説明

飛行時間型質量分析装置

【課題】簡素な電極構造で飛行距離が長くイオンの追い越しが生じない飛行軌道を形成することにより、幅広い質量電荷比のイオンを高い分解能で測定する。
【解決手段】多重周回型の軌道を形成可能な扇形電場E1、E2の一方を、平行な直線飛行部11、12に直交する方向に距離dだけずらして配置し、直線飛行部11、12上にはイオンを一定度合い減速させる誘導減速器7、8を配置することで準周回軌道部4を形成する。イオンが扇形電場E1、E2に入射する前にイオンを減速させることで、半周毎に半径がdだけ減少する円弧状の軌道に沿ってイオンを飛行させ、扇形電場E1で内周に達したイオンは次の扇形電場E2に入らずにイオン検出器10に達する。これにより、全てのイオンに対し飛行距離が同一な、一筆書き状の長い距離の飛行軌道を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は飛行時間型質量分析装置に関し、さらに詳しくは、複数の扇形電場を利用してイオンの飛行軌道を形成する飛行時間型質量分析装置に関する。
【背景技術】
【0002】
一般に、飛行時間型質量分析装置では、一定のエネルギーで加速したイオンが質量に応じた飛行速度を持つという原理に基づき、イオンが一定距離の飛行空間を飛行するのに要する時間を計測し、その飛行時間からイオンの質量電荷比(m/z値)を算出する。したがって、イオンの飛行距離を延ばすほど質量分解能を向上させることができる。このことを利用し、イオンを閉軌道に沿って多重周回させる多重周回イオン光学系を用い、周回数を増やすことでイオンの飛行距離を延ばし高質量分解能を達成する多重周回飛行時間型質量分析装置が開発されている(特許文献1、2、3など参照)。
【0003】
多重周回飛行時間型質量分析装置は高い質量分解能を達成可能であるものの、イオンの飛行経路が閉軌道であることに由来する欠点が存在する。その欠点とは、イオンが周回を重ねるに従い、質量電荷比が小さいために速く飛行するイオンが、質量電荷比が大きいために遅いイオンを閉軌道上で追い越してしまうことである。このようにイオンの追い越しが起こった状態の下で飛行時間スペクトルを測定すると、異なる周回数に対応する、つまり異なる飛行距離に対応するピークがスペクトル上で混在してしまう。その場合、イオンの質量電荷比と飛行距離とを一意的に決定することができないため、飛行時間スペクトルから直接的にマススペクトルを求めることができない。
【0004】
上記のような欠点があるため、従来、多重周回飛行時間型質量分析装置は、イオン源で生成されたイオンのうち、周回軌道上で追い越しの起こらない、狭い質量電荷比範囲のイオンのみを観測するために使用されるのが一般的である。
【0005】
また上記問題を解決するために、周回毎に少しずつ軌道をずらすことで完全な閉軌道ではなく一筆書き状の軌道を形成するようにした質量分析装置が従来知られている。特許文献4に記載の質量分析装置では、周回軌道が載る面と直交する方向に周回毎に軌道を少しずつずらすことにより、螺旋状の軌道を形成するようにしている。しかしながら、このように螺旋状の軌道を形成するイオン光学系では、該軌道へのイオンの導入や該軌道からのイオンの取り出しが難しく、また電場を形成するための電極が大きくなるという問題がある。
【0006】
一方、特許文献5に記載の質量分析装置では、イオンが周回する毎に異なる扇形電場を通過させることにより、渦巻き状の軌道を形成するようにしている。しかしながら、そうした軌道を形成するために、同心で回転半径が少しずつ異なる複数の円筒電場を多層に重ねた、複雑な構造の電極を用いており、電極がかなり重くなるとともに大きくなる。また、電極を作製するのが難しく、かなり高価なものとなることが避けられない。
【0007】
さらにまた特許文献5に記載の質量分析装置では、同一質量電荷比を有するイオンの時間収束性(周回軌道上の基準面における同一質量電荷比のイオンパケットの飛行時間幅を周回に依らず一定に保つ)は確保できるものの、同一質量電荷比を有するイオンの周回時間は周回毎に変化してしまう(つまり等時性がない)。そのため、飛行時間スペクトルからマススペクトルへの換算のためのデータ処理が煩雑である。また、同一質量電荷比を有するイオンの周回が等時性を有していれば、周回するイオンに対しイオン非破壊検出器により得られる多重周回信号に基づいて例えばフーリエ変換やこれに代わる解析手法を利用して各種イオンの質量電荷比を算出することが可能である(例えば非特許文献1参照)ものの、等時性がないためにこうした手法を利用することができないという問題もある。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平11−135060号公報
【特許文献2】特開平11−135061号公報
【特許文献3】特開平11−195398号公報
【特許文献4】特開2000−243345号公報
【特許文献5】特開2000−243346号公報
【非特許文献】
【0009】
【非特許文献1】西口、上野、「多重周回イオン光学系による新しい多重周回質量分析法」、島津評論、第66巻、第1・2号、2009年9月30日発行
