生成回路にて作成されることとなる。そして、その周波数を決定する素子が三角波生成回路に接続された周波数調整用のコンデンサおよび抵抗である。ここで、このコンデンサの容量が変化してこの時分割周波数が液晶表示装置の垂直同期周波数と同期する可能性のある周波数域内まで変動した場合を考える。このような場合にも、電源回路装置内にこの時分割周波数を検出する機能を設けておき、その検出結果に基づいて周波数調整用の抵抗の値を変化させることができるならば、この同期の問題を解決することができる。発明者らは検討の結果、電源回路装置内の圧電トランスがその駆動の際に振動を伴うことに着目し、圧電トランスの振動を検出して、その基本振動の周波数をもとに前記周波数調整用の抵抗の値を制御する構成とすることが適切であることを見いだした。
【0022】
なお、三角波生成回路に接続された周波数調整用の抵抗の値を制御するためには、この抵抗を可変抵抗とする必要がある。このためには電界効果トランジスタなどの半導体素子を使用した抵抗回路を用いることが好適である。ここで抵抗値の代わりに周波数調整用のコンデンサの容量を制御する方法も考えられる。しかし、一般にコンデンサの容量を変化させるためにはバリキャップなどの比較的大型の構造部品が必要であり、半導体のような小規模素子のみを用いた回路構成とすることは困難である。本発明の電源回路装置は、放電管点灯用などの小型化が要求される用途での使用が想定されるものであるので、コンデンサの容量の制御により時分割周波数を制御することは困難である。
【0023】
電源回路装置内の圧電トランスは、放電管に高電圧の交流電流を入力して点灯させるべく、数十kHzないし数百kHzの高周波の周波数にて振動する。この圧電トランスの振動の動作は、放電管を時分割駆動している場合には数百Hzの周波数にて振動状態と停止状態とを繰り返している。この振動状態と停止状態の繰り返しによる基本振動の周波数(繰り返し周波数)が放電管の時分割駆動の周波数である。従ってこの繰り返し周波数を検出して、その値が液晶表示装置の垂直同期周波数との同期の可能性がある周波数域内の値とならないように、前記周波数調整用の抵抗の値を調整するようにすれば、前記の周波数の同期が生じることはない。従ってこれにより液晶表示装置の画面でのビートノイズやちらつき等の不具合の発生を防止することができる。
【0024】
圧電トランスの振動状態と停止状態との繰り返し周波数を検出する手段としては振動センサが用いられ、とくに表面実装型の電荷出力型圧電式振動センサの使用が好適である。電荷出力型圧電式振動センサは一般に小型、安価であり、また経年変化が小さいという特徴を有している。しかしながら電源回路装置内に設置可能で圧電トランスの振動の繰り返しを問題なく検出できるものであるなら、表面実装型の前記電荷出力型圧電式振動センサに限定されるものではない。ここで電源回路装置内における振動センサの設置場所としては、電源回路装置が備える回路基板の面上や、前記回路基板の面上に設置された搭載部品の面上、もしくは前記搭載部品の内部のいずれかであることが好ましい。いずれにしても振動の発生源である圧電トランスの近傍に設置することが必要である。
【0025】
ただし振動センサを圧電トランスそのものに直接固定することは、圧電トランスの動作に影響を与える可能性があることから好ましくない。また、圧電トランスでは高電圧が発生することから、周囲の基板回路との絶縁性を確保するために絶縁体によるケース内に収納して配置することがあるが、その場合には振動センサを前記ケース内に圧電トランスとともに設置するか、もしくは絶縁体によるケースの面上に配置することが好適である。
【0026】
さらに用いられる振動センサによる繰り返し周波数の検出範囲は50Hzないし2kHzであることが望ましい。これは液晶表示装置の垂直同期周波数の値がその用途である携帯電話、パーソナルコンピュータの専用画面やテレビジョンなどにおいて等倍駆動や倍速駆動、4倍速駆動を行う場合でも、一般に50Hzないし240Hz程度であることによる。従って、液晶表示装置のバックライト装置に用いられる放電管の輝度を調節するための時分割周波数はその数倍程度の値である。検出範囲が50Hzないし2kHzの振動センサであれば、この時分割周波数の検出のためには十分であり、また後記のように時分割周波数の逓倍の高調波成分についても問題なく検出することができる。
