説明

高純度シリコン微粉末の製造装置

【課題】超高純度を有しながら微細で粒状がそろったシリコンを最小のエネルギーで高効率に更に多量に得ることの出来るシリコン製造装置を提供することを課題とした。
【解決手段】本発明は高純度シリコン微粉末の製造装置において(1)金属亜鉛を亜鉛の沸点以上に加熱蒸発して亜鉛ガスを供給する機構と(2)該亜鉛ガス中に液状の四塩化ケイ素を供給する機構と、(3)前記亜鉛ガスと前記四塩化ケイ素を混合攪拌して反応させシリコン粒子を含む反応ガスを生成する機構と、(4)前記反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構と(5)前記沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構(6)と、前記蒸発物を含み、未反応ガス等を含む排ガスを系外に排出する排ガス機構を含んでなることを特徴とする高純度シリコン微粉末の製造装置である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は主としてリチウムイオン電池用の負極材や高純度窒化ケイ素用の原料として使用する、高純度で微細な結晶を有するシリコン微粉末を製造する製造装置に関する。又このシリコンの微細な結晶は、ソーラセル用、或いはその他のシリコン化合物用原料として使用できる。
【背景技術】
【0002】
高純度シリコンは、電子デバイス用では単結晶シリコンウエハーなど11ナイン程度の超高純度品が知られており、又最近急速に広がっているソーラセル用であっても不純物元素の種類によるが、少なくとも6ナイン程度の高純度が必要とされる。そのためにシリコンの製造では生成するシリコンの結晶を出来るだけ成長させて不純物が含まれない様な工夫が行われている。つまり典型的なシリコンの製造プロセスとして、トリクロロシランを水素で還元し、生成するシリコンを基材上に時間をかけて成長させるいわゆるジーメンス法が知られている。ただこの技術は超高純度シリコンを得るには極めて良い方法であるが、消費エネルギーが極めて大きく、しかも生成の速度が遅いために必然的に大きな設備が必要となり、製造コストが極めて大きくなるとされる。
【0003】
一方原料を変え、或いは条件を変えた多くのシリコン製造方法が提案されている。(非特許文献1)。しかしながらこれらについては原料が特殊であるとか、原料であるシリコン化合物が不安定で爆発性である等という問題点があり、広く実用化されているプロセスは極めて限られるのが現状である。
【0004】
また冶金法と称して、4−ナイン程度の高純度シリコンを原料とし、プラズマ溶解を行う、或いは電子ビーム溶解を行うことによって不純物を揮散させて高純度化する方法が知られている。又、このようにして高純度化したシリコンの凝固プロセスで一方向凝固技術を加え、不純物のみを端部に移動させて高純度シリコンを得る方法が提案されている。この方法は超高純度シリコンを得ることは出来るが、原料シリコンが高純度であり高価なこと、また適当なシリコン源がすくない等から、実用化の拡大は進んでいない。
言うまでも無いが上記シリコンは、いずれもブロック状で、緻密質な高純度のシリコンを得るために行われているので、本願の発明の目的には合致するものではなかった。
【0005】
最近では、主として省エネルギー化の観点から四塩化ケイ素を亜鉛で還元する方法が多く検討されている。つまり、この四塩化ケイ素の亜鉛還元法によるシリコンの製造は1950年頃に最初の提案がなされ、その後多くの技術提案がなされ、一部では商品化されたと言われる。しかしながら、その一方で高温プロセスでありその運転条件の保持が困難であること、また副生する塩化亜鉛の処理が困難であるという問題などがあるとされていた。
【0006】
このためにか種々の工夫がなされており、たとえば特許文献1および特許文献2では液状亜鉛表面に四塩化ケイ素を吹き込んでシリコンを得る方法が提案されている。この方法では比較的低い温度でシリコンの製造が出来るという特徴があるものの、現実には固相であるシリコンと液層亜鉛並びに気相の反応生成物である塩化亜鉛との分離が容易でないこと、どうしても液層亜鉛中の不純物がシリコン中に混入してしまいその分離が極めて困難であるという問題を有していた。
【0007】
また四塩化珪素ガスを亜鉛ガスで還元し、生成したシリコンを反応炉の炉壁に生成させる方法が幾つか提案されている。特許文献3ではガスの混合比を特定して析出を制御し結晶の成長を促している。更に、炉壁へのシリコンの析出と取り出しを容易にする方法として、特許文献4では反応槽内の壁に離型材を施す事を提案している。しかしながらバッチプロセスとなるために生成シリコン中への不純物の混入機会が多くなること、反応ガスである四塩化ケイ素の除去、分離が困難であるという問題を有している。なおこれらは、いずれも生成するシリコンの結晶を出来るだけ成長させるにことを主眼としている。
【0008】