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は上記課題を解決するために成されたものであり、その主な目的は、製造が容易で且つコストも安価で済む簡単な構成のイオン光学系を用いて、周回軌道に準じた長い飛行距離を確保しつつイオンの追い越しが生じない飛行軌道を形成することにより、幅広い質量電荷比範囲のイオンを高い質量分解能でもって分析することができる飛行時間型質量分析装置を提供することにある。
【0011】
また本発明の別の目的は、同一質量電荷比を有するイオンの周回の等時性を確保しつつ周回軌道に準じた長い飛行距離が得られる軌道を実現し、イオン非破壊検出器を利用したイオン検出及びデータ処理を用いて、幅広い質量電荷比範囲について高い質量分解能のマススペクトルを取得し得る飛行時間型質量分析装置を提供することにある。
【課題を解決するための手段】
【0012】
上記課題を解決するために成された本発明は、円弧状の軌道を描く扇形電場と隣接する扇形電場間で直線状の軌道を描く直線飛行部とをイオンが交互に通過し、最後の扇形電場を出射したイオンが最初に入射した扇形電場に再び入射することで、イオンが繰り返し周回可能な飛行軌道を形成可能である複数の扇形電場を用いた飛行時間型質量分析装置であって、前記周回可能な飛行軌道は互いに平行な直線飛行部が一組以上存在するような飛行時間型質量分析装置において、
前記互いに平行な直線飛行部が載る平面上で、それら直線飛行部を境界として複数の扇形電場を第1、第2なる2つのグループに分けたときに、第1のグループに含まれる1乃至複数の扇形電場を第2のグループに含まれる1乃至複数の扇形電場に対して、前記互いに平行な直線飛行部と直交する方向に所定距離だけずらして配置するとともに、
前記互いに平行な直線飛行部の軌道上に、イオンに一定のエネルギーを付与する又はイオンから一定のエネルギーを奪う加減速手段を設け、
所定の扇形電場にイオンが入射する毎に該イオンが通過する円弧状軌道の曲率半径を縮小又は拡大させることにより渦巻き状の飛行軌道を形成し、且つ、同一質量電荷比のイオンに対する周回毎の周回時間が等しくなるようにしたことを特徴としている。
【0013】
なお、本発明に係る飛行時間型質量分析装置では、複数の扇形電場により形成される飛行軌道は同一軌道を周回するものではないが、少なくともイオンが最初に入射した扇形電場に同じイオンが戻って来て再び該扇形電場に入射することから、形成される軌道を準周回軌道と呼ぶこととする。
【0014】
本発明に係る飛行時間型質量分析装置において、複数の扇形電場の形状(回転角度及び回転半径)は多重周回が可能な周回軌道を形成する場合と同じであるが、複数の扇形電場の相対位置関係は多重周回型軌道を形成する場合と相違する。即ち、一般的に多重周回型軌道を形成する場合には、扇形電場の中心軸(一対の外側電極と内側電極との間の中心線)に対してイオンが入射され、扇形電場からはその中心軸に沿ってイオンが出射する。これに対し、本発明に係る飛行時間型質量分析装置では、第1のグループに含まれる1乃至複数の扇形電場と第2のグループに含まれる1乃至複数の扇形電場とが所定距離ずらして配置されているため、直線飛行部を挟んだ異なるグループに属する2つの扇形電場の中心軸は一直線上に存在しない。そのため、一方のグループに属する扇形電場からその中心軸に沿ってイオンが出射して他方のグループに属する扇形電場に入射する際に、イオンはその扇形電場の中心軸には入射し得えず、中心軸よりも外周側又は内周側に入射することになる。つまり、中心軸とは軌道半径(曲率半径)が相違する位置にイオンが入射する。
【0015】
イオンが途中で加速も減速もされない場合、上記のように扇形電場の中心軸を外れて入射したイオンは、扇形電場内で入射時の軌道半径を維持することができない。これに対し、本発明の飛行時間型質量分析装置では、直線飛行部においてイオンが加速(次の扇形電場に入射する際に軌道が外周側にずれる場合)又は減速(次の扇形電場に入射する際に軌道が内周側にずれる場合)されるため、扇形電場に入射したイオンは入射時点と同じ軌道半径を維持しつつ円弧状の軌道を描く。それにより、少なくとも同一の扇形電場にイオンが入射する毎に該イオンが通過する円弧状軌道の曲率半径は縮小又は拡大し、結果的に、外周側から内周側に向かう又は内周側から外周側に向かう渦巻き状の準周回軌道が形成される。
【0016】
また、このような渦巻き状の準周回軌道では、1周回毎に(同じ扇形電場に入射する毎に)1周回のイオンの飛行距離は変化するが、例えばイオンの飛行距離が短くなったときにはその分だけイオンは減速されて飛行速度が遅くなる。このため、1周回に要するイオンの飛行時間は同一質量電荷比のイオンに対し同一である。即ち、周回の等時性は維持される。
【0017】
分析対象となるイオンの質量電荷比は広い範囲に亘るため、イオンは様々な速度で広い時間拡がりを持って上記の準周回軌道上を飛行する。飛行時間から質量電荷比を正確に求めるには、分析対象となる全てのイオンについて等時性を持たせるとともに時間収束性を維持する必要がある。そのためには、加速時、減速時のイオンの運動エネルギーの変化量が質量電荷比や飛行速度に依存せずに一定であるとよい。そこで、上記加減速手段には高周波加減速器ではなく直流加減速器を用いるとよい。具体的には、イオンの進行方向に一定の、具体的には時間微分が一定である電場を発生させるものを用いることができる。
【0018】
