説明

MWW型構造を有するメタロシリケート物質およびその前駆体物質

【課題】通常の合成法では導入することが困難なイオン半径の大きな元素を高い割合で骨格に含有するゼオライトを提供する。
【解決手段】周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有するMWW型構造を有するメタロシリケート物質。この物質は、以下の第1工程〜第4工程により製造できる。
第1工程
テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体を得る工程
第2工程
第1工程で得た前駆体を酸処理する工程
第3工程
第2工程で得た酸処理された前駆体に、周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有する化合物を共存させて、テンプレート化合物および水を含有する混合物と共に加熱して再度前駆体を得る工程
第4工程
第3工程で得られた前駆体を焼成して結晶性ゼオライト物質を得る工程

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、構造コードMWWを有するゼオライト物質、MWWゼオライト物質の層状前駆体、およびそれらの製造方法に関する。
【0002】
更に詳しくは、本発明は、ポストシンセシス法を利用した構造コードMWWを有するゼオライト物質、MWWゼオライト物質の層状前駆体、およびそれらの製造方法に関する。
【背景技術】
【0003】
一般に「ゼオライト(Zeolite)」とは、古くは結晶性の多孔質アルミノシリケートの総称であり、構造の基本単位は四面体構造を有する(SiO44-および(AlO45-である。しかし、近年、アルミノホスフェイト等の他の多くの酸化物にもゼオライト特有の、もしくは類似の構造が存在することが明らかになってきた。
【0004】
国際ゼオライト学会(以後、「IZA」と略す。)は、「Atlas of Zeolite Framework Types(Ch.Baerlocher, W.M.Meier and D.H.Olson, 5th.Revised Edition,2001,Elsevier)」(非特許文献1)(以後、「アトラス」と略す。)でゼオライトおよびゼオライト類似物質の骨格構造(Framework)について整理し、各骨格構造をアルファベット3文字からなるIZAコードで表記している。
【0005】
これらの経緯の詳細については、小野嘉夫、八嶋建明 編「ゼオライトの科学と工学」第1〜13頁、株式会社 講談社、2000年7月10日発行(非特許文献2)を参照することができる。
【0006】
本明細書における「ゼオライト」の定義は、アルミノシリケートのみでなく、メタロシリケート等の類似構造を持つものも含むものとする「ゼオライトの科学と工学」における定義による。
【0007】
また、本明細書におけるゼオライトの構造には、IZAにより承認された構造の解明に最初に使用された標準物質の名前に由来するアルファベット大文字3個からなる構造コードを使用する。これは上述のアトラス第5版に収録されたもの、および第5版以降に承認されたものを含む。
【0008】
更に、本明細書における「アルミノシリケート」および「メタロシリケート」とは、結晶性/非結晶性の違い、多孔質であるかないか等の性状には一切制限はなく、特に断りがない限り全ての性状の「アルミノシリケート」および「メタロシリケート」を指すものとする。
【0009】
また、本明細書における「分子ふるい」とは、分子をその大きさによりふるい分けする作用および操作、更にその機能を有する物であり、ゼオライトもその中に含まれる。詳しくは「標準化学用語辞典(日本化学会 編、丸善株式会社 平成3年3月30日 発行)(非特許文献3)」の「分子ふるい」の項に記載がある。
【0010】
ゼオライトおよびゼオライト類似物質の骨格構造には種々のものがあり、IZAに認証された骨格構造だけでもアトラス第5版が製版された時点で133種の骨格構造が報告されている。現在でも新規な骨格構造が見出されつつあり、IZAに認証された骨格構造については、そのホームページ上で紹介されている。
【0011】
しかしながら、報告された骨格構造のすべてが産業上有用であるとは限らず、工業的に有用なものは、比較的に限られている。工業的価値はその構造のユニークさや、製造コスト等によって一般的に決まると考えられる。近年見出された骨格構造のうち、特に産業上有用で注目されているものにMWW構造が挙げられる。MWW構造は、MCM−22に代表されるゼオライトに特有の骨格構造である。
【0012】
MCM−22とは、上述した「ゼオライトの科学と工学」の説明によれば、1990年にモービル社より合成方法の特許が出され(特開昭63−297210号公報(特許文献1))、のちにLeonowiczらが特異な細孔構造をもつ六方晶系のゼオライトであることを報告したもので、その代表的な物質は、以下の単位胞組成:
2.4Na3.1[Al0.45.1Si66.5144
を有するボロシリケートである。その骨格構造上の特徴は、c軸に垂直な方向(層の面方向)に、互いに独立した2つの細孔ネットワークを有することである。それらの細孔ネットワークのうちの一方は層間にあり、繭状のスーパーケージ(0.71×0.71×1.82nm)がそのまわりの6個のスーパーケージと2次元的に連結している。スーパーケージ同士は10員環により直接連結しているため、トンネル状の10員環細孔と比べやや大きな分子が進入できる。上記細孔ネットワークのうちの他方は層内にあり、10員環のジグザグ状細孔で2次元ネットワークを形成している。同じ骨格構造を有するものには、純シリカのITQ−1、SSZ−25などがある。
【0013】
MWW型ゼオライトの製造方法としては、比較的安価なヘキサメチレンイミンを結晶化剤に用い、150℃で水熱合成して得る方法がある。アルミノシリケートの場合、Si/Alモル比が15〜35の範囲で合成可能である。また、他のゼオライトの生成挙動とは異なり、水熱合成により得られるのは一般的には層状前駆体(一般にMCM−22(P)と呼ぶ)であり、これを焼成することで層間で脱水縮合が起こりゼオライト構造を有するMCM−22が形成されるという特徴も有している。
【0014】
しかしながら、近年の検討では同様な調製方法でアルカリ金属を多く仕込んだ場合に生成するMCM−49がMCM−22と同じ骨格構造を有しているとの報告もあることから、水熱合成の生成物として層状前駆体ではなく、直接MWW構造を有するアルミノシリケートを得ることも可能であることがわかってきた(S.L.Lawtonら(J. Phys. Chem. 100, 3788(1996)(非特許文献4))。
【0015】
MWW構造は前述したようにこれまでのゼオライトに無い特徴を有しているため、MWW構造を有するアルミノシリケートはエチルベンゼンやクメンの合成において他の構造のゼオライトやゼオライト以外の触媒に比べて高い活性や選択性を示すことがわかっており、既に世界中の多くのプラントで用いられているとされている。
【0016】
MWW構造を合成する際に得られる層状前駆体を利用して、更に高性能な触媒を得ようとする試みもある。すなわち、層状前駆体をシリカで架橋したMCM−36(例えば、W.J.Rothら(Stud. Surf. Sci. Catal.94,301(1995)(非特許文献5))、あるいは層をはく離した結晶性薄層状物質ITQ−2(例えば、A.Cormaら(Microporous Mesoporous Mater.38,301(2000)(非特許文献6))なども報告されており、単なるMWW構造のアルミノシリケートより更に高い活性を示すとの報告もある。
【0017】
しかしながら、上記したような「高性能な触媒」においても、それらの反応性は、基本的にはMWW構造を構成する層状構造に由来するものであり、他の骨格構造を有するゼオライト類と比較した際にはMWW構造のそれと似通ったものとして分類することができる。これらのゼオライト類似の層状化合物の合成法は、まず、層状前駆体MCM−22(P)をヘキサデシルトリメチルアンモニウムブロミド等の界面活性剤を含む水溶液中で処理することで、層を膨潤あるいははく離させるという工程を有することが特徴である。
【0018】