更に、生成シリコン結晶をより大きく成長させるために特許文献5では四塩化ケイ素ガスと亜鉛ガスとの反応を不活性キャリアーガス雰囲気中で条件を特定して行うことを示している。さらに特許文献6では反応炉内にシリコン種結晶板を置き、あるいはそのような壁を作って、そこに針状のシリコンを成長させるようにしている。しかしながらこれらもバッチプロセスから抜け出すことが出来ず、改良されているとしても、不純物の混入を防ぐことは極めて困難であった。これらはいずれも高純度化の達成のために粒子を大きくすることを主眼としている。
【0009】
特許文献7では、原料である四塩化ケイ素ガスをノズルから下部にある亜鉛ガス雰囲気中に吹き出すことによって、四塩化ケイ素ガスノズルの回りにシリコンを筒状に形成することが示されている。実質的にはガスの流速を規定しているが、実施例では希薄なガスを送ることによって反応を制御しながら製造することが示されている。相対的に大型の設備を使い大きな結晶を作ること、またノズルの回りに結晶を成長させることで、生成結晶を反応塔の内面にふれないで成長させることが出来るとしている。これによって不純物の入らない高純度の結晶が出来るとしているが、微細な結晶を短時間に多量に合成するのではなく、同じ亜鉛還元法であってもむしろ反対に結晶成長を進める様にしている。
【0010】
これらに対して本発明者らは、反応炉の炉壁にはシリコンを生成させずに連続的にシリコンを生成させる方法として、旋回溶融法による高温プロセスの検討を進めてきた。これらについては特許文献8、特許文献9、特許文献10、特許文献11、特許文献12などの発明を行ってきた。これらにより反応炉の炉壁の影響を受けずしかも連続運転が可能となり製品シリコンは良い性能を与えることが可能となった。但し、1200℃以上、通常ではシリコンの融点である1410℃付近の高温を必要とするが故に生成シリコン中には系内に存在する不純物が僅かであるが混入しやすく、6−ナイン程度の純度が限界であった。さらに反応装置自身がサイクロンを形成するために大型化してしまうという問題点があった。また反応温度が極めて高いために、反応炉を構成する材料の耐久性に問題が出やすく、短時間では問題は少ないが、長期にわたっての安定な装置材料が見つかりにくいという問題があった。
【0011】
これらの解決のために本発明者らは、特許文献13で同じように気相反応法を行うが条件を規定することで、シリコンを単結晶繊維として取り出す事に成功した。さらにこれによって高純度化をはかりながらそれを融体で取り出す事を行ってより効率化をはかった。しかしながら、このような繊維状単結晶を形成するためには高温度で高濃度の亜鉛と四塩化ケイ素を反応させる必要があり反応場の圧力変化が比較的大きいために実用化に向けては、条件の制御がきびしくなるという問題点が新たに見出されてきた。更に高温反応であるが故に時としては不純物のレベルが高くなりやすいという問題点も見出されている。
更にこれらはいずれも結晶成長を優先するために微粉末の形成を起こさない様な条件であり、またそれらからシリコンの微粉末を取り出すことは出来なかった。
【0012】
また、このようにして反応装置内にシリコン結晶を生成させた後に融体化することによって連続運転が可能となったが、一方結晶を生成させるには、温度、雰囲気などの条件が厳しく装置の耐久性に問題を有する可能性があった。更に、生成する結晶にばらつきが発生しやすく、ガスとの分離工程で時として成長の不十分な結晶が排ガスに混入してしまう事が散見された。なお、生成する結晶をほぼ一定の状態で成長させる方法としては特許文献6に示されるように内部に種結晶をおくことが考えられるが、連続運転が困難になると共に、微細結晶を得ると言う本目的には合致しない。
【0013】
本発明者の一人はこれらを更に推し進める技術として、亜鉛による四塩化ケイ素の還元反応が極めて早いことを見出して、より小型の装置を使用しながら製造能力を大幅に拡大する製造条件や装置の検討をおこなっている。つまり、高濃度のガス状亜鉛中に液状の四塩化ケイ素を供給して極めて高い会合を行うシリコン製造条件を実現した。(特許文献15,特許文献16,特許文献17)。これらでは反応部は小型となり、反応生成物であるシリコンは完全なシリコンになる前の中間体から、シリコン結晶に変化しながら成長すること見出した(非特許文献2)。
【0014】
これらのプロセスでは、結晶成長部、サイクロンなどによる反応ガスとシリコンの分離により、更に必要によっては融体化プロセスを経てシリコン結晶を得ることを行っている。このようなプロセスの中では、気相と固相シリコンの分離プロセスを物理的に行う結果、この間に少なくともある程度の結晶成長を促す必要があり、それによって、生成するシリコンはたとえ溶解を行わなくてもある程度の粒の成長を伴ってしまうと言う問題点があった。但しソーラセル用としては純度を問題とするので粒子が大きくなることはかえって望ましいことであった。
【0015】
唯一連続的に種結晶上にシリコンを生成する方法としていわゆる流動層を使う方法がある。(非特許文献1)しかしながら反応ガスとして塩化亜鉛が系にある場合、反応ガスの分離回収が困難となり流動層そのものの形成が困難という問題点があった。
なお上記はいずれも高純度/超高純度のシリコンを得ること目的としたものであり高純度を保持しながらも微細な結晶を得ることは殆ど行われていない。
【0016】