これによれば、周回数に依らず、同一質量電荷比を持つイオンパケットは等時性を有するとともに時間収束性も維持される。そのため、例えば準周回軌道を所定回数周回したあとのイオンを検出した検出信号に基づいて得られる飛行時間スペクトルをマススペクトルに換算する際に、その処理が容易になるとともに精度も向上する。
【0019】
また本発明に係る飛行時間型質量分析装置の一態様として、前記複数の扇形電場はそれぞれ、同心で等しい回転角度及び曲率半径を有する、円筒状、球面状、又はトロイダル状の内側電極と外側電極とからなる一対の電極の間に形成されるものとすることができる。
【0020】
また本発明に係る飛行時間型質量分析装置では、直線飛行部を挟む2つの扇形電場を相対的にずらすことにより、対向する扇形電場の入射端面又は出射端面の前方に形成される開放空間を通して、一筆書き状の飛行軌道の入射端となる位置にイオンを入射する、又は一筆書き状の飛行軌道の出射端となる位置からイオンを出射させる構成とするとよい。
【0021】
この構成によれば、扇形電場により形成される上記のような飛行軌道に外部のイオン源等からイオンを導入する際に、或いは、その飛行軌道からイオンを外部へと取り出す際に、時間的に変化する(例えばオン・オフされる)電場を必要としない。そのため、飛行軌道を形成するための電極全体の構成が簡単になる、また、別グループの扇形電場にイオンを入射する毎に又は周回毎に軌道の曲率半径が小さくなる又は大きくなるようにして、最終的に、軌道の曲率半径が或る値以下又は或る値以上になった時点で、イオンが次の扇形電場に入らずに準周回軌道を外れ、直進して検出器に向かうようにすることができる。これによれば、全てのイオンについて飛行経路の距離を同一にすることができ、質量電荷比と飛行時間との関係を一意に決めることができる。
【0022】
また本発明に係る飛行時間型質量分析装置の一態様として、渦巻き状の飛行軌道を周回するイオンを非破壊で検出するイオン検出器と、該イオン検出器による周期的な検出信号を処理することにより各イオンの質量電荷比を求めるデータ処理手段と、をさらに備える構成とすることができる。
【0023】
イオン検出器としては誘導電荷検出器、誘導電流検出器などを用いることができる。また、データ処理手段は例えばフーリエ変換や自己相関関数などを利用して信号に含まれる周期性成分を時間成分に変換する演算を行うものとすればよい。これによれば、同一イオンが検出頻度が周回数倍にまで増大するため、原理的に検出信号のS/Nを改善することができ、マススペクトルの精度向上が期待できる。
【0024】
なお、上記のようなイオン非破壊型検出器はイオンの存在の検出に際してイオンを破壊することはないものの、イオンの運動エネルギーの一部を奪うことになる。これに対し、本発明に係る飛行時間型質量分析装置では、加減速手段によりイオンに運動エネルギーを付与することが可能であるから、イオン検出によりイオンから失われたエネルギーを補うようにイオンに運動エネルギーを付与することによって等時性を維持できる。
【0025】
さらにまた本発明に係る飛行時間型質量分析装置の一態様は、第1のグループに含まれる1乃至複数の扇形電場を、第2のグループに含まれる1乃至複数の扇形電場に対して、前記互いに平行な直線飛行部と直交する方向に移動させる移動手段と、該移動手段により前記距離を変更するに伴い、イオンに付与する又はイオンから奪うエネルギーを変えるように前記加減速手段を制御する制御手段と、をさらに備える構成としてもよい。
【0026】
この構成によれば、移動手段による移動量(つまり2つのグループ間の対向する扇形電場のずれ量)を適宜に調整することにより、イオンが準周回軌道を周回する周回数を変更することが可能である。例えば特許文献5に記載の装置では周回数は装置構成上一義的に決まってしまうが、本発明に係る上記構成では周回数を変更できるので、分析目的に応じて質量分解能を変更することができる。また、2つのグループ間の対向する扇形電場のずれ量をゼロにすることで、渦巻き状の準周回軌道ではなく完全な周回軌道を形成することもできる。
【0027】
完全な周回軌道とすると原理的に周回数に限界はなくなるが、その場合にイオンの追い越しが発生するため、イオン検出には上述したイオン非破壊型検出器を用いるようにするとよい。イオン非破壊検出に伴うイオンの運動エネルギーの損失は上述したように加減速手段によって補うことができる。したがって、イオン非破壊検出を行っても等時性は損なわれず、それ故に、周回数に上限のない検出信号を得ることができ、高い質量分解能を達成することができる。
【発明の効果】
【0028】
本発明に係る飛行時間型質量分析装置によれば、渦巻き状にイオンを飛行させるため、長い飛行距離を確保しながら飛行途中でイオンの追い越しが発生せず、幅広い質量電荷比範囲のイオンを高い質量分解能でもって測定することができる。また、扇形電場の形状は従来の完全周回型の飛行時間型質量分析装置と同様でよく、特許文献5に記載の従来の渦巻き型軌道を形成するための多層電極に比べて格段に簡素な構造で済むので、コストが安価で軽量・小型化にも有利である。また、渦巻き状の飛行軌道でありながら周回の等時性も確保できるので、飛行時間スペクトルからマススペクトルへの換算も容易であり、さらにイオン非破壊検出により得られる周期的な検出信号に対して解析処理を行ってマススペクトルを取得することも容易である。
【図面の簡単な説明】
【0029】
【図1】本発明の第1実施例による飛行時間型質量分析装置のイオン光学系を中心とする概略構成図。