【0027】
また、液晶表示装置のバックライト装置を構成する放電管としては、前記の通り冷陰極管の使用がとくに好適である。ただし本発明における、振動センサを有するとともに放電管である負荷を時分割駆動する電源回路装置は、冷陰極管のみならず、熱陰極管や外部電極管などの各種放電管を駆動する場合であっても良好に使用することができる。
【0028】
さらに、振動センサによって圧電トランスの繰り返し周波数を検出し、その結果に基づいて周波数調整用の抵抗の値を調整して得られた内部信号によるデューティー信号は十分に信頼の置けるものである。従って、デューティー信号として外部信号が利用できる場合であっても敢えて外部信号を使用せず、この内部信号を用いることにより、液晶表示装置の画面での不具合の発生を防ぐことが可能となる。
【0029】
即ち、本発明は、放電管を点灯させる電源回路装置であって、前記放電管は前記電源回路装置により時分割駆動され、前記電源回路装置は前記放電管に交流電流を入力して時分割駆動させる圧電トランスと、前記圧電トランスを駆動する駆動回路部とを備え、前記電源回路装置は振動センサを備えており、前記振動センサにより得られた振動信号によって、前記時分割駆動における時分割周波数を所定の値に調節する機能を有することを特徴とする電源回路装置である。
【0030】
また、本発明は、前記振動センサは、前記圧電トランスの時分割駆動を検出して前記振動信号を出力することを特徴とする電源回路装置である。
【0031】
さらに、本発明は、前記振動センサが、前記電源回路装置が備える回路基板の面上、前記回路基板の面上に設置された搭載部品の面上、および前記搭載部品の内部の少なくともいずれかに設置されていることを特徴とする電源回路装置である。
【0032】
さらに、本発明は、前記電源回路装置がケースを備え、前記ケースが前記回路基板の面上に設置されており、前記圧電トランスおよび前記振動センサが前記ケース内にともに設置されていることを特徴とする電源回路装置である。
【0033】
さらに、本発明は、前記電源回路装置がケースを備え、前記ケースが前記回路基板の面上に設置され、前記圧電トランスが前記ケース内に設置されており、前記振動センサが前記ケースの面上に設置されていることを特徴とする電源回路装置である。
【0034】
さらに、本発明は、前記振動センサが表面実装型の電荷出力型圧電式振動センサであることを特徴とする電源回路装置である。
【0035】
さらに、本発明は、前記振動センサによる周波数の検出範囲が50Hzないし2kHzであることを特徴とする電源回路装置である。
【0036】
さらに、本発明は、前記放電管が冷陰極管であることを特徴とする電源回路装置である。
【0037】
さらに、本発明は、前記電源回路装置が三角波生成回路および比較器を有しており、前記三角波生成回路によって作成された三角波の周波数が前記時分割駆動における時分割周波数となる前記電源回路装置であって、前記三角波生成回路には生成される周波数の値を調整するための抵抗回路が接続されており、前記振動センサによって得られた振動信号により、前記抵抗回路における抵抗値を所定の値に調節する機能を有することを特徴とする電源回路装置である。
【0038】
さらに、本発明は、前記電源回路装置を備えることを特徴とするバックライト装置である。
【発明の効果】
【0039】
本発明によれば、放電管を点灯させる電源回路装置の回路基板の面上や回路基板の搭載部品の内部もしくは面上に振動センサを設置して、電源回路装置に搭載された圧電トランスの時分割駆動による振動状態と停止状態との繰り返し周波数を検出する。そして、この検出された周波数をもとに、本発明の電源回路装置が有する三角波生成回路に接続された周波数調整用の抵抗の値を制御する。
【0040】
以上の方法により、電源回路装置における放電管の時分割駆動のための周波数が、経年変化や周囲温度の変化の影響などにより予め設定した周波数から変動しうる場合であっても、前記周波数調整用の抵抗の値の制御によってこの周波数を調節することができる。これにより、圧電トランスの繰り返し周波数である、前記三角波生成回路により作成される三角波の周波数が、放電管が用いられる液晶表示装置の垂直同期周波数と同期する可能性がある周波数域内の値とならないように制御することが可能となる。従って、本発明の電源回路装置における放電管の時分割駆動のための周波数は、周囲温度の変化などがあってもその変動が一定の範囲内に保持されることとなるため、液晶表示装置の画面でのビートノイズやちらつき等の不具合の発生を防止することができる。