【特許文献1】特開平11−060228公報
【特許文献2】特開平11−092130公報
【特許文献3】特開2003−095633公報
【特許文献4】特開2003−095632公報
【特許文献5】特開2004−196643公報
【特許文献6】特開2003−095634公報
【特許文献7】特開2003−095634公報
【特許文献8】特開2004−210594公報
【特許文献9】特開2003−342016公報
【特許文献10】特開2004−010472公報
【特許文献11】特開2004−035382公報
【特許文献12】特開2004−099421公報
【特許文献13】特開2006−290645公報
【特許文献14】特開2006−298740公報
【特許文献15】特開2008−81387公報
【特許文献16】特開2008−115066公報
【特許文献17】特開2008−115455公報
【特許文献18】特開2009−13042公報
【非特許文献1】シリコン24(1994)培風館
【非特許文献2】名古屋工業大学・セラミックス基盤工学研究センター年報、vol7 17(2007)
【発明の開示】
【発明が解決しようとする課題】
【0017】
本発明は叙上の問題点を解決して超高純度を有しながら微細で粒状がそろったシリコンを最小のエネルギーで高効率に、更に、多量に得ることの出来るシリコン製造装置を提供することを課題とした。
【課題を解決するための手段】
【0018】
本発明は、高純度シリコン微粉末の製造装置において(1)金属亜鉛を亜鉛の沸点以上に加熱蒸発して亜鉛ガスを供給する機構と(2)該亜鉛ガス中に液状の四塩化ケイ素を供給する機構と、(3)前記亜鉛ガスと前記四塩化ケイ素を混合攪拌して反応させシリコン粒子を含む反応ガスを生成する機構と、(4)前記反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構と(5)前記沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構と(6)前記蒸発物を含み、未反応ガス等を含む排ガスを系外に排出する排ガス機構を含んでなることを特徴とする高純度シリコン微粉末の製造装置であって、四塩化ケイ素を亜鉛に依って還元し、シリコンを製造するにあたり、不均化反応にもかかわらず極めて高濃度での反応を可能とし、シリコン核が選択的に生成する条件で、シリコン生成を行い、結果として微粉末シリコンを多量に生成すると共に、該シリコンを部分的に原料亜鉛並びに未反応亜鉛と共に沈殿を起こさせる事によって微粉シリコンを効率よく得ることが出来る。
【0019】
本願発明のような気相反応では一般に、原料ガス濃度を大きくすることによって反応生成物の核生成が促進されるので、生成する結晶粒が小さくなることが知られている。本発明者らが実用化した亜鉛ガス中に液状の四塩化ケイ素を供給して反応させる方法は常圧下で行う反応としては最も高濃度であり、微細結晶を得るためには最も望ましい形態である。従ってこの条件を生かし、高純度シリコンの微細な粒子結晶を高効率・高収率で得ることを目的として本発明に至ったのである。
【0020】
つまり、亜鉛ガスは亜鉛ガスを供給する機構(1)において、直接液状、又は固体の亜鉛金属を加熱し、沸騰・蒸発させることによりほぼ亜鉛ガスのみからなる沸騰温度の亜鉛ガスを得ることが出来る。更にこれを必要とする反応温度である、1050℃〜1300℃に加熱する。この時に雰囲気ガスは無くても良いが、系内のガスの流れをスムーズにし、また途中の閉塞を防ぐために、アルゴンガスを加える事も出来、それによってわずかに加圧することが出来る。ただしそのガス量、或いは加圧は僅かで良く、例えば圧力は最大でも10000Pa程度(水柱1m程度)で十分である。反応管太さが25mm程度ではアルゴン量として50ml/分〜1000ml/分位が適当である。
【0021】
このような加熱亜鉛ガスの中に次工程となる、四塩化ケイ素を供給する機構(2)で沸点が約56.4℃とされる四塩化ケイ素を液のまま供給する。供給は重力で上部から亜鉛ガスの流れ中に滴下することでも良く、亜鉛ガスの流れ中に噴霧するようにしても良い。なお四塩化ケイ素と亜鉛ガスの流れとの会合部分の温度は1050℃〜1300℃であることが望ましく、より望ましくは1100℃〜1200℃である。但しこの部分の実温度はこれより若干低いかも知れない。この部分の温度が、1050℃より低いと反応により生成するシリコン、又はシリコン前駆体が析出しやすくなり、シリコン又はシリコン前駆体が亜鉛と四塩化ケイ素の会合部分に析出してしまい、連続運転に支障を来す可能性がある。従って会合部分の温度は高いことが望ましいが、1300℃以上では通常使用する反応装置材質である石英ガラスや炭化ケイ素燒結体の耐久性に問題が出ること、消費エネルギーが大きくなりすぎることから可能ではあるが実用上の問題が残される。
【0022】