【図2】図1中の誘導減速器の概略図。
【図3】本発明の第2実施例による飛行時間型質量分析装置のイオン光学系を中心とする概略構成図。
【図4】図3中の円筒電極の外側電極の部分的な概略図。
【図5】本発明の第3実施例による飛行時間型質量分析装置のイオン光学系を中心とする概略構成図。
【図6】本発明の第4実施例による飛行時間型質量分析装置のイオン光学系を中心とする概略構成図。
【図7】第4実施例による飛行時間型質量分析装置においてステージを移動した状態の一例を示す概略構成図。
【図8】本発明の第5実施例による飛行時間型質量分析装置のイオン光学系を中心とする概略構成図。
【図9】図1に示した扇形電場を利用して多重周回軌道を形成する場合の例を示す概略図。
【発明を実施するための形態】
【0030】
[第1実施例]
本発明に係る飛行時間型質量分析装置の第1実施例について、添付の図面を参照して詳細に説明する。図1は第1実施例による飛行時間型質量分析装置のイオン光学系を中心とする概略構成図、図2は図1中の誘導減速器の概略図である。
【0031】
この第1実施例の飛行時間型質量分析装置は、イオン源1と、イオンガイド2と、イオントラップ3と、円筒電極により形成される扇形電場E1、E2や誘導減速器7、8が含まれる準周回軌道部4と、イオン出射用補助磁石9と、イオン検出器10と、を備える。
【0032】
イオン源1は目的試料から分析対象であるイオンを生成するものであり、イオン化法は特に限定されない。例えばこの質量分析装置がガスクロマトグラフ用の検出器として利用される構成においては、イオン源1は電子衝撃イオン化法や化学イオン化法によって気体分子をイオン化するものである。また、この質量分析装置が液体クロマトグラフ用の検出器として利用される構成においては、イオン源1は大気圧化学イオン化法やエレクトロスプレイイオン化法によって液体分子をイオン化するものである。さらにまた、分析対象分子がタンパク質などの高分子化合物である場合にはMALDI(マトリクス支援レーザ脱離イオン化法)を利用するとよい。
【0033】
イオントラップ3は例えば3次元四重極型イオントラップであり、イオン源1で生成されたイオンをクーリングして一時的に蓄積し、所定のタイミングで運動エネルギーを付与することにより各種イオンを一斉に出射させるものである。つまり、この飛行時間型質量分析装置では、イオントラップ3が後述する一筆書き状の準周回軌道に対するイオンの飛行開始点(出発点)となる。
【0034】
準周回軌道部4は、それぞれ扇形電場E1、E2を形成するための2組の円筒電極5、6と、2つの誘導減速器7、8とを含む。円筒電極5、6はそれぞれ、同心二重円筒体を回転角度180°となるように同心円の中心軸を含む面で切断した形状であり、曲率半径の相違する内側電極5a、6aと外側電極5b、6bとが一対となっている。つまり、円筒電極5、6は全く同一形状である。例えば円筒電極5においては、内側電極5aと外側電極5bとにそれぞれ所定の直流電圧が印加されることで、両電極5a、5bで挟まれる空間に回転角度が180°である扇形電場E1が形成される。同様に円筒電極6においては、内側電極6aと外側電極6bとにそれぞれ所定の直流電圧が印加されることで、両電極6a、6bで挟まれる空間に回転角度が180°である扇形電場E2が形成される。
【0035】
ここで使用される円筒電極5、6(つまり扇形電場E1、E2)は、図9に示すように、理論的にはイオンを無限に周回させることが可能な完全周回軌道を形成可能なものである。即ち、図9に示すように、完全周回軌道を形成する際には、扇形電場E1のイオン入射端面E1inと扇形電場E2のイオン出射端面E2outとは、電場や磁場が作用せずにイオンが直進する直線飛行部11を挟んで対向し、扇形電場E2のイオン入射端面E2inと扇形電場E1のイオン出射端面E1outとは、電場や磁場が作用せずにイオンが直進する直線飛行部12を挟んで対向している。そして、扇形電場E1中でイオンは円弧状の中心線(内側電極5aと外側電極5bとの間の中心の線)を通り直線飛行部12で直進して、扇形電場E2中でもイオンは円弧状の中心線を通る。そして、イオンは直線飛行部11で直進し、再び扇形電場E1の入射端面E1inで1周前と全く同じ位置に戻る。これは、1周の周回軌道が空間収束を達成するように形成されているからである。また、一般に、1周の周回軌道は時間収束も達成するように形成されている。
【0036】
これに対し、本実施例の飛行時間型質量分析装置では、図1に示すような平面視の状態において、円筒電極5は円筒電極6に対し、互いに平行である直線飛行部11、12のイオン進行方向(図1において水平方向)に対して直交する方向(図1において垂直下方向)に距離dだけずらして配置されている。また、扇形電場E1を出射したイオンが扇形電場E2に入射するまでの直線飛行部12にイオンを減速させるための誘導減速器8が配置され、扇形電場E2を出射したイオンが扇形電場E1に入射するまでの直線飛行部11にも同様に、イオンを減速させるための誘導減速器7が配置されている。誘導減速器7、8の構成については後述する。
【0037】