一方、先述したようにMWW構造は他のゼオライト構造にはない特徴を有するために、MWW骨格構造に由来する特徴的触媒作用や吸着作用が期待できる。この特徴的作用は、前述のアルミノシリケートに限る必然性はなく、アルミ以外の元素を骨格に含有するメタロシリケートにおいても同様な効果を期待することが可能であることから、MWW構造を有するメタロシリケートの合成についても種々の検討が行われている。しかしながら、一般的に(MWW構造に限らず)アルミノシリケートとは顕著に異なる特性が期待されるチタン、バナジウム、クロム、鉄に代表される遷移元素やインジウムや錫に代表される第5周期以上の典型元素は、ケイ素やアルミニウムに比べて非常に大きなイオン半径を有するために通常は骨格に入れることが困難な場合が多く、ゼオライトを合成する原料中にこれら元素を含む化合物を共存させておく等の簡単な直接合成法では望みのメタロシリケートが得られない場合が多い。
【0019】
従って、上記のような元素を骨格に導入するための方法が種々提案されており、MWW構造について例示すると代表的な方法としてポストシンセシス法(一旦ゼオライトを合成し、その後処理によって骨格に異種元素を導入することから一般に直接合成(ダイレクトシンセシス)に対してポストシンセシスと呼ばれる)と改良された直接法が挙げられる。
【0020】
ポストシンセシス法としては、例えば米国特許6114551号公報(特許文献2)に一旦、MWW構造を有するアルミノシリケートを合成し、ここからアルミニウムの全部もしくは一部を気相でSiCl4と接触させる等の脱アルミニウム処理で系外へ抜き出して欠陥を作ったのち、これに入れたい元素を含むTiCl4等の化合物を接触させることによって、ポストシンセシス的にメタロシリケートを合成する方法が提案されている。
【0021】
一方、改良された直接法としては、鉄の化合物をゲルへ添加する工程を工夫してフェリシリケートを得た例がWuらによって報告されている(P.Wuら(Chem. Commun. 1997, 663)(非特許文献7))。
【0022】
更に骨格に入れることが困難なTiについても、近年硼素を構造補助剤(Structure Supporting Agent)とする合成方法が開発されている(P.Wuら(Chemistry Letters 774(2000)(非特許文献8))。
【0023】
出発原料中に大量の硼素を存在させることにより、硼素の構造補助剤としての機能を利用して硼素とチタンをともに骨格に含有するMWW前駆体MCM−22(P)を合成し、これを必要に応じて酸処理することで硼素を除いた後、焼成することによりMWW型チタノシリケートを得る方法が提案されている。本方法で調製したMWW構造を有するチタノシリケートでは特徴的触媒作用が発現することも報告されている(P.Wuら(J. Phys. Chem.B,105,2897(2001)(非特許文献9))。
【0024】
しかしながら、上記したような方法ではゼオライトに導入したいメタルの化合物を接触させるポストシンセシス法においては導入したい元素の多くが骨格に導入されずに細孔内に残留物として留まったり、また、導入効率を上げるためにはゼオライトの細孔に入りやすい化合物を選択することが重要なポイントの1つとなるが、導入したい元素を含む充分に分子サイズの小さい化合物が市販されていない等の問題がある。
【0025】
更に、触媒等として用いる場合には米国特許6114551号公報のようにMWW型アルミノシリケートを脱アルミニウムしたものを原料とする場合には、骨格に残留するアルミニウムに起因する副反応が深刻な問題を引き起こす場合もある。同様な問題が硼素を構造支持剤として用いる直接法においても認められ、硼素が酸処理を行っても充分に除去できず骨格および細孔内に大量に在留したり、また、硼素の除去率を上げるために酸処理等の硼素除去過程の条件を厳しくすると、骨格に残したい成分までもが同時に除去されてしまう等の問題がある。更に、これらの方法は導入したい元素およびそれを含有する化合物によって適正な合成条件が大きく左右されることから、汎用性の高い方法とは言えない。
【0026】
【特許文献1】特開昭63−297210号公報
【0027】
【特許文献2】米国特許6114551号公報
【0028】
【非特許文献1】「Atlas of Zeolite Framework Types(Ch.Baerlocher, W.M.Meier and D.H.Olson, 5th.Revised Edition,2001,Elsevier)」
【0029】
【非特許文献2】小野嘉夫、八嶋建明編「ゼオライトの科学と工学」株式会社講談社、2000年7月10日発行
【0030】
【非特許文献3】日本化学会編「標準化学用語辞典」丸善株式会社 平成3年3月30日発行
【0031】
【非特許文献4】S.L.Lawtonら、J.Phys.Chem.100,3788(1996)
【0032】
【非特許文献5】W.J.Rothら、Stud.Surf.Sci.Catal.94,301(1995)
【0033】
【非特許文献6】A.Cormaら、Microporous Mesoporous Mater.38,301(2000)
【0034】
【非特許文献7】P.Wuら(Chem.Commun.1997,663))
【0035】
【非特許文献8】P.Wuら、Chemistry Letters 774(2000)
【0036】
【非特許文献9】P.Wuら(J.Phys.Chem.B,105,2897(2001))
【発明の開示】
【発明が解決しようとする課題】
【0037】
本発明の目的は、MWW構造を有するゼオライト、特に通常の合成法では導入することが困難なイオン半径の大きな元素を高い割合で骨格に含有するゼオライトを簡便に合成する方法を提供することにある。
【課題を解決するための手段】
【0038】
本発明者らは鋭意検討の結果、特定の製造方法で、構造コードMWW構造を有し且つイオン半径の大きな元素を高い割合で骨格に含有するゼオライトを簡単に合成できることを見出し、本発明を完成させた。
【0039】
即ち、本発明(I)は、以下の第1工程〜第4工程を含むことを特徴とするMWW型構造を有するゼオライト物質の製造方法である。
第1工程
テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体(A)を得る工程
第2工程
第1工程で得た前駆体(A)を酸処理する工程
第3工程
第2工程で得た酸処理された前駆体(A)をテンプレート化合物および水を含有する混合物と共に加熱して前駆体(B)を得る工程
第4工程
第3工程で得られた前駆体(B)を焼成してゼオライト物質を得る工程
【0040】
また、本発明(II)は本発明(I)のMWW型構造を有するゼオライト物質の製造方法を用いて合成することができる第4周期以上の3族〜14族の元素から選ばれる少くとも一種の元素を含有するMWW型構造を有するメタノシリケート物質である。
【0041】
更に、本発明は例えば以下の事項からなる。
(1)以下の第1工程〜第4工程を含むことを特徴とするMWW型構造を有するゼオライト物質の製造方法。
第1工程
テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体(A)を得る工程
第2工程
第1工程で得た前駆体(A)を酸処理する工程
第3工程
第2工程で得た酸処理された前駆体(A)をテンプレート化合物および水を含有する混合物と共に加熱して前駆体(B)を得る工程
第4工程
第3工程で得られた前駆体(B)を焼成してゼオライト物質を得る工程
【0042】
(2)第1工程において、周期律表でいう13族元素含有化合物が硼素含有化合物であることを特徴とする(1)に記載のゼオライト物質の製造方法。
【0043】
(3)第1工程と第2工程の間に以下の第1−2工程を行い、第2工程で第1−2工程で得られた物質を前駆体(A)のかわりに用いることを特徴とする(1)又は(2)に記載のゼオライト物質の製造方法。
第1−2工程
第1工程で得た前駆体(A)の一部又は全部を焼成する工程
【0044】
(4)第3工程と第4工程の間に以下の第3−2工程を行い、第4工程で第3−2工程で得られた物質を前駆体(B)のかわりに用いることを特徴とする(1)〜(3)のいずれかに記載のゼオライト物質の製造方法。
第3−2工程
第3工程で得た前駆体(B)の一部又は全部を酸処理する工程
【0045】