ここで亜鉛と四塩化ケイ素が気−液、又は気−気で会合し、少なくとも部分的に反応し、一部生成したシリコン又はシリコン前駆体を含むガスは内部に攪拌手段を有する反応ガスを生成する機構(3)に導かれて反応を続け、完結する。ここに使用される攪拌手段は、亜鉛と四塩化ケイ素との会合を完全にし、十分に攪拌されることはもちろんであるが、反応管内での圧力損失を最小限に押さえると共に、生成したシリコン固体によって閉塞しないものであればどのような機構でも良い。たとえば、ランダムに置かれた邪魔板や、商品名スクエアミキサーと呼ばれるパイプ内を流れるガスを二分して半分は縦波的に折れ曲がりながら流れ、残りの半分は横波で流れて1周期で会合し、これを繰り返す事によって攪拌混合する様な機構を使用することが出来る。これらによって、ほとんど圧力損失なしに完全な混合を得ることが出来る。
【0023】
このようにして生成したシリコン前駆体・シリコンを含む反応ガスは機構(3)中を流れながら、更に反応が進む。これらによる反応物質は次いで温度300〜800℃に保持されたシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構(4)に送られて、反応ガスである未反応亜鉛ガスと塩化亜鉛の少なくとも一部と生成したシリコンが一体となって析出する。これによって結晶成長前の非常に微細なシリコン粒子が塩化亜鉛や亜鉛ガスと共に沈殿する。
【0024】
この様にして生成した沈殿は、塩化亜鉛や亜鉛との共沈になるためか、生成した非常に細かい粒子を含んだ状態である。この温度によるシリコンの沈殿は極めて短時間に行われるようであり、300〜800℃に保持された部分で0.5秒から2秒程度保持すれば良く、該温度に保持された垂直管を通すだけでもほぼ完全にシリコンを沈殿させることが出来る。このような温度部分を通って沈殿したシリコンは、950℃以上に保持された蒸発物を揮散して、固体シリコンを得る機構(5)である、保持槽に至り、亜鉛や塩化亜鉛の様な揮発物が分離除去されて高純度のシリコン微粒子のみが残留する。ここで亜鉛や塩化亜鉛のような或いは未反応の四塩化ケイ素は排ガス機構から排出され、通常は排ガス成分を処理し、回収するようにする。
【0025】
なお必要に応じて、シリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構(4)を垂直缶ではなく、傾斜管とすることによってより安定化を図ることが出来る。水平に対して30〜90度に傾け、傾斜部分の温度を300〜800℃,望ましくは500〜750℃、に保持しておくと、その部分にシリコンと塩化亜鉛並びに亜鉛が一体となってほぼ瞬間的に沈殿すると共に、生成物はゆっくりと時間をかけながら、傾斜部分を滑るように移動してシリコン保持槽に落下し、そこで揮発物を揮散して純シリコンとして保持されるようになる。傾斜部の傾きは水平に対して30度から90度程度が良く、角度によって保持時間を変えることが出来る。
【0026】
ここで、傾斜管の傾きが30度より小さいと生成シリコンの落下が不完全になりやすく、時としてはとどまってしまい閉塞の原因となることがある。しかし垂直に近づくに従って保持時間が短く成り、条件によってはムラを生じやすくなるので、用途と生産容量に応じて、傾斜角度を決める必要がある。
【発明の効果】
【0027】
高温高濃度の亜鉛ガス中に四塩化ケイ素を液状で供給し高温状態で十分に撹拌しながら反応させる事によって、四塩化ケイ素からシリコンを生成させ、それを反応ガスである亜鉛並びに反応生成物である塩化亜鉛の一部と共に300℃〜800℃で凝集させることによって微細なシリコン粒子を安定的に、しかも高収率で得ることが出来るようになった。またこのようにして凝集させた生成物は保持槽内で亜鉛の沸点以上の温度で亜鉛と塩化亜鉛を主とする揮散物を蒸発分離することにより、微粒の高純度シリコンを高収率で得ることが出来るようになった。
【発明を実施するための最良の形態】
【0028】
本発明を図によって説明する。つまり図1はシリコンを含む反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構が垂直管である場合であり、図2は該沈殿する機構を傾斜した管体とした場合である。又図3は該沈殿する機構の温度制御のために冷却ファンを有する場合である。又排ガス処理機構の模式図のアイデアを示した。図4は沈殿物を保持し950℃以上に加温して蒸発物を揮散して、固体シリコンを得る機構の底部に傾斜を与え、生成したシリコンを移動させながら処理するようにして連続運転を可能としたものである。
【0029】
図1において亜鉛供給部1から亜鉛ワイヤー又は融体亜鉛を供給する。ここでは亜鉛を定量供給出来れば亜鉛溶融槽から、定量の亜鉛をポンプなどで送るようにすればよいが、亜鉛ワイヤーを供給する方式では、取扱いが容易であること、定量送りが容易であることから特に小型の装置では望ましい方法である。またここでの送りに合わせて加圧と必要に応じて雰囲気調整のために雰囲気ガスを合わせて供給することが出来る。
【0030】
このようにして送られてきた亜鉛ワイヤー又は亜鉛融体は亜鉛供給口1から供給し、亜鉛ガスを供給する機構の亜鉛蒸発槽2で加熱・蒸発させて亜鉛蒸気を発生させる。ここでは直接ヒータにより亜鉛の沸点以上で亜鉛を蒸気とする。これにより僅かなアルゴンガスを含むが実質的には亜鉛ガスのみの雰囲気となる。この亜鉛ガスを同機構のガス加熱部3で所要温度まで加熱する。通常は1050℃から1300℃が良く、特に1100〜1200℃が適当である。このようにして加熱され制御された四塩化ケイ素を供給する機構4に送られる。
【0031】
四塩化ケイ素の沸点は57.6Cとされるので、通常の平衡状態では気体になるが、ここでは四塩化ケイ素供給口41から滴下するようにして液状で供給する。もちろん液滴としてそのまま供給しても良いが、噴霧、あるいはシャワー状にして供給しても良い。供給の方法は特に指定されずチューブポンプやダイアフラムポンプによって定量供給することが望ましく、多量の場合は四塩化ケイ素保持部に圧力をかけて流量計を通して流し、バルブによって流量調整することが行われる。いずれにしてもこの部分から液状のまま四塩化ケイ素を供給する。
【0032】
供給された四塩化ケイ素はこの部分からすぐに亜鉛ガスと反応を開始し、シリコン前駆体並びにシリコンの生成を開始すると共に、シリコン粒子を含む反応ガスを生成する機構5でその中にあるガスを乱流化する要素51によって十分に攪拌されながら反応を続けると共に移動し、シリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構6で温度を下げられて生成シリコンと一部未反応亜鉛並びに生成した塩化亜鉛とが一体となって沈殿し、固体シリコンを得る機構7に移動する。なお該沈殿する機構6の温度保持には、ヒータ加熱のみではなく、外部空気の導入など冷却する冷却要素(例えば図3、300)を設けることによって温度を保持することがある。
【0033】
これによって、通常のサイクロン方式では沈殿が困難な10ミクロン以下、特にサブミクロンの微粒子までのシリコンが、固体シリコンを得る機構7に沈殿する。ここでは、底面を1000℃以上に加熱しており、壁部はそれより若干低く、しかし亜鉛の沸点より高く保持することで、揮発物である、亜鉛や塩化亜鉛を揮散蒸発させること、またシリコンの粒成長は殆ど無く、生成シリコンが高純度で保持されるようになる。なおこの加熱は常時行うことがあるが、必要に応じては温度を低く保持しておき、間欠的に温度を上記1000℃以上に加熱することも可能である。なおこの機構の底面以外の温度を1000℃以上とすると、一部の微粒のシリコンが塩化亜鉛などの蒸発と共に排ガス機構8から抜けてしまうので、その点で周囲温度は1000℃以下が望ましい。
【0034】
排ガス機構8は特には指定されないが、ここではガス管内の途中で沈殿が起こらないように亜鉛の沸点より高く保持されるが、その後の排ガス処理部9は温度を十分下げて固体で析出させる、あるいは塩化亜鉛水溶液と接触させて未反応四塩化ケイ素がある場合はそれをSiCl4+2H2O→SiO2+4HClとして酸化ケイ素で沈殿させ、また塩化亜鉛と亜鉛は塩化亜鉛水溶液に溶解して外部に連続的取り出して処理することも出来る。
【0035】
図2では図1と原則同じで有るが、図1ではシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構6を垂直管としているがそのかわりに傾斜管61としたものであり、ここではシリコンと塩化亜鉛及び/又は亜鉛とからなる沈殿物を確実に傾斜部に析出するために、低い温度の期間を長くして、冷却・沈殿をより確実に行うと共に、シリコン粒の適正な成長を行わせて、収率をより高めることが出来る。またこの中間的な温度にある程度の時間保持されることによって、ここで沈殿しながら同時に塩化亜鉛を主とする揮散物の少なくともその一部を除去出来るので、蒸発物を揮散して、固体シリコンを得る機構7での亜鉛・塩化亜鉛の揮散が少なく、それに伴われるシリコン微粒子の排ガス部への抜けがよりいっそう少なくなり効率の向上に有効である。また当然のことながら、より微粒なシリコンが確実に得られるようになる。
【0036】
図3は排ガス処理部に処理水を通すようにした場合の模式図である。つまり排ガス処理部の底部に塩化亜鉛水溶液を循環させることによって、上部から入ってくる排ガス成分である塩化亜鉛はこの水溶液に溶解する。また未反応の亜鉛並びに四塩化ケイ素がある場合、四塩化ケイ素は水と即座に反応して塩酸と酸化ケイ素となり、また生成した塩酸によってこの水溶液が酸となるために亜鉛も溶解して塩化亜鉛水溶液となる。なおこの循環する水を僅かに塩酸を加えておけば、未反応四塩化ケイ素が無くても亜鉛を完全に溶解してしまうことが出来排ガスを全て塩化亜鉛溶液とすることが出来る。これを精製して塩化亜鉛を得ることも出来るし、このまま隔膜法電解槽に送って、亜鉛を金属亜鉛として回収することも出来る。
【0037】
図4は図1とシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構6までは同じであるが、その下にある、固体シリコンを得る機構7の底部に傾斜をつけ、6から落ちてくる沈殿物によって押されて移動しながら揮発物を揮散させてシリコンのみが途中に設けた更に下部にある容器、あるいは溶解機構400に移行させそこから連続的に取り出す、あるいは溶解して融体として取り出すことも出来る。
以下実験的に組み立てた試験装置による実施例を示す。