イオン出射用補助磁石9は、扇形電場E1、E2により形成される準周回軌道に沿って飛行してきたイオンが実質的にその準周回軌道を離れたあとに、そのイオンを磁場の作用により内周方向に少しだけ偏向させてイオン検出器10に導くものである。もちろん、磁場によりイオンを偏向させる代わりに静電場によりイオンを偏向させるものでもよい。また、イオン出射用補助磁石9は、イオン検出器10が或る程度以上の大きさを有していて設置場所に制約があるために設けられているもので、扇形電場E1のイオン出射端面E1outの内周側から出射して直線飛行部12を直進したイオンをそのままイオン検出器10に導入可能であれば、イオン出射用補助磁石9やこれに代わる電場形成用電極は不要である。
【0038】
イオン検出器10は高い時間分解能を有する、マイクロチャネルプレート(MCP)等の検出器である。
【0039】
本実施例の飛行時間型質量分析装置における分析動作を説明する。
イオン源1で生成された各種イオンはイオン源1から引き出され、イオンガイド2を経てイオントラップ3に蓄積される。そして、蓄積された各種イオンは、所定のタイミングでイオントラップ3から一定の電場により引き出され、準周回軌道部4に送り込まれる。イオンはまず直線飛行部11において誘導減速器7を通過して円筒電極5により形成される扇形電場E1に入る。上述した2組の円筒電極5、6の距離dのずれによって、扇形電場E1の入射端面E1inの外周部の前方は扇形電場E2の出射端面E2outが存在していない開放空間となっている。そこに直線飛行部11を通ってきたイオンがそのまま図1に示すように入射する。したがって、この構成では、外部(この場合にはイオントラップ3)から準周回軌道にイオンを導入するために入射用電極などは不要である。
【0040】
扇形電場E1の入射端面E1inへの最初のイオンの入射位置の曲率半径はρであり、扇形電場E1の中心線の曲率半径よりも大きい。しかしながら、誘導減速器7を通して入射されるイオンが持つ運動エネルギーを適度に減衰しておくことで、扇形電場E1内でイオンは同一曲率半径ρの軌道を描いて進行する。図1中に示すように、イオンは扇形電場E1を出射し、直線飛行部12で誘導減速器8を通過する際に減速されて、円筒電極6により形成される扇形電場E2に入射する。このとき、上述したような円筒電極5、6の配置のずれにより、扇形電場E2の入射端面E2inではその直前の円筒電極5で通過した軌道よりも距離dだけ内側電極6aに近い位置に入射する。つまり、扇形電場E2の入射端面E2inにおけるイオンの入射位置の曲率半径はρ−dである。
【0041】
その直前の扇形電場E1内でのイオンの軌道半径はρであり、仮にイオンが持つ運動エネルギーがそのままであれば、扇形電場E2内でρ−dの軌道半径をとることはできない。これに対し、扇形電場E2に入る前に誘導減速器8によりイオンを減速させている(運動エネルギーを減少させている)ため、扇形電場E2内でρ−dの軌道半径を維持することができる。
【0042】
そして、扇形電場E2内でイオンは同一曲率半径ρ−dの軌道を描いて進行した後に出射し、直線飛行部11で誘導減速器7を通過する際に減速されて、再び円筒電極5により形成される扇形電場E1に入射する。扇形電場E1に再入射する際の入射位置は、1回目の入射位置よりも内周側に2dだけ片寄っている。扇形電場E1に入る前に誘導減速器7によりイオンを減速させることにより、扇形電場E1内でρ−2dの軌道半径を維持することができる。
【0043】
ここで、誘導減速器(この場合には減速であるが、後述の例では加速)7、8の構成と作用についてより詳細に説明する。
分析対象となるイオンの質量電荷比m/zは広い範囲に亘るため、上記のような準周回軌道上でイオンは様々な速度で時間拡がりをもって飛行している。これら分析対象である全てのイオンに対して時間収束性を維持しなければならないため、減速(又は加速)時のイオンの運動エネルギーの変化量は質量電荷比や飛行速度に依らず一定である必要がある。そこで、誘導減速器7、8としては図2に示すような構成の線形誘導減速器を用いる。
【0044】
この線形誘導減速器はドーナツ形状の巻磁心にコイルを巻回したものである。コイルには時間的に一定の割合で変化する電流iを流し、これにより時間的に一定の電場をイオンの進行方向に発生させる。この誘導減速器を通過する際のイオンの運動エネルギーの変化量をΔWとすると、1つの円筒電極あたりの軌道曲率半径の変化量dとΔWとの関係は次の(1)式で与えられる。
(3−n)・(d/ρ)=ΔW/W …(1)
ここで、Wは準周回軌道への入射時のイオンの運動エネルギーである。またnは扇形電場の動径方向の電場勾配であり、本実施例のように円筒電極を用いた場合には1、球面型電極の場合には2、トロイダル型電極の場合にはその曲率に応じた値をもつ。電場勾配は次の(2)式で与えられる。
n=−(ρ/E)・(∂Er/∂r) …(2)
ここでEはイオン入射点での動径方向の電場である。
【0045】
(1)式の関係を満たすように誘導減速器7、8の減速電場と円筒電極5、6の位置のずれ量dとが設定されていれば、イオンの準周回軌道の半径は1周毎に2dずつ減少する。第1実施例では、回転角度180°の2つの扇形電場E1、E2により準周回軌道が形成されているので、イオンは一方の扇形電場から他方の扇形電場に入射する際に曲率半径がdだけ異なる位置に入射され、半周回毎に軌道半径はdずつ減少していくことになる。
【0046】