(5)第3工程において、第2工程で酸処理された前駆体(A)に周期律表でいう3族〜14族の元素から選ばれる少なくとも一種の元素を含有する化合物を共存させることを特徴とする(1)〜(4)のいずれかに記載のゼオライト物質の製造方法。
【0046】
(6)テンプレート化合物が窒素含有化合物であることを特徴とする(1)〜(5)のいずれかに記載のゼオライト物質の製造方法。
【0047】
(7)窒素含有化合物がアミンおよび/又は4級アンモニウム化合物であることを特徴とする(6)に記載のゼオライト物質の製造方法。
【0048】
(8)窒素含有化合物がピペリジン、ヘキサメチレンイミンおよび両者の混合物からなる群から選ばれる少なくとも一種以上であることを特徴とする(6)に記載のゼオライト物質の製造方法。
【0049】
(9)硼素含有化合物が硼酸、硼酸塩、酸化硼素、ハロゲン化硼素およびトリアルキル硼素類からなる群から選ばれる少なくとも一種以上であることを特徴とする(2)〜(8)のいずれかに記載のゼオライト物質の製造方法。
【0050】
(10)ケイ素含有化合物がケイ酸、ケイ酸塩、酸化ケイ素、ハロゲン化ケイ素、フュームドシリカ類、テトラアルキルオルトケイ酸エステル類およびコロイダルシリカからなる群から選ばれる少なくとも一種以上であることを特徴とする(1)〜(9)のいずれかに記載のゼオライト物質の製造方法。
【0051】
(11)第1工程の混合物における硼素とケイ素の割合が、そのモル比で硼素:ケイ素=0.01〜10:1の範囲であることを特徴とする(2)〜(10)のいずれかに記載のゼオライト物質の製造方法。
【0052】
(12)第1工程の混合物における硼素とケイ素の割合が、そのモル比で硼素:ケイ素=0.05〜5:1の範囲であることを特徴とする(2)〜(11)のいずれかに記載のゼオライト物質の製造方法。
【0053】
(13)第1工程の混合物における水とケイ素の割合が、そのモル比で水:ケイ素=5〜200:1の範囲であることを特徴とする(1)〜(12)のいずれかに記載のゼオライト物質の製造方法。
【0054】
(14)第1工程の混合物におけるテンプレート化合物とケイ素の割合が、そのモル比でテンプレート化合物:ケイ素=0.1〜5:1の範囲であることを特徴とする(1)〜(13)のいずれかに記載のゼオライト物質の製造方法。
【0055】
(15)第1工程での加熱温度が110℃〜200℃の範囲であることを特徴とする(1)〜(14)のいずれかに記載のゼオライト物質の製造方法。
【0056】
(16)第2工程での酸処理に使用する酸が硝酸であることを特徴とする(1)〜(15)のいずれかに記載のゼオライト物質の製造方法。
【0057】
(17)第3工程での加熱温度が110℃〜200℃の範囲であることを特徴とする(1)〜(16)のいずれかに記載のゼオライト物質の製造方法。
【0058】
(18)第4工程での焼成温度が200℃〜700℃の範囲であることを特徴とする(1)〜(17)のいずれかに記載のゼオライト物質の製造方法。
【0059】
(19)第1−2工程での焼成温度が200℃〜700℃の範囲であることを特徴とする(3)〜(18)のいずれかに記載のゼオライト物質の製造方法。
【0060】
(20)第3工程において、第2工程で酸処理された前駆体(A)とテンプレート化合物および水を含有する混合物とをあらかじめ混合した後、加熱することを特徴とする(1)〜(19)のいずれかに記載のゼオライト物質の製造方法。
【0061】
(21)第3工程において、第2工程で酸処理された前駆体(A)とテンプレート化合物および水を含有する混合物とを隔離して仕込み、テンプレート化合物および水を含有する混合物の蒸気を周期律表でいう3族〜14族の元素から選ばれる少くとも一種の元素を含有する化合物と前駆体(A)との混合物に接触させるドライゲル法を用いることを特徴とする(1)〜(20)のいずれかに記載のゼオライト物質の製造方法。
【0062】
(22)(1)〜(21)のいずれかに記載の第3工程で得られる前駆体。
【0063】
(23)前駆体が層状であることを特徴とする(22)に記載の前駆体。
【0064】
(24)周期律表でいう3族〜14族の元素から選ばれる少なくとも一種の元素がチタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも一種の元素であることを特徴とする(5)〜(23)のいずれかに記載のゼオライト物質の製造方法。
【0065】
(25)周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型構造を有するメタロシリケート物質。
【0066】
(26)周期律表でいう第5周期以上の3〜14族の元素から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型構造を有するメタロシリケート物質。
【0067】
(27)チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型構造を有するメタロシリケート物質。
【0068】
(28)(1)〜(24)のいずれかに記載の製造方法で製造されたことを特徴とするMWW型構造を有するメタロシリケート物質。
【0069】
(29)周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【0070】
(30)周期律表でいう第5周期以上の3〜14族の元素から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【0071】
(31)チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【0072】
(32)(1)〜(24)のいずれかに記載の製造方法で製造されたことを特徴とするMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【0073】
(33)(1)〜(24)のいずれかに記載の製造方法で製造されたことを特徴とするゼオライト物質。
【0074】
(34)以下の第1工程〜第3工程を含むことを特徴とするゼオライトの層状前駆体の製造方法。
第1工程
テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体(A)を得る工程
第2工程
第1工程で得た前駆体(A)を酸処理する工程
第3工程
第2工程で得た酸処理された前駆体(A)をテンプレート化合物および水を含有する混合物と共に加熱して層状前駆体を得る工程
(35)(34)に記載の製造方法で製造されたことを特徴とするゼオライトの層状前駆体。
【発明の効果】
【0075】
従来公知のMWW型構造を有するゼオライト物質の製造方法に比べて本発明の製造方法(MWW型構造を有するゼオライト物質の製造方法)によれば、骨格中に取り込みにくいイオン半径の大きな元素を効率よく導入でき、今まで得ることが困難であった骨格中に該元素を有し、MWW型構造を有するゼオライト物質及びその層状前駆体物質を得ることができることは明らかである。
【発明を実施するための最良の形態】
【0076】
以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量(重量)基準とする。
【0077】
(ゼオライト物質の製造方法)
まず、本発明(I)について説明する。本発明(I)は、以下の第1工程〜第4工程を含むことを特徴とするMWW型構造を有するゼオライト物質の製造方法である。
第1工程
テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体(A)を得る工程
第2工程
第1工程で得た前駆体(A)を酸処理する工程
第3工程
第2工程で得た酸処理された前駆体(A)をテンプレート化合物および水を含有する混合物と共に加熱して前駆体(B)を得る工程
第4工程
第3工程で得られた前駆体(B)を焼成してゼオライト物質を得る工程
【0078】
上記第1〜第4の各工程を、概念的に図1の模式図に示す。
【0079】
MWW型構造を有するゼオライト物質は、従来公知の直接合成法やアトムプランティング法等のポスト・シンセシス(Post-Synthesis)等で合成することが可能である。アトムプランティング法で合成するならば例えば、硼素やアルミニウムを含有するMWW構造を有するモレキュラーシーブをまず合成し、水蒸気処理等で硼素やアルミニウムの少なくとも一部を除去し、続いて金属塩化物等の元素含有化合物と接触させればよい(この「アトムプランティング法」の詳細については、例えば、前述した「ゼオライトの科学と工学」142頁を参照することができる)。