尚実施例の装置は大部分が石英ガラスで作成しているが、大型化に伴って炭化ケイ素などのセラミックス材料を使うことも出来ることは言うまでもない。
【実施例】
【実施例1】
【0038】
図1に示す装置を試作した。つまり亜鉛蒸発槽(ガス化部)は直径150mm,高さ35mmで上下を塞いだ円筒形の一端に内径4mmで円筒に対して高さ方向45度の向きに付けられた亜鉛供給口とその円筒の反対側に円筒と水平に設けた外径30mmのガス流路を有する石英ガラス管製とし、ガス流路とフランジ接続した片側50mmの部分に内径10mmの垂直管を有する外径30mmで長さ600mmの石英ガラス管を亜鉛ガス加熱用(調整部)とし、その他端に垂直管をたてて四塩化ケイ素供給機構として設置した。更に水平方向に外径30mm,長さ1000mmの石英ガラス製の反応管を設け反応ガスを生成する機構とした。この反応管の中には炭化ケイ素製の長さ125mm直径23mmのスクエアミキサーを4台、四塩化ケイ素供給機構側に入れた。更にこの石英ガラス製の反応管の四塩化ケイ素供給機構の反対側には、直角に落下する外径35mm、高さ600mmの石英ガラス製の垂直管を介してその下側には外径160mm x 高さ200mmの同じく石英ガラス製の容器(シリコン保持容器)を取りつけた。この石英ガラス容器の蓋の部分には上記垂直管からの受け口(ガスを受ける要素)と排ガス管を取りつけ口(排ガスを排出する要素)を設け、それに外径25mmの石英ガラス製の排ガス管を取り付けその他端をステンレススチール製(SUS304)製のドラム缶に接続した。このドラム缶内にはアルゴンガスを満たして排ガス処理用とした。但し圧力はかからないようにし、背圧が生じないようにした。
【0039】
亜鉛蒸発槽はガラス円筒の上下に密着するように鉄クロム線発熱体からなる発熱板を置いた。また石英ガラス容器の下面も同様にして発熱面が密着するように設置した。また他の部分はこれらの円筒を取り囲むようにヒータを置くようにして温度の制御を行うようにした。
【0040】
供給する亜鉛は直径2mmの純亜鉛(亜鉛分99.995質量%)のワイヤーを10mm/秒で連続的に送るようにした。また四塩化ケイ素は上部よりチューブポンプにより0.25g/秒で連続的に供給した。また運転開始は亜鉛を先に供給し始め、その30秒後に四塩化ケイ素の供給を開始することによった。なお亜鉛ワイヤー部分の枝管からアルゴンガスを200ml/分の速度で供給した。
【0041】
各部の温度は亜鉛蒸発槽:1100℃、亜鉛ガス加熱部1100℃、四塩化ケイ素供給機構(亜鉛ガス通過部)1200℃、反応管の温度は、スクエアミキサー挿入部を1100℃、反応管の残り部分(後半)を1050℃とした。垂直管は700〜750℃、シリコン保持容器は、底部が1050℃、側壁部が950℃であった。四塩化ケイ素供給中については計算上、亜鉛が17%ほど過剰であった。20分間の連続運転を行ったところ褐色で微粉末のシリコンが45.2g得られた。このシリコンの粒度分布を計測したところ、粒度5ミクロンと15ミクロンのところにピークを有し、平均粒度10ミクロン以下のシリコン微粒子からなることがわかった。またシリコンの収量は理論値に対して91%であった。排ガス部分で塩酸臭があったことからこのような条件でも僅かに未反応部分が残ると共に、部分的には排ガス中に抜けたこと、またパイプ内に一部貯まっていることが見られた。
【実施例2】
【0042】
図2に示すシリコン製造装置を組んだ。亜鉛供給から亜鉛四塩化ケイ素供給部までは図1と同じとし、反応管の長さを600mmとしてそこの部分には実施例1と同じスクエアミキサーを組み込んだ。反応管の後ろに傾斜角度を水平に対して45度として石英ガラス製容器に向かって落ちるように配置された斜め管を取りつけて、石英ガラス製容器に接続した。石英ガラス製容器の蓋部分は水平部分である反応ガス生成機構部分に対して600mm低く設置したので、斜め管の長さは850mmとなった。なお傾斜管の外径は35mmであり、その他は実施例1と同じであった。また材質は炭化ケイ素(SiC)を使用した。
【0043】
温度は亜鉛蒸発槽:1200℃(但し蒸発槽外側部)であり、亜鉛ガス加熱部も1200℃とした、更に四塩化ケイ素供給機構:1200℃とし、反応ガス生成機構:1050℃更に傾斜管は500℃(反応後期には熱移動によって最高650℃程度になり安定した。)また石英ガラス容器は実施例1と同じく底板部:1050℃、また壁部:950℃とした。
【0044】
亜鉛の供給を実施例1と同じ亜鉛ワイヤーを15mm/秒で供給した。また四塩化ケイ素は0.4g/秒であった。亜鉛供給と四塩化ケイ素供給は同時に開始した。亜鉛と四塩化ケイ素の供給を30分間継続して停止した。四塩化ケイ素と亜鉛の供給を停止してから30分間そのままの温度で保持した後に温度を下げた。これによってシリコンは石英ガラス容器から106g得られた。これは理論量に対して89.2%であった。なおここでは亜鉛供給量が四塩化ケイ素に対して約9%過剰であった。この差額分の一部は未反応が生じていることによるが、一方、傾斜部のガラス表面の一部に生成シリコンが保持されていた。
【実施例3】
【0045】