即ち、本実施例の飛行時間型質量分析装置では、上述したように、扇形電場E1→直線飛行部12→扇形電場E2→直線飛行部11を経て再び扇形電場E1に戻って来たイオンの入射位置は、内周側に2dだけずれることが保証される。これは質量電荷比や飛行速度の相違に拘わらず、全てのイオンに共通である。このようにイオンの準周回軌道の半径が1周毎に2dずつ減少するので、例えば円筒電極5、6の内側電極5a、6aと外側電極5b、6bとの間隔(ギャップ)幅がGである場合には、イオンは準周回軌道をG/2d周回すると出射されることになる。この例では、3/2周回した時点で全てのイオンが出射点に達する。
【0047】
準周回軌道においても周回数が多いほど飛行距離は長くなるが、その周回数は扇形電場E1、E2のずらし量dにより決まる。したがって、周回数を増やすには、ずらし量dを小さくする必要がある。このずらし量dは入射端面E1inへイオンが入射するときのイオン束の水平方向(図1の紙面内)での広がりと外側電極6bの厚みとで決定される。したがって、イオンの入射点においてはイオン束の水平方向の広がりが最小となるようなイオン光学系を組んでおくことが望ましい。それにより、2つの円筒電極5、6のずらし量dをできるだけ小さくし、周回数を多くして飛行距離を延ばすようにすることができる。
【0048】
上述のように、本実施例の飛行時間型質量分析装置では、イオントラップ3から一斉に出射された各種のイオンは準周回軌道部4において外周側から内周側に向かって渦巻き状に、つまり飛行経路が途中で重なることがない一筆書き状の経路に沿って飛行し、磁石9を経てイオン検出器10に到達する。したがって、全てのイオンに対して飛行距離は同一であり、且つ途中で飛行速度の相違によるイオンの追い越しも生じないので、イオン検出器10で得られる検出信号に基づいて作成される飛行時間スペクトル上で飛行時間と質量電荷比とを一意に決めることができる。
【0049】
[第2実施例]
次に、本発明の第2実施例による飛行時間型質量分析装置について、図3及び図4により説明する。図3は第2実施例による飛行時間型質量分析装置のイオン光学系を中心とする概略構成図。図4は図3中の円筒電極の外側電極の部分的な概略図である。第1実施例で説明した構成要素と同一又は相当する構成要素には同じ符号を付している。
【0050】
上述した第1実施例との大きな相違は、準周回軌道部4へイオンを入射するために専用の偏向電極13を使用する一方、イオン出射用補助磁石を設けていないことである。また、この第2実施例では、偏向電極13によりイオンを内周側に入射し、イオンが次の扇形電場に入射する毎に軌道半径を増加させるよう、直線飛行部11、12に誘導減速器ではなく誘導加速器14、15を設けてイオンを加速するようにしている。ただし、この誘導加速器14、15の構成は上記の誘導減速器7、8と同じであり、コイルに流す電流の向きを変えることで発生する電場の方向を反転させている点が異なる。
【0051】
本実施例の飛行時間型質量分析装置における分析動作を説明する。
イオントラップ3から準周回軌道部4へイオンを入射するときには、各種イオンは時間方向に拡がりを有さないとみなせる(実際には、イオントラップ3から偏向電極13に到達するまでの距離を進む際に若干時間方向にばらつく)ため、イオントラップ3から引き出されたイオン群が通過する間のみ、偏向電極13に所定の電圧を印加して偏向電場を発生させる。これにより、イオントラップ3からイオンが準周回軌道に入射した後には偏向電極13は存在しないものとみなすことができる。
【0052】
上記第1実施例と同様に、イオンが誘導加速器14、15を通過する毎にイオンの運動エネルギーを決まった量だけ増加させることにより、扇形電場E1、E2を通過する毎に軌道半径をdずつ増加させる。そして、イオンが扇形電場E1、E2による準周回軌道を2.5周回すると、扇形電場E1の出射端面E1outの前方には扇形電場E2が存在しなくなり、直線飛行部12を直進したイオンは円筒電極6の外側電極6bのさらに外側を通過してイオン検出器10に到達する。ただし、この例の場合、ずらし量dが小さく、イオン出射点における外側電極6bがイオンと干渉するおそれがあるため、図4に示すように、外側電極6bの外面にイオンが通過する溝部61を形成してある。これにより、第1実施例の構成よりも飛行距離を延ばし、質量分解能を改善することができる。
【0053】
この実施例では、イオンは扇形電場E1、E2による準周回軌道を2周以上飛行し、1周回目よりも2周回目のほうが飛行距離は長くなる。即ち、渦巻き状にイオンを飛行させるために、周回毎にイオンの飛行距離が相違するという点は図9に示したような完全周回型の軌道とは異なる。そのため、イオンの飛行速度が一定であれば、周回毎に1周回に要する時間が変化してしまうことになるが、本発明では、周回毎に1周回の飛行距離が短くなる場合にはイオンの飛行速度は段階的に減少され、逆に周回毎に1周回の飛行距離が長くなる場合にはイオンの飛行速度は段階的に増加されるため、イオンが1周回するのに要する時間を一定に保つことができる。もちろん、その時間自体はイオンの質量電荷比に依存し、質量電荷比が小さいほど時間は短くなる。
【0054】
即ち、本発明に係る飛行時間型質量分析装置では、渦巻き状の飛行軌道であるにも拘わらず周回の等時性が確保されるという特徴がある。周回の等時性がない場合、飛行時間スペクトルをマススペクトルに換算する処理をする際に、質量電荷比によって異なる周回毎の飛行時間の変化を考慮しなければならず、処理が非常に煩雑になる。これに対し、周回の等時性が確保されていれば、飛行時間スペクトルをマススペクトルに換算する処理が容易である。また、特に周回の等時性があるために、次の第3実施例のような構成が可能である。