【0080】
製造効率の点からは、本発明のMWW構造を有するゼオライト物質は、本発明(I)の製造方法で製造することが好ましい。即ち、本発明(I)は、テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体(A)を得る工程と;次いで得られた前駆体(A)を酸処理する工程;更に得られた酸処理された前駆体(A)をテンプレート化合物、元素含有化合物および水を含有する混合物と共に加熱して前駆体(B)を得る工程;そして最後に得られた前駆体(B)を焼成してMWW構造を有するゼオライト物質を得る工程の4つの工程を、該MWW構造を有するゼオライト物質の製造工程において含むことを特徴とするMWW構造を有するゼオライト物質の製造方法である。
【0081】
(第1工程)
まず、本発明の上記製造方法の第1工程について説明する。本発明(I)のMWW構造を有するゼオライト物質の製造方法における第1工程は、テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体(A)を得る工程である。
【0082】
ここで言う「テンプレート化合物」とは、MWW構造を有するゼオライトを合成する際にその構造、特に細孔の形状を規定する作用があるものであり、後に焼成することにより除去できるものであれば特に制限はない。テンプレート化合物の例としては一般的には窒素含有化合物、より好ましくは、アミンおよび/又は4級アンモニウム化合物を挙げることができる。アミンの具体例としてはピペリジン、ヘキサメチレンイミンおよび/又は両者の混合物を挙げることができるがこれに限定されるわけではない。
【0083】
また、第1工程で用いることが可能な周期律表(化学便覧改訂4版I−56ページ)に記載のIUPAC 1990年勧告による18族型周期表周期律表を言う)でいう13族元素含有化合物に特に制限はない。目的とするMWW構造前駆体を与え易く、かつ、後の工程で除去し易いことから、13族元素含有化合物は、好ましくは硼素化合物、アルミニウム化合物、ガリウム化合物であり、更に好ましくは硼素化合物である。その好ましい具体例としては、硼酸を挙げることができるが、硼酸塩として硼酸ナトリウム等の形態で用いることも可能である。
【0084】
更に、第1工程で用いることが可能なケイ素含有化合物には特に制限はなく、具体的にはケイ酸、ケイ酸塩、酸化ケイ素、ハロゲン化ケイ素、フュームドシリカ類、テトラアルキルオルトケイ酸エステル類およびコロイダルシリカ等を挙げることができる。いずれの場合でも高純度(例えば、含有される全金属成分中のケイ素の割合が98%以上)のものが好ましいが、中でもコロイダルシリカの場合にはアルカリ含有量の少ない例えば、アルカリ含有量がアルカリ/ケイ素のモル比0.01以下のものがより好ましい。
【0085】
第1工程の混合物における硼素とケイ素の割合は、そのモル比で硼素:ケイ素=0.01〜10:1の範囲であることが好ましく、より好ましくは硼素:ケイ素=0.05〜5:1、更に好ましくは硼素:ケイ素=0.3〜3:1の範囲である。後述するようにアルカリ金属フリーの条件で前駆体(A)を合成する際には大量の硼素を用いることが必要であり、硼素:ケイ素=0.3〜2:1の範囲であることが好ましく、更には硼素:ケイ素=1〜2:1の範囲が好ましい。
【0086】
また、第1工程の混合物における水とケイ素の割合は、少なすぎると良質な混合物を得られない。多すぎると生産性が悪いため、そのモル比で水:ケイ素=5〜200:1の範囲であることが好ましく、より好ましくは水:ケイ素=15〜50:1の範囲である。
【0087】
更に、第1工程の混合物におけるテンプレート化合物とケイ素の割合は、少なすぎると目的物が得られず、多すぎるとテンプレートが無駄になり経済的でないため、そのモル比でテンプレート化合物:ケイ素=0.1〜5:1の範囲であることが好ましく、より好ましくはテンプレート化合物:ケイ素=0.3〜3:1、更に好ましくはテンプレート化合物:ケイ素=0.5〜2:1の範囲である。
更に、これら原料に加えて種晶(シード)を加えることも有用であり、結晶化時間の短縮や細かな粒径の生成物を与える等の効果を期待できる場合がある。種晶としては、あらかじめ合成したMWW構造もしくはこの層状前駆体であるMCM−22(P)等のMWW類似構造を有する物質が良い。特に好ましいのは硼素を含有するMWW型ゼオライト物質の層状前駆体であり、例えば、過去に行った第1工程で得られた前駆体(A)の一部を種晶として、第1工程で用いる混合物に添加すればよい。添加のタイミングに特に制限はないが、例えば他の原料をすべて混合した後に種晶を添加して、更にかくはんした後に加熱すればよい。添加量としては、少ないと先述の効果がなく多すぎると生産性が悪いことから、種晶に含まれるケイ素と主原料として用いるケイ素含有化合物中のケイ素のモル比で種晶:主原料=0.0001〜0.2:1が好ましく、0.001〜0.05:1がより好ましい。
【0088】
他の添加剤として、ナトリウムやカリウム等のアルカリ金属を含む化合物を添加することも可能であり、結晶化時間を短縮できる場合もある。一般にはアリカリ金属の存在はホウ素、アルミニウム、ケイ素以外の元素がゼオライト物質の骨格に入ることを阻害したり、骨格に導入したい元素を含む化合物がそれ自身で縮合した物質になることを促進する傾向がある。一例を上げると、TS−1等のチタノシリケートの合成において系内にアルカリ金属が存在するとゼオライト骨格にチタンがうまく入らず、添加したチタン源はチタニアもしくはそれに類するチタニア種として生成物中に取り込まれることは良く知られた事実である。しかしながら、本発明においては第1工程でアルカリ金属を用いても骨格中に金属種を導入する工程(第3工程)より以前に酸処理(第2工程)で実質的にアルカリ金属を除去することも可能である。よって、本発明の第1工程においてはアルカリ金属を用いることも可能であり、ケイ素とのモル比でアルカリ金属:ケイ素=0.0001〜0.2:1、好ましくは0.001〜0.1:1程度のアルカリ金属を存在させてもよい。アルカリ金属源としては、水酸化物、硝酸塩、塩化物、硫酸塩、他の金属酸の塩等があるが、水酸化物もしくは硼酸塩が最も好適である。
【0089】
第1工程における加熱温度には特に制限はない。しかしながら、前駆体(A)を合成する場合は水熱反応の条件下で行うことが好ましい。ここで言う「水熱反応」とは「標準化学用語辞典(日本化学会 編、丸善株式会社 平成3年3月30日 発行)」の「水熱反応」の項に記載があるように、高温の水、特に高温高圧の水の存在のもとで行われる物質の合成あるいは変性反応を指し、特に水熱反応を利用した合成反応を「水熱合成」という。従って、第1工程における加熱はテンプレート化合物、硼素含有化合物、ケイ素含有化合物および水を含有する混合物をオートクレーブ等の密閉容器に入れ、加熱しつつ加圧する水熱合成条件下で行うことが好ましい。好ましい温度としては110℃〜200℃の範囲、より好ましく120℃〜190℃の範囲である。
【0090】
水熱合成における温度がこの範囲以下である場合、目的の生成物が得られなかったり、得られても加熱時間が長くかかる恐れがあり実用的でない。また、温度がこの範囲以上の場合には、最終的に得られたゼオライト物質を用いた酸化反応での目的生成物収率が低下するため好ましくない。
【0091】
更に、水熱合成は、通常2時間〜30日の範囲で行われ、より好ましい水熱合成時間は3時間〜10日である。水熱合成時間がこの範囲以下であると、結晶化が不充分で高性能な前駆体(A)が得られない恐れがある。また、この範囲以上の時間をかけても実質的に前駆体(A)の性能向上は期待できず、むしろ他の相に転化したり粒径が大きくなったりといった悪影響が起こる場合もあり好ましくない。
【0092】
(第2工程)
次に第2工程について説明する。第2工程は、第1工程又は第1−2工程で得た前駆体(A)を酸処理して脱ホウ素化したシリケートを得る工程である。
【0093】