亜鉛蒸発槽と亜鉛供給設備、並びに反応塔のガスの乱流化要素として、スクエアミキサーを邪魔板に変えた以外実施例1と同じとした装置を準備した。つまり亜鉛蒸発槽は同じ大きさであるが、亜鉛供給部分を外径20mmの斜め管をとりつけその先端にトラップ付きの亜鉛の亜鉛供給部の外径を15mmとし、液トラップのついた亜鉛液供給器12を取りつけた。ここでの亜鉛供給は液トラップを通して亜鉛供給器からのオーバーフローによって亜鉛が供給されるようになっており、そこの部分には実施例1に使用したと同じ直径2mmの亜鉛ワイヤーを20mm/秒の速度で供給するようにした。
【0046】
上記の様に反応管はガスの乱流化要素として半円形状の石英ガラス板をランダムの間隔・ランダムの角度で置いた邪魔板を機構内の長さ1000mm全体に渡るように入れた。なおこの装置は石英ガラスを主体にした。
【0047】
運転条件として亜鉛蒸発槽の温度を1300℃とした。ここでは実質的には沸騰温度の亜鉛ガスとなるが、十分な量の亜鉛ガスを発生させるためにまた瞬間的に亜鉛ガスとするためにこの温度とした。また亜鉛ガス加熱部は1200℃とし、四塩化ケイ素供給機構温度と同じとした。邪魔板の入った反応管の温度は1150℃とした。一方垂直管部の温度は600〜650℃とし、この温度を保持するためにヒータの他に外部空気を取り入れる冷却機構を設けた。またシリコン保持部温度は底板温度を1000℃とし、壁部温度を800℃とした。
【0048】
更に排ガス処理/回収機構として底部に外部からの塩化亜鉛水溶液の循環機構を有するSUS304製のドラム缶を使用した。このドラム缶の内側には耐酸性の塗料を塗布して耐食性を向上させるようにした。なおシリコン生成に伴う排ガスは外径30mmの石英ガラス管で該ドラム管の頂部に導くようにした。なおこの排ガス用の石英ガラス管に直接ヒータを巻くことによって1100℃に保持し、揮発物の生成が起こらないようにした。またドラム缶に供給する塩化亜鉛水溶液は水冷コンデンサーを介して2001の溶液タンクと接続、マグネットポンプにより循環をするようにした。また循環塩化亜鉛水曜器としてはとしては15%塩化亜鉛+5%塩酸水溶液(質量%)を循環した。なおこの循環水の水位はドラム管内では底部50mmまでとした。
【0049】
この装置について、以下運転を行った。つまり上記の様に亜鉛ワイヤーを20mm/秒で供給し、亜鉛蒸発槽への亜鉛の投入が確認されてから30秒後から四塩化ケイ素の滴下を開始した。四塩化ケイ素の供給量は0.5g/秒であった。60分間の運転により、252gの褐色のシリコン微粉末を得ることが出来た。なお供給亜鉛は理論量として、16.7%の過剰であった。また排ガス処理ドラム中の塩化亜鉛水溶液には、部分的に酸化ケイ素の沈殿物を含んでいた。これにより亜鉛を過剰に加えても未反応四塩化ケイ素がある程度出てくることがわかった。なお酸化ケイ素の沈殿は竜が大きいので100ミクロン程度の目開きの濾布で容易に分離できた。
【実施例3】
【0050】
実施例2の装置のシリコン保持容器の底部図4に見られるように角度20度でガスを受ける要素部分を最上部として傾けるようにし、その底部の他に直径60mmの石英ガラス製のパイプを取り付けた。傾斜部の長さはこのパイプの長さは600mmであり最上部の温度を1000℃、最下部の温度を200℃になるように温度勾配をつけた。また最下部にはアルゴンガスを満たした石英ガラス製の容器を取り付けた。この容器は上部に蓋を有し上部からここに落ちてきたシリコンを連続的に取り出すことが出来るようにした。実施例2と同じ条件でシリコン製造試験を行ったところ、開始15分くらいから僅かにシリコンと思われる褐色の噴霧粒子と共に沈殿が落ち始めた。温度が200℃であるので上からこれらを取り出すことが出来た。
【産業上の利用可能性】
【0051】
ソーラセル用としてはもちろんであるが、特にリチウムイオン電池負極用や窒化ケイ素原料としての微粉末高純度シリコンを、現在のシリコン製造に必要とする電力の数分の一でしかも従来報告されたことのない微粉末の状態で製造する製造装置であり、今後のエネルギー問題、COによる地球温暖化問題などを解消できる重要な切り札となる技術である。特に現行のリチウムイオン二次電池の特性を大幅に向上できる可能性を有するので今後大きく拡大すると考えられるハイブリッド、並びに電気自動車用二次電池原料製造用として極めて広く使用されると考える。
【図面の簡単な説明】
【0052】
【図1】本発明の製造装置の概念図である。
【図2】本発明の製造装置の概念図であり、シリコンの沈殿部を傾斜管としたものである。
【図3】本発明の製造装置の概念図であり、排ガス処理部に水の循環機構を設けたものである。
【図4】本発明の製造装置の概念図であり、シリコン保持容器から連続的にシリコンを取り出す機構を設けたものである。
【符号の説明】
【0053】
1 亜鉛供給口
11 アルゴンガス導入口
12 亜鉛液供給器
2 亜鉛蒸発槽
3 ガス加熱部
4 四塩化ケイ素を供給する機構
41 四塩化ケイ素供給口
42 亜鉛ガスの通過部
5 シリコンを含む反応ガスを生成する機構
51 ガスを乱流化する要素(スクエアミキサー)
52 ガスを乱流化する要素(邪魔板)