【図面の簡単な説明】
【0041】
【図1】本発明の実施の形態に係る電源回路装置のブロック図。
【図2】図1の本発明の実施の形態における三角波生成回路の回路図の例。
【図3】図1の本発明の実施の形態における時分割駆動の際の三角波Vtri、輝度調節信号Vadj、PWM信号Vpwm、および負荷電流の包絡線のそれぞれの関係を示す図。
【図4】図1の電源回路装置を用いた、本発明の実施の形態に係るバックライト装置を含む構成図。
【図5】従来の電源回路装置に係るブロック図。
【発明を実施するための形態】
【0042】
以下、本発明の実施の形態について、図1ないし図4に基づいて詳細に説明する。
【0043】
図1は本発明の実施の形態に係る電源回路装置のブロック図である。本発明の電源回路装置における、駆動回路11、圧電トランス12、負荷13、負荷電流比較回路14、周波数掃引発振器15、時分割駆動制御回路16の各素子の構成については、図5に示した従来の電源回路装置に係るブロック図と同様である。しかしながら、本発明では時分割駆動制御回路16が備えるデューティー設定端子Vdutyに入力される輝度調節のためのデューティー信号に特徴があり、この信号は液晶表示装置の垂直同期周波数の整数倍となる周波数の近傍の値となることがないように制御された、内部信号を元に生成されたPWM信号のPWM信号Vpwmである。
【0044】
このPWM信号Vpwmは以下のように生成される。まず三角波生成回路18により生成された三角波Vtriと、液晶表示装置の使用者などの設定により外部から入力される直流の信号である輝度調節信号Vadjとが比較器17に入力される。比較器17ではこの両者が比較され、その結果がPWM信号Vpwmとして出力されることとなる。比較器17による両者の信号の合成の方法としては、例えば以下の方法が好適である。まず、三角波Vtriよりも輝度調節信号Vadjの信号レベルが高い期間は、比較器17により生成されるPWM信号Vpwmの信号レベルをハイレベルとする。逆に三角波Vtriよりも直流の輝度調節信号Vadjの信号レベルが低い期間は、PWM信号Vpwmの信号レベルをローレベルとする。この方法では比較器17から出力されるPWM信号Vpwmは矩形波であり、その周波数は輝度調節信号Vadjの値に関わらず、入力された三角波Vtriと同じである。
【0045】
ここで三角波生成回路の回路図の例を図2に示す。なお図2の回路図は本発明の電源回路装置に用いられる三角波生成回路の一例であり、図2以外の回路構成による三角波生成回路を用いても構わない。図2において、コンパレータ23には直流電源25,26からの直流電圧が入力される。コンパレータ23からの出力がHighの場合は、トランジスタ24を介して三角波Vtriとして三角波生成回路から出力されるとともに、コンデンサ19に電荷を蓄積する。このため比較器に入力される三角波生成回路からの出力信号は電圧が次第に増加する波形となる。コンデンサ19への電荷の蓄積が進むにつれて、この出力の電圧は次第に大きくなる。
【0046】
しかしながらこの出力はコンパレータ23の正の入力端子にも接続されているため、出力電圧がある一定の上限の電圧値に達するとコンパレータ23の出力は反転してLowとなり、コンデンサ19に蓄積されていた電荷がトランジスタ24を通して放出される。従って比較器に入力される出力信号は電圧が次第に減少する波形となる。コンデンサ19に蓄積された電荷の放出が進んで三角波生成回路の出力電圧がある一定の下限の電圧値に達すると、コンパレータ23の出力は反転して再びHighとなり、出力信号は電圧が次第に増加する波形となるとともに、コンデンサ19への電荷の蓄積が再び開始される。
【0047】
このように、三角波生成回路は接続されたコンデンサ19における電荷の蓄積、放出を繰り返すことにより三角波を生成させる。その際の周波数は、コンデンサ19およびそれと並列に接続された抵抗20の各々の定数により決定される。抵抗20を電界効果トランジスタなどを使用した抵抗回路により構成して、その抵抗値を変化させることにより、三角波生成回路から出力される三角波Vtriの周波数、即ち放電管を時分割駆動するための時分割周波数を調節することが可能である。