第1工程で得た前駆体(A)にそのまま酸処理を行うこともできるが、酸処理前に焼成を行い(第1−2工程)、その後酸処理することで骨格内のホウ素をより効率的に取り除くことが可能となるため好ましい。以下、第1工程及び第1−2工程で得た前駆体をあわせて「前駆体(A)」と表す。
【0094】
ここで言う「酸処理」とは、酸との接触を意味し、具体的には酸を含む溶液あるいは酸そのものを第1工程後に得た前駆体(A)に接触させることを言う。接触の方法に特に制限はなく、前駆体(A)に酸あるいは酸の溶液を噴霧、塗布する方法でも、酸あるいは酸の溶液に前駆体(A)を浸積する方法でもかまわない。簡便なのは酸あるいは酸の溶液に前駆体(A)を浸漬する方法であり、このような浸漬による方法が好ましい。
【0095】
酸との接触に用いる酸は、無機酸であっても有機酸であっても、また、それらの塩であってもよい。好ましい無機酸の具体例としては、塩酸、硫酸、硝酸、燐酸を例示することができ、好ましい有機酸の具体例としては、ギ酸、酢酸、プロピオン酸、酒石酸を例示することができる。また、それらの塩として、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩を例示することができる。
【0096】
酸を溶液として用いる場合は、その溶媒としては特に制限はない。具体的には酸存在下での安定性や入手のし易さの点から、水、アルコール類、エーテル類、エステル類、ケトン類を挙げることができ、特に水が適当である。
【0097】
酸の濃度にも特に制限はないが、好ましい範囲は温度により異なる。酸の濃度が薄く温度が低いとホウ素が抜け難く、酸の濃度が濃すぎて温度が高すぎたりすると前駆体(A)自体が溶解する恐れがあるため酸の濃度は、0.1mol/l〜10mol/l程度のものを好適に用いることができる。温度は0℃〜200℃で行うことができるが、50℃〜180℃の範囲が好ましく、特に60℃〜150℃が好ましい。処理時間は0.1時間〜3日行えばよいが、2時間〜1日が適当である。
ホウ素の残量を減らすために第3工程に移る前に(第1−2工程→第2工程)のサイクルを複数回実施してもよい。
【0098】
(第3工程)
次に第3工程について説明する。第3工程は、第2工程で得た脱ホウ素化したシリケートをテンプレート化合物、元素含有化合物および水を含有する混合物と共に加熱して前駆体(B)を得る工程である。
【0099】
ここで言う「テンプレート化合物」とは、第1工程で使用したものと同様にMWW構造を有するゼオライトを合成する際にその構造や細孔の形状を規定する作用があるものであり、後に焼成することにより除去できるものであれば特に制限はない。その例としては一般的には窒素含有化合物を挙げることができ、特に具体例としてはピペリジン、ヘキサメチレンイミンおよび/又は両者の混合物を挙げることができるがこれに限定されるわけではない。
【0100】
また、第3工程で使用されるテンプレート化合物は第1工程で使用されるテンプレート化合物と同じであっても、異なっても良い。メタルの導入効率の点からは、第3工程で使用されるテンプレート化合物はヘキサメチレンイミンであることが好ましい。
【0101】
第3工程で用いることが可能な元素含有化合物とは、3〜14族元素を含有する化合物で、特に金属としてチタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも一種を有していれば特に制限はない。具体的には例えばチタン含有化合物としては酸化チタン、ハロゲン化チタン、テトラアルキルオルトチタネート類等を挙げることができるが、これに限定されるわけではない。取り扱いの簡便さなどからハロゲン化チタン、テトラアルキルオルトチタネート類が好ましく、具体的には四フッ化チタン、テトラエチルオルトチタネート、テトラプロピルオルトチタネート、テトラブチルオルトチタネート等を好適に用いることができる。
【0102】
ジルコニウム含有化合物としては、酸化ジルコニウム、ハロゲン化ジルコニウム、ジルコニウムテトラアルコキシド類等を挙げることができるが、これに限定されるわけではない。取り扱いの簡便さなどからハロゲン化ジルコニウム、ジルコニウムテトラアルコキシド類が好ましく、具体的には四フッ化ジルコニウム、ジルコニウムテトラエトキシド、ジルコニウムテトラブトキシド等を好適に用いることができる。
【0103】
バナジウム含有化合物としては、酸化バナジウム、ハロゲン化バナジウム、酸化バナジウムトリアルコキシド類等を挙げることができるが、これに限定されるわけではない。取り扱いの簡便さなどからハロゲン化バナジウム、酸化バナジウムトリアルコキシド類が好ましく、具体的には三塩化バナジウム、酸化バナジウムトリイソプロピルオキシド等を好適に用いることができる。
【0104】
ニオブ含有化合物としては、酸化ニオブ、ハロゲン化ニオブ、ニオビウムテトラアルカノエート類等を挙げることができるが、これに限定されるわけではない。取り扱いの簡便さなどからニオビウムテトラアルカノエート類が好ましく、具体的にはニオビウムテトラキス(2−エチルヘキサノエート)を好適に用いることができる。
【0105】
タンタル含有化合物としては、酸化タンタル、ハロゲン化タンタル、二硫化タンタル等を挙げることができるが、これに限定されるわけではない。具体的には二硫化タンタルを好適に用いることができる。
【0106】
クロム含有化合物としては、酢酸クロム、硝酸クロム、ハロゲン化クロム等を挙げることができるが、これに限定されるわけではない。具体的には硝酸クロムを好適に用いることができる。
【0107】
モリブデン含有化合物としては、酸化モリブデン、ハロゲン化モリブデン、硫化モリブデン等を挙げることができるが、これに限定されるわけではない。具体的には三塩化モリブデンを好適に用いることができる。
【0108】
タングステン含有化合物としては、酸化タングステン、ハロゲン化タングステン等を挙げることができるが、これに限定されるわけではない。具体的には四塩化タングステンを好適に用いることができる。
【0109】
マンガン含有化合物としては、酸化マンガン、ハロゲン化マンガン、酢酸マンガン、マンガンアセチルアセトネート等を挙げることができるが、これに限定されるわけではない。具体的にはマンガントリスアセチルアセトネートを好適に用いることができる。
【0110】
鉄含有化合物としては、酸化鉄、ハロゲン化鉄、酢酸鉄、硝酸鉄等を挙げることができるが、これに限定されるわけではない。具体的には硝酸鉄を好適に用いることができる。
【0111】
コバルト含有化合物としては、酸化コバルト、ハロゲン化コバルト、コバルトトリスアセチルアセトネート等を挙げることができるが、これに限定されるわけではない。具体的にはコバルトトリスアセチルアセトネートを好適に用いることができる。
【0112】
ニッケル含有化合物としては、酸化ニッケル、ハロゲン化ニッケル、硝酸ニッケル、酢酸ニッケル等を挙げることができるが、これに限定されるわけではない。具体的には硝酸ニッケル、酢酸ニッケル等を好適に用いることができる。
【0113】
亜鉛含有化合物としては、酸化亜鉛、ハロゲン化亜鉛、酢酸亜鉛、硝酸亜鉛等を挙げることができるが、これに限定されるわけではない。具体的には酢酸亜鉛、硝酸亜鉛等を好適に用いることができる。
【0114】
ガリウム含有化合物としては、酸化ガリウム、ハロゲン化ガリウム、硝酸ガリウム等を挙げることができるが、これに限定されるわけではない。具体的には三塩化ガリウム、三フッ化ガリウム等を好適に用いることができる。
【0115】
インジウム含有化合物としては、酸化インジウム、ハロゲン化インジウム、トリアルコキシインジウム類等を挙げることができるが、これに限定されるわけではない。具体的には三塩化インジウム、三フッ化インジウム、トリイソプロピルオキシインジウム等を好適に用いることができる。
【0116】
錫含有化合物としては、酸化錫、ハロゲン化錫、テトラアルコキシ錫類等を挙げることができるが、これに限定されるわけではない。具体的には四塩化錫、四フッ化錫、テトラ−t−ブトキシ錫等を好適に用いることができる。
鉛含有化合物としては、酸化鉛、ハロゲン化鉛、テトラアルコキシ鉛類等を挙げることができるが、これに限定されるわけではない。具体的には酢酸鉛、塩化鉛、硝酸鉛、鉛アセチルアセトネート、硫酸鉛等を好適に用いることができる。
【0117】
第3工程で得られる前駆体(B)は、第2工程で得られた酸処理した前駆体とテンプレート化合物、元素含有化合物および水を予めすべて混合し、混合物とした上で加熱し、第1工程と同様のいわゆる水熱合成を行って合成することができる。
混合の順序は特に制限されないが、例えば、原料組成を均質化するために、水、テンプレート化合物、元素含有化合物からなる混合液をまず調製し、これに第2工程で得られた酸処理した前駆体を添加することが好ましい。更に、水、テンプレート化合物、元素含有化合物からなる混合液はスラリーではなく均一な溶解液であることが望ましく、これを達成するために元素含有化合物の種類や混合比あるいは混合条件(温度、時間)等を工夫することが望ましい。
【0118】
第3工程の混合物における元素と酸処理した前駆体中のケイ素の割合は、導入した元素由来の特性発現のためには多い方がよいが、多すぎるとそれ自体が不純物相を形成するため好ましくない。よって、そのモル比で元素:ケイ素=0.001〜0.3:1の範囲であることが好ましい。より好ましくは元素:ケイ素=0.005〜0.2:1の範囲、更に好ましくは元素:ケイ素=0.01〜0.2:1の範囲である。
【0119】
また、第3工程における水と酸処理した前駆体中のケイ素の割合は、少なすぎると良質な混合物を得られない。多すぎると生産性が悪いため、そのモル比で水:ケイ素=5〜200:1の範囲であることが好ましく、より好ましくは水:ケイ素=15〜50:1の範囲である。
【0120】
更に、第3工程におけるテンプレート化合物と酸処理した前駆体中のケイ素の割合は、少なすぎると目的物が得られず、多すぎるとテンプレートが無駄になり経済的でないため、そのモル比でテンプレート化合物:ケイ素=0.1〜5:1の範囲であることが好ましく、より好ましくはテンプレート化合物:ケイ素=0.3〜3:1、より好ましくはテンプレート化合物:ケイ素=0.5〜2の範囲である。
【0121】
第3工程における水熱合成の条件は、第1工程の説明で記載した条件と同じ条件を適用することが出来る。しかしながら、第3工程で3〜14族の元素を含有する化合物を共存させる場合には適正な合成条件が第1工程の場合と大きく異なる場合もある。特に温度と時間については、共存させる元素に応じて目的とする前駆体(B)が純度良く得られる条件を選ぶことが好ましい。後述する実施例で示すように、温度が高すぎたり、時間が長すぎたりすると目的の前駆体(B)ではなくZSM−39(構造コードMTN)等の他の構造を有する物質に変化してしまう場合もあり得る。
【0122】
また、第3工程の実施形態として、第2工程で得られた酸処理した前駆体と元素含有化合物との混合物(混合物A)と水とテンプレート化合物の混合物(混合物B)とを隔離して仕込んで、第2工程で得られた酸処理した前駆体と金属含有化合物との混合物(混合物A)を水およびテンプレート化合物の蒸気と接触させる、いわゆるドライゲル法を用いることもできる。この場合、結晶化に使われなかったテンプレート化合物を容易に回収できる等のメリットもある。
【0123】
このドライゲル法の詳細に関しては、例えば前述した「ゼオライトの科学と工学」28頁を参照することができる。
混合物Aは元素含有化合物の溶液を第2工程で得られた酸処理した前駆体に含浸、浸漬等の方法で極力均一に分散した後、乾燥、必要に応じて粉砕することによって得ることができる。乾燥は室温での風乾から高温での真空乾燥等種々の方法で行うことができる。一般には水溶液を用いることが多いため、50〜80℃の温度で1〜24時間加熱乾燥すればよい。乾燥の終点の基準としては粉砕が可能な性状になっていればよい。
【0124】
混合物Bはテンプレート化合物と水を混合することにより得ることができる。
【0125】
ドライゲル法においても用いられるテンプレート化合物の種類や共存させることが可能な元素含有化合物の種類、共存させる元素と前駆体中のケイ素の割合、テンプレート化合物と前駆体中のケイ素の割合は先に説明した通常の水熱合成法の場合と同じでよい。
【0126】
水と前駆体中のケイ素の割合については通常の水熱合成法とは適正な範囲が異なり、そのモル比で水:ケイ素=0.01〜15:1の範囲であることが好ましく、より好ましくは水:ケイ素=0.1〜10:1の範囲である。
【0127】
混合物Aと混合物Bの隔離法としては温度をかけて混合物Bが気化しない限り両者が混ざり合わないようにできる方法であれば如何なる方法でもよく、例えば、オートクレーブの底部に混合物Bを入れ、オートクレーブの中部に混合物Aを入れた容器を吊り下げることにより達成できる。
【0128】
以上で説明した第1〜第3工程でMWW型ゼオライト物質の前駆体(B)を得ることができる。第3工程で3族〜14族の元素から選ばれる少なくとも一種の元素を含有する化合物を共存させれば、それら金属を含有する前駆体(B)を得ることができる。この前駆体(B)を第4工程と称する焼成工程に供すればMWW型ゼオライト物質に転化することが可能であるが、ITQ−2と同様な方法で該前駆体(B)を界面活性剤存在下で層剥離して薄層状物質とすることも可能であるし、また、MCM−36と同様な方法で層膨潤後にアルコキシシラン等で処理して層間に柱を立て(ピラーイング)架橋型層状物質とすることももちろん可能である。こうした処理により金属を含有する各種形態の層状化合物を製造することが可能になる。
【0129】
上記した第1〜第3工程により、MWW型ゼオライト物質の前駆体(B)を製造することができる。このような前駆体(B)が形成されていることは、例えば、その粉末X線回折パターンによって確認することができる。
【0130】
(第4工程)
次に第4工程について説明する。第4工程は第3工程又は第3−2工程で得た前駆体(B)を焼成してゼオライト物質を得る工程である。
【0131】
以下、第3工程及び第3−2工程で得た前駆体をあわせて「前駆体(B)」と表す。
【0132】
第1工程と第2工程の間および第4工程で行う各前駆体の焼成方法に特に制限はなく、通常の触媒焼成などの公知の条件で行うことができる。密閉系で行っても流通系で行っても良く、テンプレート化合物もしくはその残渣が燃焼するのに必要な酸素が必要な時点で存在してさえいればよい。空気気流中で焼成することが最も容易であるが、過度な発熱を避ける目的で窒素などの不活性ガス気流下で所定の温度まで昇温してテンプレート化合物を分解した後に酸素を導入して残渣を燃焼除去することも可能である。焼成温度は好ましくは200℃〜700℃の範囲であり、より好ましくは300℃〜650℃の範囲、最も好ましくは400℃〜600℃の範囲である。焼成温度が200℃よりも低い場合、テンプレート化合物の除去が十分に行えない恐れがあり、逆に700℃より高いとMWW型結晶構造の破壊が起こる恐れがあり、結果として第1工程と第2工程の間の焼成では前駆体性能に、第4工程の焼成では得られるゼオライト物質に悪影響をもたらすために好ましくない。
【0133】
以下に、本発明(I)のMWW型ゼオライト物質の製造方法を、これら一連の工程の概念図たる図1を参照しつつ、より具体的に説明する。図1を参照して、本発明(I)の製造方法は、ピペリジンまたはヘキサメチレンイミンをテンプレートとして、硼酸とケイ素含有化合物より焼成することによりMWW型ボロシリケートに転化する層状前駆体(前駆体)を合成し(以上が第1工程)、更にその層状前駆体ボロシリケートを酸処理する(以上が第2工程)ことによって脱ホウ素を施したシリケート(酸処理された前駆体)を合成する。第2工程の前に層状前駆体を焼成してMWW型ボロシリケートに転化しておくことも可能である(第1−2工程)。この脱ホウ素を施したシリケートと元素含有化合物から、ピペリジンまたはヘキサメチレンイミンをテンプレートとして、元素含有層状前駆体を合成し(以上が第3工程)、この元素含有層状前駆体を焼成する(以上が第4工程)ことによってテンプレートを取り除き、MWW構造を有するゼオライト物質を得る方法である。
【0134】
本発明(I)の製造方法により得ることができるゼオライト物質を、そのまま酸化反応の触媒等として使用することもできるが、当該製造方法で得られたゼオライト物質に存在する反応に寄与しない元素自身が縮合して生じた元素の酸化物は酸と接触させることによって少なくとも部分的に除去することができる。この酸との接触により、より高性能なMWW型ゼオライト触媒を得ることができる。
【0135】
ここで言う「酸との接触」は、第4工程における焼成前、焼成後、あるいは焼成前後の両方で行なっても効果があるが、焼成前に前駆体(B)の状態で施すこと(第3−2工程)が最も効果的であり、特に焼成による元素自身が縮合して生じた元素の酸化物の副生を大きく抑制することができる。
【0136】
また、ここで言う「酸との接触」とは、第2工程で説明した「酸との接触」と同じことを意味し、接触の方法、接触に用いる酸、接触に用いる酸の濃度、接触の時機、酸を溶液として使用する場合の溶媒等はいずれも第2工程で説明した条件を適用できる。
【0137】
(本発明(II))
次に本発明(II)について説明する。本発明(II)は、例えば本発明(I)のMWW型構造を有するゼオライト物質の層状前駆体およびゼオライト物質の製造方法を用いて合成することができるケイ素に加えて第4周期以上の3、4、5、6、7、8、9、10、11、12族元素およびガリウム、インジウム、錫および鉛から成る群から選ばれる少なくとも1種の元素を含有する層状前駆体およびゼオライト物質である。更には、これら元素の少なくとも一部がゼオライトもしくは層状化合物の骨格に取り込まれている物質である。
すなわち、本発明(II)の主な態様は以下の通りである。
【0138】
(1)周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有するMWW型構造を有するメタロシリケート物質。
【0139】
(2)周期律表でいう第5周期以上の3〜14族の元素から選ばれる少なくとも一種の元素を含有するMWW型構造を有するメタロシリケート物質。
【0140】
(3)チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも一種の元素を含有するMWW型構造を有するメタロシリケート物質。
【0141】
(4)上述した製造方法で製造された上記のMWW型構造を有するメタロシリケート物質。
【0142】
(5)周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有するMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【0143】
(6)周期律表でいう第5周期以上の3〜14族の元素から選ばれる少なくとも一種の元素を含有するMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【0144】
(7)チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも一種の元素を含有するMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【0145】
(8)上述した製造方法で製造されたことを特徴とする上記のMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
ケイ素以外の金属種としてはチタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも1種の元素の少なくとも一部が骨格に取り込まれたMWW型構造を有するゼオライト物質およびその層状前駆体である。
【0146】
更に好ましくはケイ素に加えてチタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、コバルト、ニッケル、亜鉛、錫および鉛からなる群から選ばれる少なくとも1種の元素の少なくとも一部が骨格に取り込まれたMWW型構造を有するゼオライト物質およびその層状前駆体である。
【0147】
構造コードMWWとは、公知の分子ふるいの構造の一種で、酸素10員環からなる細孔とスーパーケージ(0.7×0.7×1.8nm)を有することが大きな特徴である。構造の詳細については例えばアトラス第5版やインターネットのIZA Structure Commissionのホームページ(http://www.iza-structure.org/)上で閲覧することができる(2002年2月現在)。本構造を有する公知の分子ふるいとしてはMCM−22(Science(vol264,1910(1994))、SSZ−25(欧州特許第231860号公報)、ITQ−1(Chem.Mater.(vol8,2415(1996))およびJ.Phys.Chem.B(vol102,44(1998))および、ERB−1(欧州特許第203032号公報)、PSH−3(米国特許第449409号公報)等が挙げられる。構造コードMWWを有する分子ふるいはその特徴的X線回折(以後、「XRD」と略す。)のパターンによって同定することが可能である。XRDパターンは、例えば、先のホームページでITQ−1のシミュレーションパターンを入手することもできる。
MWW構造における特徴的な回折線を表1に示す。XRDパターンにおいて以下のような回折線を有していることが本発明(II)の要件である。
【0148】
【表1】

【0149】
上記「d/Å」は、面格子間隔dの単位がオングストロームであることを意味する。
【0150】
また、遷移金属がシリケートに取り込まれると紫外から可視光領域に特徴的な吸収が現れることがあり、UV−VISスペクトルに特徴的な吸収が現れるか否かはシリケート骨格に導入した金属が取り込まれていることの1つの指標と成り得て、元素によって吸収帯の位置は様々ではあるが、場合によっては300nm以下、特には250nm以下の領域に吸収を有することが本発明(II)の物質の特徴と言える。
【0151】
MWW型ゼオライト物質の層状前駆体もそのXRDパターンで特徴付けることが可能である。表2にMWW型ゼオライト物質の層状前駆体が有する特徴的回折線を記載する。この回折線を有することが本発明(II)の層状前駆体の1つの要件である。
【0152】
【表2】

【実施例】
【0153】
以下、実施例により本発明を更に具体的に説明するが、これらの実施例は本発明の概要を示すもので、本発明はこれらの実施例に限定されるものではない。
【0154】
〔実施例における分析装置〕
ゼオライト物質元素分析方法
サンプルをテフロン(登録商標)(イー アイ デュポン ドゥ ヌムール アンド カンパニー;登録商標)ビーカーに計り取り、フッ酸(50質量%)を加えて溶解させた。これに純水を加え、理学社製卓上型プラズマ発光分析装置(JY38S)を用いて導入元素、ケイ素、硼素組成分析を行った。
【0155】
粉末X線回折法(XRD)
サンプルを以下の装置、条件で粉末X線回折パターンを測定した。
装置:マックサイエンス社製MX−Labo粉末X線解析装置
線源:CuKα線(1.5404オングクトローム)
条件:出力 40kV−20mA
範囲:2Θ=5〜50°
走査速度:2°/分
【0156】
紫外可視吸収スペクトル法(UV)
拡散反射法で以下の装置、条件で紫外可視吸収スペクトルを測定した。
装置:日本分光社製JASCO UV/VISスペクトロメーターV−550
測定範囲:200−500nm
ベースライン用標準物質:BaSO
【0157】
実施例1:MWW型錫シリケートの製造
[ボロシリケートの調製と酸処理]
25℃で、ピペリジン(和光純薬工業株式会社製 純度98%)(以後、「PI」と略す。)243.2gをイオン交換水684gに溶解し、ピペリジン水溶液を調製した。激しく攪拌しながらこのピペリジン水溶液に硼酸(和光純薬工業株式会社製99.5%)165.8gを加えた。30分間攪拌を行い硼酸の溶解を完全に進行させた後、フュームドシリカ(Cab−o−sil M7D)120gを加え、更に2時間攪拌を続けモル比が、1・SiO:0.67・B:1.4・PI:19HOとなる混合物を得た。
【0158】
この混合物を2リットルのテフロン(登録商標)製のオートクレーブ(テフロン(登録商標)製のライナーを有するオートクレーブ)へ移し、170℃の温度下100rpmの回転速度で120時間攪拌を行った。攪拌終了後、内容物を25℃まで冷却し、濾過により内容物から固体生成物を分離し、更に、イオン交換水を用い、固体生成物を洗浄し、洗浄水のpHが9以下になるまで洗浄を繰り返した。こうして得た固体生成物を80℃の温度下で乾燥し、600℃の温度下で焼成した。その得られた固体生成物1gに対して、6mol/lの硝酸を30ml加え、100℃の温度下で20時間酸処理し、酸処理終了後、濾過により得た固体を600℃の温度下で10時間焼成した。この固体(脱ボロシリケートA)の硼素/ケイ素のモル比は0.0217であった。更に、この固体1gに対して、6mol/lの硝酸を30ml加え、100℃の温度下で20時間酸処理した。酸処理終了後、濾過により得た固体(脱ボロシリケートB)の硼素/ケイ素のモル比は0.0017であった。