【0055】
[第3実施例]
図5は本発明に係る第3実施例による飛行時間型質量分析装置のイオン光学系を中心とする概略構成図である。基本的なイオン光学系は上記第2実施例と同じであるので説明を省略する。この飛行時間型質量分析装置の特徴は、イオン検出及び検出信号の処理の方式にある。即ち、準周回軌道に沿って飛行するイオンを検出するためにその軌道上にイオン非破壊型検出器31が設置されている。イオン非破壊型検出器31は例えば誘導電荷検出器であり、荷電粒子であるイオンが通過するとそれにより導電体に誘起される電荷に応じた検出信号を出力する。検出に伴うイオンの破壊はないものの、イオンの運動エネルギーの一部が失われるため、誘導加速器14、15はその失われた分の運動エネルギーを補うように第2実施例よりも大きな加速電場を提供する。これにより、周回の等時性が確保される。
【0056】
イオン非破壊型検出器31では周期的な多重信号が得られるから、データ処理部32は例えば周波数成分を時間成分に変換するフーリエ変換処理を行うことにより、各イオンの飛行時間を求め、さらにこれから各イオンの質量電荷比を算出する。そして、これに基づいてマススペクトルを作成する。フーリエ変換に代えて自己相関関数を利用する等、一般的な多重周回型イオン光学系とイオン非破壊型検出器とを組み合わせた質量分析装置で利用されている様々な信号解析手法を利用することができる。
【0057】
なお、説明を容易にするために図5では図3と同じイオン光学系を利用しているが、フーリエ変換や自己相関関数を利用して精度のよい換算を行うには、周回数をかなり多くする必要がある。したがって、実際には、距離dをもっと小さくすることになる。また、第3実施例ではイオン検出器10は省略することもできるから、準周回軌道からのイオンの取り出しは考慮する必要はない。
【0058】
[第4実施例]
2組の円筒電極5、6のずれである距離dと誘導減速器(又は誘導加速器)を通過する際のイオンの運動エネルギーの変化量をΔWとは、上記(1)式の関係になる。半周回毎に距離dだけ扇形電場E1、E2内でのイオン軌道の曲率半径は縮小又は拡大するから、dを小さくすればそれだけ周回数を増やすことが可能である。イオンがイオン源1を出射してからイオン検出器10に到達するまでの飛行距離は周回数に依存し、周回数を多くするほど質量分解能は向上する。その反面、周回数を増やすとマススペクトルを得るまでに掛かる時間が長くなる。そこで、分析目的に応じて質量分解能を調整できると都合がよい場合がある。図6に示した第4実施例は質量分解能を可変とした飛行時間型質量分析装置の一例である。
【0059】
円筒電極5(5a、5b)は直線飛行部11、12に直交する方向に移動可能なステージ41上に設置され、ステージ41はモータ等を含むステージ駆動部42により駆動される。一方、誘導加速器14、15は加減速用電流供給部43から供給される電流によりイオンを加速する電場を形成する。制御部44は入力部45から与えられる例えば要求質量分解能の指示に基づいてステージ駆動部42及び加減速用電流供給部43の動作を制御し、要求された質量分解能を実現できるような飛行軌道を形成する。例えば図6は図3と同様に、イオンが2.5周回した後に準周回軌道から出射して検出される例である。これに対し、要求質量分解能が下げられると、制御部44はステージ駆動部42により距離dを拡大する。また、その距離dに応じて(1)式を満たすように運動エネルギーを調整するべく、加減速用電流供給部43を制御する。これにより、図7に示すように、イオンが1.5周回した後に準周回軌道から出射して検出されるように変更される。もちろん、このときにもイオンに付与する運動エネルギーを適宜調整して、周回の等時性を確保することができる。
【0060】
図6の構成で距離dを0にすることにより、渦巻き状の軌道ではなく、完全な周回軌道を形成することもできる。この場合、イオンの追い越しの問題が生じるため、好ましくは、第3実施例のようにイオン非破壊型検出器によるイオン検出を行うとよい。
【0061】
[第5実施例]
第1乃至第4実施例はいずれも、準周回軌道を形成する2つの扇形電場E1、E2(つまりは円筒電極5、6)の形状が同一である場合の例であるが、扇形電場の数が3以上であって、形状が同一でない場合の構成も可能である。図8はそうした構成例の1つであり、扇形電場をE2、E3、E4の3つ用いている。
【0062】
より具体的には、この第5実施例の飛行時間型質量分析装置において、第1実施例のイオン光学系と扇形電場E2は同じであり、扇形電場E1が2つの扇形電場E3、E4に分割されている。円筒電極20(内側電極20a、外側電極20b)により形成される扇形電場E3と円筒電極21(内側電極21a、外側電極21b)により形成される扇形電場E4との回転角度の和は180°にする必要があり、扇形電場E3の入射端面E3in及び扇形電場E4の出射端面E4outの位置は、上記の扇形電場E1の入射端面E1in及び出射端面E1outと合わせる必要がある。そこで、ここでは円筒電極20、21の回転角度をいずれも90°とし、それらの中心線の曲率半径を円筒電極5の曲率半径よりも小さくして扇形電場E3、E4間に直線飛行部22を確保している。