6 シリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構(垂直管)
61 シリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構(傾斜管)
7 固体シリコンを得る機構
8 排ガス機構
9 排ガス処理部
91 排気口
100 ポンプ
200 塩化亜鉛液タンク
300 冷却要素
400 シリコン取り出し機構

【特許請求の範囲】
【請求項1】
高純度シリコン微粉末の製造装置において(1)金属亜鉛を亜鉛の沸点以上に加熱蒸発して亜鉛ガスを供給する機構と(2)該亜鉛ガス中に液状の四塩化ケイ素を供給する機構と、(3)前記亜鉛ガスと前記四塩化ケイ素を混合攪拌して反応させシリコン粒子を含む反応ガスを生成する機構と、(4)前記反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構と(5)前記沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構(6)と、前記蒸発物を含み、未反応ガス等を含む排ガスを系外に排出する排ガス機構を含んでなることを特徴とする高純度シリコン微粉末の製造装置。
【請求項2】
前記亜鉛ガスを供給する機構が、高純度の固体又は液状の亜鉛を定量的に亜鉛の沸点〜1300℃でガス化するガス化部と、該生成した亜鉛ガスを加熱し、温度を調整する調整部よりなり、温度を調整した亜鉛ガスを定量的に供給するようにしてなることを特徴とする請求項1の高純度シリコン微粉末の製造装置。
【請求項3】
四塩化ケイ素の供給機構が、前記亜鉛ガス供給機構から供給され通過する様にした亜鉛ガスの通過部を有し、該通過部内に液状の四塩化ケイ素を定量的に噴霧ないし滴下する供給部を有することを特徴とする請求項1の高純度シリコン微粉末の製造装置。
【請求項4】
前記四塩化ケイ素の供給機構の亜鉛ガスの通過部の温度が1050℃〜1300℃に保持されてなることを特徴とする請求項1又は3の高純度シリコン微粉末の製造装置。
【請求項5】
前記亜鉛ガスと四塩化ケイ素を混合攪拌して反応させシリコン粒子を含む反応ガスを生成する機構が、温度1050℃〜1250℃に保持された管状体であり、該管状体内部にガスを乱流化する要素を含むことを特徴とする請求項1の高純度シリコンの製造装置。
【請求項6】
前記ガスを乱流化する要素が、不等間隔に置かれた邪魔板からなることを特徴とする請求項1又は5の高純度シリコン微粉末の製造装置。
【請求項7】
前記ガスを乱流化する要素が、所謂スクエアミキサーであることを特徴とする請求項1又は5の高純度シリコン微粉末の製造装置。
【請求項8】
前記温度を300℃〜800℃に下げて少なくとも部分的に沈殿物を生成する機構が、300℃〜800℃の温度に保持された垂直管であることを特徴とする請求項1の高純度シリコン微粉末の製造装置。
【請求項9】
前記温度を300℃〜800℃に下げて少なくとも部分的に沈殿物を生成する機構が、300℃〜800℃に保持され、水平に対して30度〜90度に傾斜した管体であり、シリコンを含む沈殿物を該管体中並びに内壁部に生成させると共に、該生成物が該管体内壁を伝って下方にある、前記生成した沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構に送る様にしたことを特徴とする請求項1の高純度シリコン微粉末の製造装置。
【請求項10】
前記生成した沈殿物を950℃以上に加温して蒸発物を除去してシリコンを得る機構が前記温度を下げる機構からのシリコンを含有する沈殿物を含むガスを受ける要素とシリコン保持容器並びに前記排ガスを排出する要素を有することを特徴とする請求項1の高純度シリコン微粉末の製造装置。
【請求項11】
前記生成した沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構がシリコン保持容器の底部に1000〜1100℃に保持したヒータを有し下方から加温するようにしたことを特徴とする請求項1または10の高純度シリコン微粉末の製造装置。
【請求項12】
前記生成した沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構のシリコン保持容器に生成したシリコンを反応中にも取り出せる様にした取り出し要素を有する事を特徴とする請求項1,10,11のいずれかの高純度シリコン微粉末の製造装置。
【請求項13】
前記排ガスを排出する要素が、排ガスの処理機構に接続していることを特徴とする請求項1又は10の高純度シリコン微粉末の製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−101997(P2012−101997A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−265715(P2010−265715)
【出願日】平成22年11月11日(2010.11.11)
【出願人】(504323238)有限会社シーエス技術研究所 (17)
【出願人】(300007132)ティーエムシー株式会社 (6)
【Fターム(参考)】