【0048】
ここで比較器17に入出力される各信号の関係などについて図3に示す。図3は図1に示した本発明の実施の形態における、時分割駆動の際の前記三角波Vtri、輝度調節信号Vadj、PWM信号Vpwm、および負荷電流の包絡線のグラフのそれぞれの関係を示す図である。以下、各装置の名称に記した符号は図1に対応したものである。ここで負荷電流とは放電管である負荷13を流れ、放電管を点灯させる電流である。図3の各グラフにおいて各信号の横軸はいずれも時間であり、互いに同期している。また縦軸は電圧もしくは電流である。
【0049】
図3において、三角波生成回路18にて生成されて比較器17に入力される三角波Vtriよりも、外部から入力される直流の輝度調節信号Vadjの信号レベルが高い期間は、比較器17によって生成されたPWM信号Vpwmのレベルがハイレベルとなり、負荷13には高周波の駆動電流である負荷電流が流れる。従ってこの期間には放電管である負荷13は点灯状態となる。一方、三角波Vtriよりも輝度調節信号Vadjの信号レベルが低い期間は、比較器17から出力されるPWM信号Vpwmの信号レベルがローレベルとなり、この期間は負荷13に電流が流れない。従って負荷13は消灯状態となる。
【0050】
ここで輝度調節信号Vadjの信号レベルを変化させると、それに応じて比較器17から出力されるPWM信号Vpwmの信号レベルのハイレベルとローレベルとの時間比率が変化して、負荷13の点灯期間と消灯期間の時間比率が変わることとなる。この放電管の点灯期間と消灯期間の比率が即ち液晶表示装置に用いられるバックライト装置の輝度であるから、本発明の実施の形態に係る電源回路装置を用いることにより、液晶表示装置の画面の輝度を調節することができる。
【0051】
なお、図1の比較器17における2つの信号の比較方法は前記の方法以外でも構わないが、本発明の電源回路装置においては出力されるPWM信号Vpwmが矩形波であって、その周波数が三角波Vtriと同じであることが必要である。本発明の電源回路装置を構成する時分割駆動制御回路16にこのようなPWM信号Vpwmを入力する構成とすることにより、輝度調節信号Vadjの信号レベルに応じてPWM信号Vpwmの信号レベルのハイレベルとローレベルとの時間比率を調節することができ、これにより電源回路装置の負荷電流の調整、即ち液晶表示装置におけるバックライト装置の輝度の調節を行うことが可能である。
【0052】
ここで三角波生成回路18から出力される三角波Vtriの周波数、即ち時分割周波数は、前記三角波生成回路18に外付けされたコンデンサ19の容量の値、および抵抗20の抵抗値により決定される。初期の状態では、この両者の値は時分割周波数が液晶表示装置の垂直同期周波数の整数倍となる周波数の近傍の値とはならないようにそれぞれ設定されている。しかしながら、とくに三角波生成回路18に外付けされたコンデンサ19の値は、前記の通り経年変化や動作時の使用環境の温度(周囲温度)などによって変動することが知られている。従ってこの変動により時分割周波数が液晶表示装置の垂直同期周波数と同期することがないように、外付けされた抵抗20の抵抗値を変化させることが必要である。
【0053】
このように抵抗値が可変となる抵抗としては、電界効果トランジスタなどを用いた抵抗回路などの使用が好適である。例えば抵抗回路としてNチャネルエンハンスメント型電界効果トランジスタを用いた場合は、ゲート−ソース間に後記の振動周波数検出回路21からの制御信号としてバイアス電圧を印加することにより、ドレイン−ソース間の抵抗値が変化する抵抗回路を構成することが可能である。
【0054】