【0063】
扇形電場E2の中心線の曲率半径と、扇形電場E3、E4の中心線の曲率半径とは相違するため、誘導減速器7、8における減速度合いは同一ではなく、曲率半径に合わせて適宜調整する必要があるものの、準周回軌道を半周する毎に軌道半径がdずつ減少し、一筆書き状の飛行軌道が形成可能であることは第1実施例と同じである。
【0064】
さらに扇形電場の数を増やした構成とすることも可能であるが、上記のような準周回軌道を形成するには次のような条件を満たすことが必要になる。即ち、図1、図3、図5に示すように、複数の扇形電場は多重周回型の飛行軌道を形成することが可能であり、しかも、互いに平行な直線飛行部が一組以上存在することが必須である。その場合、その一組の直線飛行部を境界にして複数の扇形電場を2つのグループに分けることができ、一方のグループに属する扇形電場全体を他方のグループに属する扇形電場に対し、上記一組の直線飛行部に直交する方向に距離dだけずらした配置とすればよい。1つのグループに属する扇形電場の数に上限はない。また、上記のように異なるグループ間を繋ぐ直線飛行部には、周回毎に軌道半径を大きくする場合には誘導加速器が、周回毎に軌道半径を小さくする場合には誘導減速器が配置され、通過するイオンに一定量の運動エネルギーが増加又は減少される。
【0065】
なお、上記実施例はいずれも本発明の一例にすぎず、本発明の趣旨の範囲で適宜、変更や修正、追加を行っても本願特許請求の範囲に包含されることは当然である。
【符号の説明】
【0066】
1…イオン源
2…イオンガイド
3…イオントラップ
4…準周回軌道部
E1、E2、E3、E4…扇形電場
5、6、20、21…円筒電極
5a、6a、20a、21a…内側電極
5b、6b、20b、21b…外側電極
61…溝部
7、8…誘導減速器
9…イオン出射用補助磁石
10…イオン検出器
11、12、22…直線飛行部
13…偏向電極
14、15…誘導加速器
31…イオン非破壊型検出器
32…データ処理部
41…ステージ
42…ステージ駆動部
43…加減速用電流供給部
44…制御部
45…入力部

【特許請求の範囲】
【請求項1】
イオンが円弧状の軌道を描く扇形電場と、隣接する扇形電場間でイオンが直線状の軌道を描く直線飛行部と、をイオンが交互に通過し、最後の扇形電場を出射したイオンが最初に入射した扇形電場に再び入射することで、イオンが繰り返し周回可能な飛行軌道を形成可能である複数の扇形電場を用いた飛行時間型質量分析装置であって、前記周回可能な飛行軌道は互いに平行な直線飛行部が一組以上存在するような飛行時間型質量分析装置において、
前記互いに平行な直線飛行部が載る平面上で、それら直線飛行部を境界として複数の扇形電場を第1、第2なる2つのグループに分けたときに、第1のグループに含まれる1乃至複数の扇形電場を第2のグループに含まれる1乃至複数の扇形電場に対して、前記互いに平行な直線飛行部と直交する方向に所定の距離だけずらして配置するとともに、
前記互いに平行な直線飛行部の軌道上に、イオンにエネルギーを付与する又はイオンからエネルギーを奪う加減速手段を設け、
所定の扇形電場にイオンが入射する毎に該イオンが通過する円弧状軌道の曲率半径が縮小又は拡大することにより渦巻き状の飛行軌道を形成し、且つ、同一質量電荷比のイオンに対する周回毎の周回時間が等しくなるようにしたことを特徴とする飛行時間型質量分析装置。
【請求項2】
請求項1に記載の飛行時間型質量分析装置であって、
前記加減速手段は、イオンの進行方向に所定の電場を発生させるものであることを特徴とする飛行時間型質量分析装置。
【請求項3】
請求項1又は2に記載の飛行時間型質量分析装置であって、
前記複数の扇形電場はそれぞれ、同心で等しい回転角度及び曲率半径を有する、円筒状、球面状、又はトロイダル状の内側電極と外側電極とからなる一対の電極の間に形成されるものであることを特徴とする飛行時間型質量分析装置。
【請求項4】
請求項1〜3のいずれかに記載の飛行時間型質量分析装置であって、
直線飛行部を挟む2つの扇形電場を相対的にずらすことにより、対向する扇形電場の入射端面又は出射端面の前方に形成される開放空間を通して、渦巻き状の飛行軌道の入射端となる位置にイオンを入射する、又は渦巻き状の飛行軌道の出射端となる位置からイオンを出射させることを特徴とする飛行時間型質量分析装置。
【請求項5】
請求項1〜4のいずれかに記載の飛行時間型質量分析装置であって、
渦巻き状の飛行軌道を周回するイオンを非破壊で検出するイオン検出器と、該イオン検出器による周期的な検出信号を処理することにより各イオンの質量電荷比を求めるデータ処理手段と、をさらに備えることを特徴とする飛行時間型質量分析装置。
【請求項6】
請求項1〜5のいずれかに記載の飛行時間型質量分析装置であって、
第1のグループに含まれる1乃至複数の扇形電場を、第2のグループに含まれる1乃至複数の扇形電場に対して、前記互いに平行な直線飛行部と直交する方向に移動させる移動手段と、
該移動手段により前記距離を変更するに伴い、イオンに付与する又はイオンから奪うエネルギーを変えるように前記加減速手段を制御する制御手段と、
をさらに備えることを特徴とする飛行時間型質量分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate