説明

高使用温度ナノ複合材樹脂

オレフィン含有ナノ構造化学物質およびシラノール含有ナノ構造化学物質を高温樹脂として用いる方法を記載する。ビニル含有ナノ構造化学物質はポリマー鎖・セグメントの運動を分子レベルで制御するので熱硬化性樹脂に特に有効である。シラノール含有ナノ構造化学物質は、極性基を含む熱硬化性樹脂に特に有効である。フッ素ポリマーとの適合性のために直接混合および重合によってナノ構造化学物質をポリマーに容易に組み込める。ナノ構造化学物質のポリマーへの組み込みはポリマーの物理的特性に良好な影響を与える。最も有利に改善される特性は熱歪み・燃焼特性、透過性、光学特性、風合い、感触および耐久性である。他の特性は時間依存機械的・熱的特性たとえばクリープ、圧縮残留歪み、収縮性、弾性率および硬度を含む。加えて、低熱伝導性およびガス酸素透過性を含む他の物理的特性が改善される。これらの特性は多くの用途に有用である。

【発明の詳細な説明】
【発明の開示】
【0001】
関連出願への相互参照
本出願は2004年9月10日に出願された米国仮特許出願第60/608,582号の利益を主張する。
【0002】
発明の分野
本発明は、一般的に、高温熱硬化性ポリマーと繊維強化複合材の方法および組成物に関する。より詳細には、本発明は、ナノ構造化学物質を組み込んで使用し、ポリマーの硬化化学現象を制御し、さらに熱硬化性ポリマーの熱的、機械的、および関連する物理的特性に影響を与えるための方法に関する。
【0003】
また、本発明は、ナノスケールで制御された熱硬化性ポリマーの複合材料、コーティング、接着剤、シールおよび成形製品への加工および適用に関する。樹脂および複合材の用途は、改善された複合材樹脂、発泡体、繊維、塗料、コーティング、接着剤、および耐火印刷性、生物適合性をもたらす表面特性、および透過性制御、光学的特性および建築コーティングを含む。
【0004】
発明の背景
ポリマーの特性は、ポリマー配列、構造、添加物およびフィラーの組み込み、組成、形態、熱力学的および動力学的加工制御のような変数により高度に調整できることが長く認識されてきた。同様に、種々のサイズおよび形状のフィラーおよび粒子(例えば、テフロン(登録商標)、炭酸カルシウム、シリカ、カーボンブラックなど)をプリフォームのポリマー(プレポリマー)またはモノマーの混合物に組み込んで、得られる配合物の物理的および材料特性を増強できることが知られている。また、熱硬化性ポリマーにおける先行技術は、鎖の間で部分的にまたは完全に生じる相互貫入網目構造および架橋の形成による特性調節に焦点を当ててきた。
【0005】
先行技術においては、望ましい効果は、ポリマーの鎖およびセグメントの互いに対する運動を減少させることであった。鎖の運動の減少をより剛直で熱的に安定な成分と組み合わせた組み合わせは、最終的には、寸法安定性、強度および熱安定性のような物理的特性を高める。残念ながら、すべての先行技術は、プロセスが複雑になり、長さスケールを3つの次元のすべてにおいて1〜50nmレベルでは制御できないという欠点がある。1〜50nmの長さスケールはポリマー材料にとって重要である。というのは、典型的なポリマーの鎖または架橋は、8nmのレプテーション径および50nmの回転半径を有するからである。本発明は、ナノ構造化学物質を利用して、プロセスの単純化、硬化化学現象および硬化速度の制御、および1nmレベルまでのポリマー鎖のナノスケールでの補強を達成する。
【0006】
さらに、補強サイズが50nm未満まで減少するので、これらは沈降に対してより耐性があり、ポリマー系に補強を与えるのにより有効になるということが計算されている。しかし、この理論的知識の完全な適用は、幾何学的に良好に画定され、単分散であり、10nm範囲未満、特に1nmから5nmの範囲の直径を有する粒子補強材の実用的なソースがないことによって妨げられてきた。
【0007】
熱硬化性ポリマー、相互貫入網目構造、ポリマーの形態、およびフィラー技術と関連する先行技術は、1nm〜10nmレベルでポリマー鎖、コイルおよびセグメントの運動および構造を適切に制御することができなかった。さらに、従来、ポリマーと無機系フィラーおよび化学物質との間の化学ポテンシャル(例えば、溶解性、混和性など)の不適合は、配合されたポリマーに高度の不均質性をもたらし、これは水と混合したオイルに類似している。したがって、ポリマーの特性をさらに向上させるために、制御された直径(ナノ寸法)、分布および調整可能な化学的機能性を有する適切な大きさの化学補強材についてのニーズが存在する。
【0008】
ナノ科学における最近の発展は、その正確な化学式、ハイブリッド(無機−有機)化学組成、従来の化学分子のサイズ(0.3〜0.5nm)に対してより大きい物理的サイズ、およびより大きなサイズの従来のフィラー(>50nm)に対して小さい物理的サイズにより、ナノ構造化学物質として最もよく記述される市販量の材料を、コスト効率よく製造する能力を可能にする。
【0009】
発明の概要
本発明は、ナノスケールの長さスケールでの硬化化学現象、構造および特性を制御することにより、改善された高温ポリマー熱硬化性樹脂および複合材を製造する方法を記載している。得られるナノポリマーは、それ自体または他のポリマーと組み合わせて、または他の巨視的な補強材たとえば発泡体、スクリーン、メッシュ、繊維、クレー、ガラス鉱物および他のフィラーおよび触媒を含む他の化学物質と組み合わせて、完全に有用である。ナノアロイ化されたポリマーは、望ましい物理特性たとえば繊維補強材および金属表面に対する接着、撥水性、低い溶融粘度、耐火性および耐酸化性を有するポリマー組成物を製造するのに特に有用である。
【0010】
本明細書で提示される好ましい組成物は、2つの主要な材料の組み合わせを含む。(1)POSSケージ上のビニルまたは他のオレフィン系のR基および(2)シラノール基を有するケージまたは部分的なケージ(図1)である。これらの材料の組み合わせは、ナノ構造オリゴマー、またはナノ構造ポリマー、ポリヘドラルオリゴマーシルセスキオキサン、ポリシルセスキオキサン、ポリヘドラルオリゴマーシリケート、ポリシリケート、ポリオキソメタレート、カルボラン、ボランおよび多形の炭素の形態をとるか、またはナノスケールの寸法を有する化学架橋剤または硬化促進剤として利用される。架橋剤はついで炭化水素エン、またはシランおよびシリコーン、またはホスフィン、またはチオールもしくは硫黄およびコポリマー、フェノール類、ノバラック、レゾール、エポキシ、シアネートエステル、ウレタン、ポリイミド、ビスマレイミドなど、およびこれらの組み合わせとともに利用される。
【0011】
好ましくは、ナノ構造化学物質をこのような熱硬化性樹脂に組み込む方法は、溶媒を使用することなくナノ構造化学物質を化学架橋剤に溶解するか混合することにより達成される。しかし、溶融混合、乾燥混合、溶液混合、反応性および非反応性混合を含む混合のすべてのタイプと方法が有効である。熱硬化性樹脂および「化学架橋」という用語を用いるのは、鎖のエンタングルメントまたはナノ構造化学物質とポリマー鎖との間のエンタングルメントが、挙動において従来の化学架橋と類似した物理架橋として挙動しうるためである。
【0012】
シランによる熱硬化性樹脂
R=オレフィン(ビニル、アリル、シクロペンテン、シクロヘキセン、ノルボレンなどおよびより高級な炭素基)を有するPOSSナノ構造化学物質をシランと反応させて、所望の熱的、機械的、電気的および光学的特性を示す熱硬化性樹脂にする。種々のヒドリド含有シラン、シリコーン、およびシルセスキオキサンを用いて、ヒドロシリル化によりこれらの系を硬化させることができる(Lichtenhanら、米国特許第5,939,576号を参照のこと)。特に有用なのはトリシランおよび環状シラン(図2)である。というのは、これらがビニル樹脂の可溶化を促進するからである。同様に有用なのは(図2には示していないが)オルガノシランおよびシロキサンである。ヒドロシリル化反応プロセスは、炭素−炭素二重結合を渡るSi−H結合の酸化的付加を伴い、副生成物を生じない(図3)。この反応はすべての公知のヒドロシリル化触媒によっておよびフリーラジカル開始剤によって触媒される。
【0013】
硫黄による熱硬化性樹脂
R=オレフィン基を有するPOSSナノ構造化学物質を硫黄およびチオールと反応させても顕著な熱的、機械的、電気的および光学的特性を示す。種々の硫黄含有硬化促進剤および可溶化剤を用いて加硫およびチオール化法によりこれらの系を硬化させることができる(Lichtenhanら、米国特許第5,939,576号を参照のこと)。特に有用なのはジスルフィドおよび環状硫黄である(図4)。というのはこれらがビニル樹脂の可溶化を促進するからである。硫黄の一部または全部を硫黄ドナーたとえばチウラムジスルフィドによって置換してもよい。促進剤は加硫の速度を決定するが、促進剤対硫黄の比は硬化の効率、さらに得られるポリマーの熱安定性に影響する。加えて、典型的には1:5の促進剤対硫黄の比が好ましく、これは各々の挿入化学架橋について約20硫黄原子の網目構造を与える。反応プロセスは炭素−炭素二重結合を渡るS−HまたはS−S結合の酸化的付加を伴い、副生成物を生じない(図5)。この反応はすべての公知のフリーラジカル、UVおよび熱開始剤によって触媒される。特に有用なのは酸化亜鉛およびステアリン酸による硬化プロセスの活性化であり、このプロセスは少量の複雑な硫黄系化学物質、典型的にはスルフェンアミドの添加によって「加速される」。これは、プロセスを加速するだけでなく、樹脂の特性たとえばそのエージング耐性にも影響を与える。促進剤として用いられるすべての化学物質を列挙することは不可能であるが、用いられる主要な基の一部はチアゾール、スルフェンアミド、およびグアニジンを含む。
【0014】
ホスフィンによる熱硬化性樹脂
R=オレフィン基を有するPOSSナノ構造化学物質はホスフィンを反応させて、著しい熱的、機械的、電気的および光学的特性を示す。種々のヒドリド含有ホスフィンおよびホスフェートを用いて、ホスホリル化法によりこれらの系を硬化させることができる(Lichtenhanら、米国特許第5,939,576号を参照のこと)。特に有用なのはビスおよびトリスホスフィンおよびオリゴマーホスフィンである(図6)。というのは、これらがビニル系の可溶化を促進するからである。反応プロセスは、炭素−炭素二重結合を渡るP−H結合の酸化的付加を伴い、副生成物を生じない(図7)。この反応はすべての公知のフリーラジカル開始剤およびUV源によって触媒される。
【0015】
オレフィンによる熱硬化性樹脂
R=オレフィン基を有するPOSSナノ構造化学物質はエンと反応させて、著しい熱的、機械的、電気的および光学的特性を示す。アセチレンを含むヒドリド含有エンを用いて、2+2および4+2付加方法によってこれらの系を硬化させることができる(Diels Alderとしても一般に知られている)。特に有用なのは直鎖および環状ジエンである(図8)。というのは、これらがビニル系の可溶化を促進するからである。反応プロセスは炭素−炭素二重結合を渡るc−c二重結合の付加を伴い、副生成物を生じない(図9)。この反応はすべての公知のフリーラジカル開始剤およびUV照射源により触媒される。
【0016】
熱硬化性樹脂に対する変形例
列挙した硬化方法およびオレフィンを有するPOSSナノ構造化学物質に対する変形例を用いることができる。例えば、図1に示した構造体に含まれるオレフィン基の部分的誘導体を、Lichtenhanらにより米国特許第5,942,638号および第6,100,417号に記載されている酸化および置換方法によって、ならびにLaineらにより記載されているHeck法によって行うことができる。図1における1以上のビニル基の誘導体化は、接着性、塩基または酸条件における溶解を高くするため、または疎水性および生化学的適合性を高くするまたは低くするために望ましいであろう。図1におけるビニル系のエポキシ化は接着性を改善するために特に有用だと考えられる。
【0017】
POSSシラノールおよび他の反応性または非反応性POSS系の組み込みは、ビスマレイミドおよびオレフィン末端ポリイミドを含むオレフィンポリマーの補強材として有用であろう。また、非オレフィン含有ポリマーたとえばポリイミド、エポキシ、ウレタンの物理的特性も、1以上のポリマー鎖と相互作用することができるPOSSシラノールおよび他のPOSS系の組み込みにより望ましく高めることができる。
【0018】
シラノールエポキシおよびシアネートエステル熱硬化性樹脂
シラノールPOSSナノ構造化学物質は、エポキシおよびシアネートエステル基と、エポキシおよびシアネートエステルポリマー中の酸素および窒素基をもつ極性シラノールの水素結合を通して相互作用することができる(図10)。硬化剤およびナノスケールの構成要素の化学構造ならびに硬化条件に応じて、極度の可撓性から高い強度および硬度までの範囲の機械的特性、ならびに接着強度、耐薬品性、耐熱性および電気抵抗のような物理的特性を変化させることができる。様々な化学組成および硬化速度は、ユーザーが広い温度範囲にわたって処理し、架橋度を制御することを可能にする。
【0019】
かなりの量の研究が、エポキシドとアミンとの間の反応の性質に関する文献で報告されている。エポキシの硬化速度は、多くの要因、たとえば硬化の間に発生するヒドロキシル基、アルコールおよびルイス酸の添加によって加速することができる。これらのうち、アルコールの触媒効果は広く認められている。アルコールの触媒効率はその酸性度にほぼ比例しうる。これは、酸または求電子種が、より反応性のあるエポキシドの共役酸の可逆的な生成によってほとんどの求核試薬の添加をかなり加速するためである。同様の反応機構がルイス酸について提案されている。我々の特別な関心は、エポキシ硬化速度に対するシラノール基の影響である。シラノールとルイス酸(アルミニウム錯体)との間の相乗効果も確認されている。
【0020】
ナノスケールのサイズのために、酸性POSSシラノールは拡散制御機構により支配されるガラス化後の段階における更なるエポキシ−アミン架橋を促進する。これは樹脂トランスファー成形プロセス(ここでは気孔を除去し低い後硬化温度で高Tg材料を製造するためにある時間のあいだ低い粘度を維持することが要求される)を用いる繊維強化複合材の製造に有利に利用することができる。ナノスケールのサイズのPOSSは、エポキシ−アミンの二級水素原子の反応の傾向を高める反応基の体積を制御するのにも有用である。このことは、最終的には、形成される網目構造をより完全にする。
【0021】
同様の会合機構がシアネートエステル系において作用する。これらの樹脂はOCN基の環化三量体化により架橋する。シラノールPOSSまたは関連するPOSS系(例えば、アミン、シロキシドアニオンなど)の存在下で、POSSは反応基の体積を増加させ、続いて、より完全に反応する傾向を高める。シラノール基はシアネートエステル基のCN三重結合を渡って付加することもあるが、この二次硬化機構は完了するために高温を必要とする。
【0022】
同様の会合機構がポリイミド系において作用する。これらの樹脂は、強く水素結合し、POSSが水素結合を介して会合できるポリアミド酸中間体の生成を経由して架橋する。続いて、ポリアミド酸は加熱と水の消失によって環状イミドに変換される。シラノールPOSSまたは関連するPOSS系(例えば、アミン、シロキシドアニオンなど)の存在下で、POSSはアミド酸反応基の体積を増加させ、シラノールの酸性度により水の消失速度を増加させ、続いてより完全に反応する傾向を高め、高温硬化の必要性を減少させる。
【0023】
同様の会合機構がビスマレイミド系において作用する。これらの樹脂はジアリルビスフェノールAとマレイミドとの反応により架橋し、環状の架橋を形成する。POSSはジアリルビスフェノールAと強く水素結合し、反応基の体積を増加させ、続いてより完全に反応する傾向を高め、高温硬化の必要性を減少させることができる。同様の機構はPOSSのイミド基との会合によるアセチレン末端ポリイミドにも利用できる。
【0024】
同様の会合機構がフェノール、レゾルシノール、およびノボラック系において作用する。これらの樹脂はフェノールの反応により架橋し、水の消失によりメチレン架橋網目構造を形成する。POSSはフェノールと強く水素結合し、反応基の体積を増加させ、続いてより完全に反応する傾向を高め、高温硬化の必要性を減少させることができる。
【0025】
同様の会合機構がポリウレタン系において作用する。これらの樹脂はアルコールまたはアミンのイソシアネートとの縮合および付加反応により架橋し、ウレタン架橋を形成する。POSSはアルコールおよびイソシアネートと強く水素結合し、反応基の体積を増加させ、続いてより完全に反応する傾向を高め、高温硬化の必要性を減少させることができる。
【0026】
ナノ構造体についての化学式表示の定義
本発明の化学組成物を理解するために、ポリヘドラルオリゴマーシルセスキオキサン(POSS)およびポリヘドラルオリゴマーシリケート(POS)ナノ構造体の化学式表現について以下の定義がなされる。
【0027】
ポリシルセスキオキサンは、式[RSiO1.5xによって表される材料である。ここで、xは重合のモル度を表し、R=は有機置換基(H、シロキシ、環状または直鎖脂肪族または芳香族基であって、さらに反応性基たとえばアルコール、エステル、アミン、ケトン、オレフィン、エーテルまたはハライドを含むかまたはフッ素化された基を含んでいてもよい)を表す。ポリシルセスキオキサンはホモレプチックまたはヘテロレプチックのいずれでもよい。ホモレプチック系は1種のR基のみを含むが、ヘテロレプチック系は2種以上のR基を含む。
【0028】
POSSおよびPOSナノ構造組成物は以下の式によって表される。
【0029】
ホモレプチック組成物の場合[(RSiO1.5nΣ#
ヘテロレプチック組成物の場合[(RSiO1.5n(R’SiO1.5mΣ#(ここでR≠R’)
官能化されたヘテロレプチック組成物の場合[(RSiO1.5n(RXSiO1.0mΣ#(ここでR基は同じでも不同でもよい)
上記のすべてにおいて、Rは上記で定義したのと同一であり、XはOH、Cl、Br、I、アルコキシド(OR)、アセテート(OOCR)、ペルオキシド(OOR)、アミン(NR2)、イソシアネート(NCO)、およびRが含むがこれらに限定されない。記号mおよびnは組成物の化学量論を示す。記号Σは組成物がナノ構造を形成することを示し、記号#はナノ構造の内部に含まれるケイ素原子の数を示す。#の値は通常m+nの和であり、ここでnは典型的には1ないし24の範囲にあり、mは典型的には1ないし12の範囲にある。なお、Σ#は化学量論を決定するための乗数と混同すべきでない。これは単に系の全体的なナノ構造特性(アカ・ケージ・サイズaka cage size)を記述するにすぎない。
【0030】
発明の詳細な説明
本発明は、熱硬化性樹脂について分子レベルでポリマーコイル、ドメイン、鎖、およびセグメントの補強のための構造単位としてナノ構造化学物質を使用することを教示している。
【0031】
ナノ構造化学物質が分子レベルの補強剤およびアロイ化剤として機能することを可能にする鍵は、(1)ポリマー鎖の寸法に対するそれらの独特なサイズ、および(2)ポリマー鎖によるナノ補強剤の非適合性および反発を促進する斥力を克服するように、ポリマー系に適合化させるそれらの能力、である。すなわち、ナノ構造化学物質は、各々のナノ構造上のR基の変化により、あるポリマーミクロ構造との優先的な親和性/適合性を示すように設計することができる。同時に、ナノ構造化学物質は同じポリマー内部の他のミクロ構造と非適合になるように設計することができ、こうして特定のポリマーミクロ構造の選択的補強を可能にする。したがって、選択的ナノ補強をもたらす要因は、ナノ構造化学物質の特定のナノサイズ、ナノサイズの分布、およびナノ構造化学物質とポリマー系との間の適合性と不均衡を含む。
【0032】
ナノ構造化学物質、たとえば図1に示したモノスコープの大きさのPOSS構造体は、固体とオイルと両方で入手できる。両方の形態が溶媒またはコア試薬に溶解し、それによって従来の微粒子フィラーに関連する長期にわたる分散の問題または相互貫入網目構造に関連する混合の複雑さを解決する。さらに、POSSナノケージは分子レベルでプラスチックに溶解するので、溶媒和/混合による力(すなわち自由エネルギー)は、POSSが従来のおよび他の有機官能化されたフィラーで起こるような凝集ドメインの合体および形成を防止するのに十分である。微粒子フィラーの凝集は従来、配合業者および成形業者を悩ませていた問題であった。
【0033】
ポリマーの寸法に対するPOSSケージの大きさとフィラー径/長さスケールとの間の相対的な比較は以下の通りである。アモルファスセグメント0.5〜5nm、オクタシクロヘキシルPOSS1.5nm、ランダムポリマーコイル5〜10nm、微粒子シリカ9〜80nm、結晶質ラメラ1.0〜9,000nm、フィラー/有機クレー2〜100,000nm。POSSの大きさはほとんどのポリマーの寸法の大きさとほぼ等しく、したがって分子レベルでPOSSはポリマー鎖の挙動を有効に変化させることができる。