図1における抵抗20の抵抗値を調整する手段として、本発明の電源回路装置においては振動周波数検出回路21および振動センサ22が設けられている。振動センサ22は、負荷13を時分割駆動する圧電トランス12による電源回路装置の振動を検出する素子である。圧電トランス12は放電管である負荷13を点灯させるために数十kHzないし数百kHzの高周波で振動しているが、その振動は負荷13の輝度の調整のために時分割駆動制御回路16に入力されるPWM信号Vpwmの周波数にて振動状態と停止状態とが繰り返されている。振動センサ22は、この振動状態と停止状態との繰り返し周波数である時分割周波数を検出する機能を有するものである。ただし振動センサ22では検出される周波数の値をより正確なものとするために、時分割周波数の逓倍となる高調波成分についても同時に検出することが必要である。従って振動センサ22は、放電管である負荷13の時分割周波数およびその逓倍となる高調波成分が検出可能であることが必要である。
【0055】
振動センサ22により検出された圧電トランス12の振動の信号は振動周波数検出回路21に入力され、そこで圧電トランス12の振動の繰り返し周波数、即ち時分割周波数が検出される。この検出された周波数が、もし液晶表示装置の垂直同期周波数の整数倍である、垂直同期周波数と同期する周波数の近傍の値である場合には、可変抵抗である抵抗20の抵抗値が調整され、三角波生成回路18から出力される三角波Vtriの周波数が変更される。この周波数は時分割駆動制御回路16に入力されるPWM信号Vpwmの周波数、そして圧電トランス12の振動の時分割周波数であるから、電源回路装置が液晶表示装置の垂直同期周波数と同期することによる、液晶表示装置におけるビートノイズやちらつきの発生が防止されることとなる。なお、液晶表示装置の垂直同期周波数との同期を避けるためには、圧電トランス12の時分割周波数が前記垂直同期周波数の整数倍の値から上下に10Hz以上離れていれば十分である。
【0056】
ここで振動周波数検出回路21は電荷増幅器、F/Vコンバータ(周波数−電圧変換器)などを有する回路である。振動センサ22から入力された圧電トランス12の振動の信号はまず電荷増幅器に入力され、測定された周波数に応じたパルス状の信号波形の電圧信号に変換される。次いでこの電圧信号はF/Vコンバータに入力されて、周波数の高さに応じた電圧の値を有する直流電圧に変換される。この周波数に応じた直流電圧値が三角波生成回路18に外付けされた抵抗20に印加される。抵抗20が電界効果トランジスタを有する抵抗回路である場合は、前記直流電圧が電界効果トランジスタのゲート−ソース間に入力されて、その電圧の値に応じて電界効果トランジスタのドレイン−ソース間の抵抗値を変化させる。
【0057】
初期の時点では、抵抗回路を構成する電界効果トランジスタのゲートに入力するバイアス電圧を所定の値に設定しておく。この所定の値は、最終的に比較器から出力されるPWM信号Vpwmが液晶表示装置の垂直同期周波数の整数倍とは異なる、特定の時分割周波数となる値である。これらの一連の回路構成により、周囲の温度変化などによって圧電トランス12の駆動における時分割周波数が変動した場合には、まず振動センサ22によってその時分割周波数を検出する。次いでその値をもとに前記バイアス電圧の値を変化させて、抵抗回路である抵抗20の抵抗値を調節することができる。これにより、電源回路装置において時分割周波数の変動を打ち消すようにその値を補正することが可能となり、駆動時の時分割周波数を常に液晶表示装置の垂直同期周波数の整数倍とは異なる値となるように保持し続けることができる。
【0058】
なお、三角波VtriやPWM信号Vpwmは時分割周波数の振動周期を持つ信号であるので、図1における抵抗20の抵抗値を調節するために、振動センサ22からの振動の信号の代わりにこれらの信号を用いるならば、電源回路装置内から振動センサ22などを省略することができる。しかしながら、三角波VtriやPWM信号Vpwmは振動センサ22からの検出信号とは異なり、時分割周波数の高調波成分を含むものではないので、精度よく検出するためには別の問題がある。振動の周波数を検出する方法としては、基本周波数ではなく、その逓倍の高調波を検出する方法が知られている。高調波は周波数がより高いために基本周波数よりも波形が急峻であり、従って高調波を用いることで、より正確な周波数を検出することができる。
【0059】
このように本発明の電源回路装置では、振動センサ22を用いることで時分割周波数の逓倍となる高調波成分を検出して、それを用いることでより正確な時分割周波数を得ることができる。この方法により、三角波VtriやPWM信号Vpwmを用いる場合よりも、より精密な時分割周波数の制御が可能であることが本発明の特徴である。従って電源回路装置内に振動センサ22を設けることは、本発明の電源回路装置において必須の条件である。
【0060】
ここで、図1における振動センサ22は圧電トランス12の近傍に設置される必要があるため、圧電トランス12が設置された回路基板の面上、前記回路基板の面上に設置された搭載部品の面上、もしくは前記搭載部品の内部の少なくともいずれかに設置されていることが好ましい。また、圧電トランス12ではその二次側が高電圧となることから、絶縁性の確保のために圧電トランス12が絶縁性のケース内に収納される場合があるが、その場合には振動センサ22は前記ケースの内部もしくは面上に設置されていることが好ましい。また電源回路装置に用いられる振動センサ22としては、表面実装型の電荷出力型圧電式振動センサが適している。電荷出力型圧電式振動センサは一般に小型、安価であり、また経年変化が小さいという特徴を有しているためである。しかしながら、電源回路装置内に設置可能で圧電トランスの振動の繰り返しを問題なく検出できるものであるなら、他の形式の振動センサを用いても構わない。
【0061】
さらに、振動センサ22による周波数の検出範囲は50Hzないし2kHzであれば十分である。実際に用いられる液晶表示装置の垂直同期周波数は前記の通り一般に50Hzないし240Hz程度であり、圧電トランス12が駆動する際の時分割周波数はその整数倍であって、振動センサ22はさらにこの時分割周波数の高調波成分を検出することが必要である。しかしその場合でも、検出される高調波成分の周波数は最大でも1kHz前後であるため、マージンを考慮しても振動センサ22の検出可能範囲は2kHz程度まであればよい。なお、振動センサ22が一般に数十kHzである圧電トランスの駆動周波数を検出した場合には、この周波数が前記高調波成分の周波数よりも遙かに高いことを用いて振動周波数検出回路21においてこの影響を除去することができる。
【0062】
また、本発明の電源回路装置に用いられる負荷13としては、その駆動のために圧電トランス12が用いられる放電管であればどのようなものでも好適に使用可能であるが、液晶表示装置のバックライト装置として用いる場合には冷陰極管がとくに好ましい。冷陰極管は前記の通り一般に小口径で細長い形状の放電管を実現でき、しかも熱陰極管などに比べて製品寿命が長いことから、薄型の形状が求められる液晶表示装置のバックライト装置を構成するにはとくに優れている。またその点灯の制御を圧電トランスにより実施することにも適している。
【0063】
なお図4は本発明の実施の形態に係る電源回路装置を用いたバックライト装置を含む構成図であり、全体で液晶表示装置を構成している。なお、ここではバックライト装置の放電管として2本の冷陰極管を用いた場合を記載している。液晶パネル41の画面の裏側にはバックパネル44との間に2本の冷陰極管42,43が並列に設置されており、これらの冷陰極管42,43が点灯することで液晶パネル41の前面に画像が表示される。冷陰極管42,43は電源回路装置46の負荷であり、電源回路装置46によって時分割駆動されている。電源回路装置46には外部から輝度調節信号47が入力されている。これら冷陰極管42,43および電源回路装置46が、本発明におけるバックライト装置の構成要素である。
【0064】
一方、液晶パネル41は電源回路装置46とは独立した駆動装置45により駆動されるが、駆動装置45および電源回路装置46はいずれも共通電源48から電力供給を受けているために、この共通電源48を介して冷陰極管42,43の駆動信号が液晶パネル41の描画の信号にノイズとして重畳する可能性がある。しかしながら本発明の電源回路装置により駆動されるバックライト装置を用いる場合には、このようなノイズの重畳があっても液晶表示装置の画面におけるビートノイズやちらつき等の不具合の発生を防止することが可能となる。
【0065】
以上説明したように、本発明に係る電源回路装置においては、装置内に振動センサを設置して、装置が有する圧電トランスの時分割駆動による振動状態と停止状態との繰り返し周波数を検出する。そしてこの周波数をもとに、装置内の三角波生成回路に接続された周波数調整用の抵抗の値を制御する。これにより、本発明の電源回路装置における駆動周波数は、経年変化や周囲温度の変化などがあってもその変動が一定の範囲内に保持されることとなるため、用いられる液晶表示装置の画面でのビートノイズやちらつき等の不具合の発生を防止することができ、またこれらの不具合の発生を防止したバックライト装置を提供することができる。また、上記説明は、本発明の実施の形態について説明するためのものであって、これによって特許請求の範囲に記載の発明を限定するものではない。また、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
【産業上の利用可能性】
【0066】
本発明における電源回路装置は、照明装置、とくに液晶表示装置に搭載されるバックライト装置の駆動用電源として好適に用いられるものである。
【符号の説明】
【0067】
11,51 駆動回路
12,52 圧電トランス
13,53 負荷
14,54 負荷電流比較回路
15,55 周波数掃引発振器
16,56 時分割駆動制御回路
17 比較器
18 三角波生成回路
19 コンデンサ
20 抵抗
21 振動周波数検出回路
22 振動センサ
23 コンパレータ
24 トランジスタ
25,26 直流電源
41 液晶パネル
42,43 冷陰極管
44 バックパネル
45 駆動装置
46 電源回路装置
47 輝度調節信号
48 共通電源

【特許請求の範囲】
【請求項1】
放電管を点灯させる電源回路装置であって、前記放電管は前記電源回路装置により時分割駆動され、前記電源回路装置は前記放電管に交流電流を入力して時分割駆動させる圧電トランスと、前記圧電トランスを駆動する駆動回路部とを備え、
前記電源回路装置は振動センサを備えており、
前記振動センサにより得られた振動信号によって、前記時分割駆動における時分割周波数を所定の値に調節する機能を有することを特徴とする電源回路装置。
【請求項2】
前記振動センサは、前記圧電トランスの時分割駆動を検出して前記振動信号を出力することを特徴とする請求項1に記載の電源回路装置。
【請求項3】
前記振動センサが、前記電源回路装置が備える回路基板の面上、前記回路基板の面上に設置された搭載部品の面上、および前記搭載部品の内部の少なくともいずれかに設置されていることを特徴とする請求項1または請求項2に記載の電源回路装置。
【請求項4】
前記電源回路装置がケースを備え、前記ケースが前記回路基板の面上に設置されており、
前記圧電トランスおよび前記振動センサが前記ケース内にともに設置されていることを特徴とする請求項1または請求項2に記載の電源回路装置。
【請求項5】
前記電源回路装置がケースを備え、前記ケースが前記回路基板の面上に設置され、前記圧電トランスが前記ケース内に設置されており、
前記振動センサが前記ケースの面上に設置されていることを特徴とする請求項1または請求項2に記載の電源回路装置。
【請求項6】
前記振動センサが表面実装型の電荷出力型圧電式振動センサであることを特徴とする請求項1ないし5のいずれか1項に記載の電源回路装置。
【請求項7】
前記振動センサによる周波数の検出範囲が50Hzないし2kHzであることを特徴とする請求項6に記載の電源回路装置。
【請求項8】
前記放電管が冷陰極管であることを特徴とする請求項1ないし7のいずれか1項に記載の電源回路装置。
【請求項9】
前記電源回路装置が三角波生成回路および比較器を有しており、前記三角波生成回路によって作成された三角波の周波数が前記時分割駆動における時分割周波数となる前記電源回路装置であって、
前記三角波生成回路には生成される周波数の値を調整するための抵抗回路が接続されており、
前記振動センサによって得られた振動信号により、前記抵抗回路における抵抗値を所定の値に調節する機能を有することを特徴とする請求項1ないし8のいずれか1項に記載の電源回路装置。
【請求項10】
請求項1ないし9のいずれか1項に記載の電源回路装置を備えることを特徴とするバックライト装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−200481(P2010−200481A)
【公開日】平成22年9月9日(2010.9.9)
【国際特許分類】
【出願番号】特願2009−42181(P2009−42181)
【出願日】平成21年2月25日(2009.2.25)
【出願人】(000134257)NECトーキン株式会社 (1,832)
【Fターム(参考)】