【0034】
鎖の運動を制御するPOSSの能力は、POSSをポリマー鎖または網目構造に組み込んだ場合に特に明らかである。Lichtenhanらに対する米国特許第5,412,053号、Lichtenhanらに対する米国特許第5,484,867号、Lichtenhanらに対する米国特許第5,589,562号およびWeidnerに対する米国特許第5,047,492号を参照のこと。これらはすべて参照により本明細書に明示的に組み込まれる。POSSナノ構造体をポリマー鎖に共有結合により結合した場合、これらは鎖の運動を阻止するように機能し、時間依存特性たとえばTg、HDT、クリープおよび残留歪み(これらは高い弾性率、硬度、および耐磨耗性に相関する)を非常に高める。このため、本発明は同様の特性の向上がナノ構造化学物質を熱硬化性樹脂に組み込むことによって実現できることを示している。これは先行技術のプロセスを非常に簡単にする。
【0035】
さらに、POSSナノ構造化学物質は分子球のような球形(単結晶X線回折の研究による)を有し、これらは溶解するので、これらはポリマー系の粘度を減少するのにも有効である。この利益は可塑化剤をポリマーに組み込むことにより生じるものと同様であり、さらに化学物質のナノスケールの性質のために個々のポリマー鎖の補強という更なる利益をも伴う。したがって、加工の容易さと補強効果がナノ構造化学物質(例えばPOSS、POS)の使用により得られるが、先行技術は加工助剤ならびにフィラーまたはおよび良好に画定されていないポリマー鎖の混合物の両方の使用を必要としたであろう。更なる利益が、単分散のケージサイズ(すなわち、多分散性=1)のナノ構造化学物質の使用によりまたは多分散のケージサイズにより実現できる。適合性、分散性、およびサイズに関するこのような制御は、すべての従来のフィラー、可塑剤、および相互貫入網目構造技術について前例がない。
【0036】

すべてのプロセスに適用できる一般的なプロセス変数
化学的なプロセスに一般的なように、任意のプロセスの純度、選択性、速度および機構を制御するために用いることができる多数の変数がある。プラスチックへのナノ構造化学物質(例えばPOSS/POSなど)の組み込みのためのプロセスに影響を与える変数は、ナノ構造化学物質のサイズと多分散性と組成を含む。同様に、ポリマー系の分子量、多分散性および組成も、ナノ構造化学物質の性質と適合していなければならない。最終的に、混合プロセスの間に用いられる速度、熱力学、および加工助剤、ならびに架橋プロセスの間に用いられる促進剤および硬化助剤も、ポリマーへのナノ構造化学物質の組み込みによりもたらされる充填レベルおよび向上度合に影響を与えうる作業手段である。ブレンドプロセスたとえば溶融ブレンド、乾燥ブレンドおよび溶液混合ブレンドはすべてプラスチックにナノ構造化学物質を混合してアロイ化するのに有効である。
【0037】
別の方法:溶媒補助配合。POSSを、所望のポリマー、プレポリマーまたはモノマーを含み、十分量の有機溶媒(例えばヘキサン、トルエン、ジクロロメタンなど)またはフッ素化溶媒に溶解した容器に加えて、1つの均質相を形成させてもよい。次に混合物を強い剪断力の下で十分な温度で攪拌して30分間適切な混合を確保し、次に真空下でまたは蒸留を含む同様のタイプのプロセスを用いて揮発性溶媒を除去して回収する。なお、CO2のような超臨界流体を可燃性の炭化水素溶媒の代わりに用いることもできる。次に、得られる配合物を直接用いてもよいしまたは続く加工のために用いてもよい。
【0038】
例1−シラン硬化ビニルPOSS樹脂
例1a
70gのビニルPOSSケージ/樹脂混合物の試料を30gのフェニルトリスジメチルシロキシシランに入れて攪拌した。混合物を60℃に加熱して溶解を促進した後、室温まで硬化させた。次に3ppmのヒドロシリル化触媒を混合物に入れて攪拌した。次に樹脂をキャストして室温で8時間反応させ、続いて60℃で4時間および120℃で2時間加熱した。光学的に透明な樹脂板を取り外し、優れた熱的および機械的特性を有することがわかった。
【表1】

【0039】
例1b−ビニルPOSSおよびエポキシPOSS樹脂/ケージ混合物のシラン硬化
1aと同様の手順を85%のビニルPOSSおよび5%のエポキシPOSSからなる樹脂を用いて実施した。これを1aと同様に硬化し、ほぼ同一の機械的および熱的特性を有し、木材および複合材繊維を含む極性表面への高い接着性をもつことがわかった。(なお、0.1ないし99.9%の範囲のビニルおよびエポキシが許容可能なことがわかった)。この樹脂のさらに望ましい特徴はその光学的な透明性である。
【0040】
例1c−ビニルPOSSおよびエポキシPOSS樹脂/ケージ混合物のシラン硬化
1aと同様の手順を80%のビニルPOSSおよび20%のフェニルPOSSからなる樹脂を用いて実施した。これを1aと同様に硬化し、高い耐火性を有することがわかった。なお、0.1ないし99.9%の相対範囲のビニルおよびフェニルが許容可能なことがわかった。この配合の光学的透明性も望ましい特性であることがわかった。
【0041】
また、ビニル、フェニルおよびエポキシの三元混合物も好ましいことがわかった。例えば、以下の範囲のビニルPOSSおよびフェニルPOSSの系が役立つことが明らかになった。
【表2】

【0042】
PM1285−0510ビニルPOSS誘導体の合成:
ViSi(OMe)3(184.72g、1.246モル)、PhSi(OMe)3(82.37g、0.415モル)およびEpCyEtSi(OMe)3(102.19g、0.415モル)を、メカニカルスターラーおよび還流コンデンサを備えた3Lの三口丸底フラスコ中でMEK(1.5L)およびメタノール(205ml)に溶解した。この反応混合物に、KOH[0.6g、水(149.5mL)に溶解]を、攪拌しながらゆっくりと加えた。反応混合物を加熱して還流させ、30時間続けた。反応後、HClを加えて30分間攪拌した。次に1.5kgの氷/水および400mLのヘキサンを加えて30分間攪拌した。ヘキサン/MEK層を分離し、溶媒をロータリーエバポレーターで除去して固体のPM1285誘導体を得た。
【0043】
例2−硫黄硬化
ビニルPOSSケージ/樹脂混合物(5.01g)、硫黄(0.0516g)、Captax(0.025g)、ブチルzimate(0.0255g)およびメチルtuads(0.0254g)を室温で機械的に混合した。次に混合物を110℃で24時間硬化し、光学的に透明な樹脂板を製造し、これはエポキシ樹脂のものと同様の熱的および機械的特性を有することがわかった。
【0044】
例3−エン硬化
50gのビニルPOSSケージ/樹脂混合物の試料をクメンペルオキシドと完全に混合し、混合物を100℃に加熱して架橋を促進した。光学的に透明な樹脂板は優れた熱的特性を有することがわかった。エン法によりもたらされる樹脂の熱的および機械的特性の調整能は、シクロペンタジエン、シクロペンタジエン樹脂、ヘキサジエン、ノルボルナジエンをコエンモノマー試薬として添加することにより可能であることがわかった。
【0045】
例4−ビニルPOSSケージ/樹脂混合物のエポキシ化
50gのビニルPOSSケージ/樹脂混合物の試料を、過酢酸(200ml)、クロロホルム(500ml)、重炭酸ナトリウム(62.1g)および酢酸ナトリウム(1.1g)の混合物に入れて攪拌し、還流させた。2時間後、冷却により反応を停止した。室温で水(700ml)を加え、混合物を攪拌し、ろ過し、水層と有機層に相分離させた。有機層を分離し、メタノール(100ml)で処理して、エポキシ化生成物の白色固体を得た。なお、MCPBA(メタクロロ過安息香酸)も過酢酸に代わる許容可能な酸化剤である。
【0046】
例5a−POSSシラノールおよびエポキシ硬化
2種の従来のエポキシモノマーおよび従来のアミン硬化剤を用いて、本方法の効果を証明した。ビスフェノールAのジグリシジルエーテル、DGEBA(D.E.R.w332、Dow chemical、エポキシド[E]当量:173)、およびテトラグリシジルジアミノジフェニルメタン、TGDDM(Aldrich Chmicals、[E]当量:105.6)を攪拌しながら混合し、次に2−メチル−1,5−ペンタジアミン(Dytec A、DuPont Chemicals、水素[H]当量:29)またはジアミン末端ポリプロピレンオキシド(JeffaminewD230、Huntsman Chemicals、[H]当量:57.5)を加えた。用いたエポキシ(E)対アミン(H)の比は化学量論であり、[E]/[H]は1/4 1であった。この樹脂混合物に、0.1ないし1重量パーセントの範囲のフェニルトリシラノールPOSS(POSS−トリオール)を加えた。次に樹脂を加熱し、50℃で30分間攪拌し、次に真空中において10分間室温で脱ガスした。樹脂を型に注ぎ、特定温度に設定された機械的対流空気オーブン中で12時間硬化させた。組成、熱的機械的、および加工パラメーターを以下に示す。
【表3】

【0047】
例5b−無水物によるPOSSエポキシ硬化
5aの手順は、従来のエポキシおよび無水物の硬化系に対しても適用できる。例えば、3部のエポキシドを45:55の重量比のA部のPOSSエポキシドとB部の無水物を用いて配合した。この混合物に3wt%イミダゾール触媒を加え、室温で系を完全に混合した。樹脂は成形または注入に適していた。70℃で120分間硬化を行った後、成形部品を室温まで硬化させてから型から取り出した。POSSエポキシは以下の望ましい特性を有していた。密度1.1〜1.2g/ml、ガラス転移110〜120℃、粘度(混合後)〜10ポイズ、保管寿命24℃で12ヶ月、引張弾性率2.2Gpa。
【0048】
例6−POSSシラノールおよびポリイミド硬化
カプトン(登録商標)フィルムの形成に用いられる市販のポリアミド酸(Dupont)を用いて本方法の効果を証明した。POSSシラノールを、ポリアミド酸をNMP溶媒に入れた溶液に溶解した。この混合物におけるPOSSの溶解範囲は0.1ないし60wt%であり、好ましい範囲は5〜15wt%である。次にポリ(アミン酸)およびPOSS(登録商標)をNMPに入れた溶液をキャストしてフィルムまたはコーティングにし、続いて100℃で2時間、その後200℃で2時間、300℃で1時間イミド化することができる。POSSの組み込みは、優れた光学特性、高温での高い弾性率(E’)、高い靭性(伸長×引張)、および酸素プラズマまたは他の酸化剤に対する暴露の際にフィルム表面での保護シリカガラスの形成による非常に向上した耐酸化性をもたらす。
【表4】

【0049】
例7−POSSシラノールおよびビスマレイミド(BMI)硬化
市販のBMI樹脂を用いて、本方法を証明した。POSSシラノールを、Cytecによって製品コード5250−4で製造されたBMPM/DABPA(BMPM=ビスマレイミドモノマー/ポリマーおよびDABPA=ジアリルビスフェノールA)の化学量論配合物に加えた。POSSシラノールの範囲は0.1wt%ないし50wt%でよく、好ましい範囲は1ないし10wt%である。まずDABPAを100℃に加熱し、次にPOSSシラノールをBMPAの添加に先立って溶解した。BMI POSSシラノールのすべての混合物は光学的に透明であり、これはPOSSシラノールの完全な分散を示している。なお、BMPAについての他の変形例、例えば同じ手順に従うジメチルエーテル修飾のDABPA(me−DABPA)を用いることができる。次に得られた混合物を177℃で1時間、200℃で1時間、250℃で6時間加熱することにより硬化させた。配合物の以下の望ましい特性が認められた。300℃硬化工程の必要性の排除、100℃での粘度=3cps、保管寿命=12ヶ月、熱歪み=689°F、23℃での曲げ強さ=15,000psi、23℃での伸長=4〜5%、23℃での弾性率=5.5×105psi(曲げ)、275°Fでの曲げ強さ=9000psi、275°Fでの伸長=7〜8%、275°Fでの弾性率=5.5×105psi(曲げ)。
【0050】
BMI対照に対する0.8%強化POSSシラノールBMI樹脂の動的機械的分析は、BMI対照に対してガラス転移温度における60℃の向上と高温での弾性率(E’)の保持を示している。さらに、POSSの存在は、初期「低温」(177℃)サイクルの動力学に影響を与えない。結果として、系の加工性が維持される。なお、BMI単独の場合に350℃のTgを達成できるが、またこれは300℃でさらに2時間の後硬化を必要とする。対照的に、POSS BMIは、低温、高速、および単純化された硬化サイクル(177℃で1時間、200℃で2時間、および250℃で6時間)を用いて、365℃のTを与える。さらに、POSS−BMIの弾性率が400℃でそれほど低下しないという事実は、高温複合材についての重要な可能性を与える。
【表5】

【0051】
POSS BMIの複合材特性を評価するために、4プライの6”×6”T650−35炭素布帛複合材パネルを、5重量パーセントPOSS PMIで補強した市販グレードのCytec 5250−4樹脂を用いて製造した。BMI対照に対するPOSS−BMIの界面接着性を、ショートビームせん断試験を行うことによって評価した。5つの試料を試験し、平均せん断強度が5250−4BMI対照で58.44MPA±2.68に対して5%POSS BMIで59.14±2.00と認められた。
【0052】
例8−POSSシラノールおよびテレケリックポリイミド硬化
テレケリックポリイミド樹脂(PMR)の合成は、ジアルキルエステル、ジアミンおよびモノアルキルエステル(エンドキャップ剤)を低沸点アルキルアルコール(すなわちメタノール)に溶解することを伴う。この混合物に、0.1〜50wt%、好ましい仕込み範囲では1〜15wt%の種々の重量パーセントでPOSSシラノールを加える。POSSシラノールおよびPMRはアルコールに可溶性なので、得られる粘性溶液を用いて繊維または布帛に含浸してプリプレグを得ることができる。プリプレグは、溶媒の除去の際に、PMRおよびPOSSの反応物質の均質混合物を含む。150℃ないし200℃の温度に加熱すると、PMRはその場での縮合反応を起こしてエンドキャップされたイミドオリゴマーを生成する。用いるエンドキャップ剤の反応条件(温度/圧力)に応じて、最終硬化(熱硬化)を通常315℃(600°F;ナジックエステル、NE)ないし371℃(700°F;フェニルエチニルフタル酸メチルエステル、PEPE)の温度で行う。市販のPMR樹脂を用いて、この系のPOSSの値を確認した。HFPE−II−52 PMR樹脂(NASA第2世代樹脂)に、POSSシラノールたとえばトリシラノールフェニルPOSSおよびトリシラノールエチルPOSSを加えた。
【0053】
硬化すると、光学的に透明な樹脂が得られた。PMR対照およびPOSS PMRについての弾性率のプロットは、POSS PMR系について高温での弾性率の保持の増大を明らかにしている。
【表6】

【0054】
複合材における、PMR樹脂に対するPOSS PMR樹脂のこの望ましい特性を証明するために、8プライの(90/0)T650−35炭素布帛複合材パネルを、HFPE−II−52 PMRおよびPOSS HFPE−II PMRを用いて作った。HFPE−II−52 CFCに7wt%および15wt%のエチルトリオールおよびフェニルトリオールを含む複合材パネルは、非POSS含有樹脂と比較して優れた加工性を示す。加えて、POSSトリオールの密度はHFPE PMRより小さく、このことはPOSS含有複合材が低密度をもつようにし、このことは「軽量」複合材構造体を得るのに役立つ。
【表7】

【0055】
さらに、複合材試料を熱エージングにさらし、これらの機械的特性を3点曲げ試験を用いて評価した。315℃(600°F)での試験は、トリシラノールエチルPOSSの15wt%添加で作った複合材について曲げ強さで平均10%の向上、およびトリシラノールフェニルPOSSの15wt%添加で作った複合材について曲げ強さで15%の向上を示した。
【表8】

【0056】
本発明を特定の実施形態に関して以上では説明したけれども、その変更および修正は疑いなく当業者に明らかであろうと予想される。したがって、特許請求の範囲は、本発明の真の精神と範囲内にある限り、すべてのこうした変更および修正をカバーすると解釈されることを意図している。
【図面の簡単な説明】
【0057】
【図1】ポリビニル含有ナノ構造化学物質(より少ないビニル官能基も含む)のいくつかの典型例を示す。
【図2】ヒドロシリル化反応により熱硬化性樹脂を形成するのに有用ないくつかの異なるシランを示す。
【図3】ヒドロシリル化プロセスを示す。
【図4】熱硬化性樹脂を形成するのに有用ないくつかの異なる硫黄硬化剤を示す。
【図5】一態様の硫黄硬化プロセスを示す。
【図6】いくつかの異なるホスホリル化硬化剤を示す。
【図7】ホスホリル化プロセスを示す。
【図8】いくつかの異なるエン硬化剤を示す。
【図9】2+2エン硬化プロセスを示す。
【図10】シラノールの反応性エポキシ基との会合による架橋網目構造の形成を示す。イミドおよびシアネートエステル、ならびにウレタンポリマーの場合に同様の機構。

【特許請求の範囲】
【請求項1】
ナノ構造化学物質を、樹脂ならびに硬化助剤、促進剤および触媒からなる群より選択される添加剤と混合する工程を含む、ナノ構造化学物質を熱硬化性ポリマーに配合する方法。
【請求項2】
複数のナノ構造化学物質をポリマーに配合する請求項1記載の方法。
【請求項3】
熱硬化性混合物はオイル、アモルファス、半結晶、結晶、エラストマー、ゴムおよび架橋材料からなる群より選択される物理状態にある請求項1記載の方法。
【請求項4】
ポリマーは化学的配列および関連するポリマーミクロ構造を含む請求項1記載の方法。
【請求項5】
ポリマーはポリマーコイル、ポリマードメイン、ポリマー鎖、ポリマーセグメントまたはこれらの混合物である請求項1記載の方法。
【請求項6】
ナノ構造化学物質は分子レベルで熱硬化性樹脂を補強する請求項1記載の方法。
【請求項7】
配合は非反応性である請求項1記載の方法。
【請求項8】
配合は反応性である請求項1記載の方法。
【請求項9】
ナノ構造化学物質をポリマーに配合した結果として、熱硬化性ポリマーの物理的特性が改善される請求項1記載の方法。
【請求項10】
前記物理的特性は、ポリマー表面への接着、複合材表面への接着、金属表面への接着、撥水性、密度、低誘電率、熱伝導率、ガラス転移、粘度、溶融転移、貯蔵弾性率、緩和、応力移動、耐摩擦性、耐火性、生物学的適合性、ガス透過性、および気孔率からなる群より選択される要素を含む請求項9記載の方法。
【請求項11】
シラン硬化剤を用いる請求項1記載の方法。
【請求項12】
硫黄硬化剤を用いる請求項1記載の方法。
【請求項13】
リン硬化剤を用いる請求項1記載の方法。
【請求項14】
エン硬化剤を用いる請求項1記載の方法。
【請求項15】
ナノ構造化学物質は可塑化剤として機能する請求項1記載の方法。
【請求項16】
ナノ構造化学物質はフィラーとして機能する請求項1記載の方法。
【請求項17】
ナノ構造化学物質は可塑化剤およびフィラーの両方として機能する請求項1記載の方法。
【請求項18】
ナノ構造化学物質をポリマーに選択的に配合し、ナノ構造化学物質をポリマー内部の所定の領域に組み込むようにする請求項1記載の方法。
【請求項19】
ナノ構造化学物質をポリマーに配合することを含む、ポリマーの分子運動を制御する方法。
【請求項20】
ナノ構造化学物質をポリマーに配合した結果として、時間依存特性が向上する請求項18記載の方法。
【請求項21】
時間依存特性がTg、HDT、弾性率、クリープ、残留歪み、透過率、耐食性、耐摩擦性からなる群より選択される請求項20記載の方法。
【請求項22】
ポリマーの選択された領域を補強する方法であって、ポリマーの選択された領域と適合性のある化学的特性を有するナノ構造化学物質を配合することを含む方法。
【請求項23】
エポキシ修飾ビニル成分を用いる請求項1記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2008−512559(P2008−512559A)
【公表日】平成20年4月24日(2008.4.24)
【国際特許分類】
【出願番号】特願2007−531456(P2007−531456)
【出願日】平成17年9月12日(2005.9.12)
【国際出願番号】PCT/US2005/032613
【国際公開番号】WO2006/132656
【国際公開日】平成18年12月14日(2006.12.14)
【出願人】(506207473)ハイブリッド・プラスティックス・インコーポレイテッド (16)
【Fターム(参考)】