【0159】
[Sn−MWWの調製]
25℃で、PI(和光純薬工業株式会社製 純度98%)14.5gをイオン交換水30gに溶解し、PI水溶液を調製した。激しく攪拌しながらこのPI水溶液に四塩化錫の五水和物(和光純薬工業株式会社製 純度98%)1.99gを加えた。30分間攪拌を行い四塩化錫の溶解を完全に進行させた後、上記[ボロシリケートの調製と酸処理]で調製した硼素/ケイ素のモル比0.0017の脱ボロシリケートBを10g加え、更に2時間攪拌を続け、モル比が、1・SiO:0.033・SnO:1・PI:10・HOとなる混合物を得た。
【0160】
この混合物を150mlのテフロン(登録商標)製のオートクレーブへ移し、175℃の温度下40rpmの回転速度で158時間攪拌を行った。攪拌終了後、内容物を25℃まで冷却し、濾過により内容物から固体生成物を分離し、更に、イオン交換水を用い、固体生成物を洗浄し、洗浄水のpHが9以下になるまで洗浄を繰り返した。こうして得た固体生成物を80℃の温度下で乾燥して一部をXRD測定用のサンプルとした。残りは600℃の温度下で10時間焼成し、最終的な目的生成物であるMWW型錫シリケートを得た。このMWW型錫シリケートの錫/ケイ素のモル比は0.025であり、硼素/ケイ素のモル比は0.0016であり、仕込んだ錫の76モル%が生成物に取り込まれていた。
【0161】
得られた錫シリケートのXRDパターンとUVスペクトルを図2、3に示した。XRDパターンではMWW型構造に特徴的な表1に示した回折線群が認められた。UVスペクトルでは250nm以下の領域に吸収が認められ、少なくとも錫の一部が骨格に取り込まれていることがわかった。
【0162】
錫シリケートの層状前駆体のXRDパターンを図4に示した。表2に示したMWW型ゼオライト物質の層状前駆体に特徴的な表2に示した回折線群が認められた。
【0163】
実施例2:MWW型ジルコニウムシリケートの製造
25℃で、PI(和光純薬工業株式会社製 純度98%)7.2gをイオン交換水15gと過酸化水素水溶液(和光純薬工業株式会社製 純度31%)5gに溶解し、PI水溶液を調製した。激しく攪拌しながらこのピペリジン水溶液にジルコニウム(IV)ブトキシド・1−ブタノール溶液(和光純薬工業株式会社製 純度85%)1.25gを加えた。30分間攪拌を行いジルコニウム(IV)ブトキシドの溶解を完全に進行させた後、実施例1で調製した硼素/ケイ素のモル比0.0017の脱ボロシリケートBを5g加え、更に2時間攪拌を続け、モル比が、1・SiO:0.033・ZrO:1・PI:15・HOとなる混合物を得た。
【0164】
この混合物を150mlのテフロン(登録商標)製のオートクレーブへ移し、175℃の温度下40rpmの回転速度で158時間攪拌を行った。攪拌終了後、内容物を25℃まで冷却し、濾過により内容物から固体生成物を分離し、更に、イオン交換水を用い、固体生成物を洗浄し、洗浄水のpHが9以下になるまで洗浄を繰り返した。こうして得た固体生成物を80℃の温度下で乾燥し、600℃の温度下で10時間焼成し、最終的な目的生成物であるMWW型ジルコニウムシリケートを得た。このMWW型ジルコニウムシリケートのジルコニウム/ケイ素のモル比は0.015であり、硼素/ケイ素のモル比は0.0016であり、仕込んだジルコニウムの45モル%が骨格内に取り込まれていた。
【0165】
得られたジルコニウムシリケートのXRDパターンには表1に示す回折線が認められ、図5に示したUVスペクトルには250nm以下の領域に吸収が認められた。
【0166】
実施例3:MWW型バナジウムシリケートの製造
25℃で、PI(和光純薬工業株式会社製 純度98%)7.2gをイオン交換水15gに溶解し、PI水溶液を調製した。激しく攪拌しながらこのピペリジン水溶液にバナジウム化合物、Vanadium oxytriisopropoxide(Aldrich社製 純度95%)0.68gを加えた。30分間攪拌を行いバナジウム化合物の溶解を完全に進行させた後、実施例1で調製した硼素/ケイ素のモル比0.0017の脱ボロシリケートBを5g加え、更に2時間攪拌を続け、モル比が、1・SiO:0.017・V2:1・PI:10・HOとなる混合物を得た。
【0167】
この混合物を150mlのテフロン(登録商標)製のオートクレーブへ移し、175℃の温度下40rpmの回転速度で15時間攪拌を行った。攪拌終了後、内容物を25℃まで冷却し、濾過により内容物から固体生成物を分離し、更に、イオン交換水を用い、固体生成物を洗浄し、洗浄水のpHが9以下になるまで洗浄を繰り返した。こうして得た固体生成物を80℃の温度下で乾燥し、600℃の温度下で10時間焼成し、最終的な目的生成物であるMWW型バナジウムシリケートを得た。
【0168】
得られたバナジウムシリケートのXRDパターンには表1に示す回折線が認められ、UVスペクトルには250nm以下の領域に吸収が認められた。
【0169】
比較例1:バナジウムシリケートの製造
実施例3と同様にして混合物を調製し、150mlのテフロン(登録商標)製のオートクレーブへ移し、175℃の温度下40rpmの回転速度で132時間攪拌を行った。攪拌終了後、内容物を25℃まで冷却し、濾過により内容物から固体生成物を分離し、更に、イオン交換水を用い、固体生成物を洗浄し、洗浄水のpHが9以下になるまで洗浄を繰り返した。こうして得た固体生成物を80℃の温度下で乾燥した。
【0170】
得られた生成物のXRDパターンは表1に示す回折線が認められず、代って表3に示したようなMTN型構造に由来する回折線が認められた。水熱反応を長時間行うことにより、MWW型構造の層状前駆体からMTN型構造へ転化したものと考えられる。
【0171】
【表3】

【0172】
実施例4:MWW型チタノシリケートの製造(通常の水熱法)
25℃で、PI(和光純薬工業株式会社製 純度98%)14.5gをイオン交換水30gに溶解し、PI水溶液を調製した。激しく攪拌しながらこのPI水溶液にテトラブチルオルトチタネート(和光純薬工業株式会社製 純度95%)2.0gを加えた。30分間攪拌を行いテトラブチルオルトチタネートの加水分解を完全に進行させた後、実施例1で調製した硼素/ケイ素のモル比0.0017の脱ボロシリケートBを10g加え、更に2時間攪拌を続け、モル比が、1・SiO:0.033・TiO:1・PI:10・HOとなる混合物を得た。
【0173】
この混合物を150mlのテフロン(登録商標)製のオートクレーブへ移し、175℃の温度下40rpmの回転速度で158時間攪拌を行った。攪拌終了後、内容物を25℃まで冷却し、濾過により内容物から固体生成物を分離し、更に、イオン交換水を用い、固体生成物を洗浄し、洗浄水のpHが9以下になるまで洗浄を繰り返した。こうして得た固体生成物を80℃の温度下で乾燥し、その得られた固体生成物1gに対して、2mol/lの硝酸を20ml加え、100℃の温度下で20時間酸処理した。酸処理終了後、濾過により得た固体を600℃の温度下で10時間焼成し、最終的な目的生成物であるMWW型チタノシリケートを得た。このMWW型チタノシリケートのチタン/ケイ素のモル比は0.0233であり、硼素/ケイ素のモル比は0.0018であった。
【0174】
得られたチタノシリケートのXRDパターンには表1に示す回折線が認められ、UVスペクトルには250nm以下の領域に吸収が認められた。
【0175】
実施例5:MWW型チタノシリケートの製造(ドライゲル法)
25℃で、イオン交換水2gと過酸化水素(和光純薬工業株式会社製 純度31%)1gの水溶液にテトラブチルオルトチタネート(和光純薬工業株式会社製 純度95%)0.2gを加えた。30分間攪拌を行いテトラブチルオルトチタネートの加水分解と過酸化水素との反応によるチタンペルオキシドの生成を完全に進行させた後、更に30分間攪拌して均一溶液を得た。イオン交換水9gと実施例1で調製した硼素/ケイ素のモル比0.0217の脱ボロシリケートA10gを加え、10分間攪拌を続けた。その後攪拌しながら、100℃の温度下で3時間かけて水分を蒸発させ、モル比が、1・SiO:0.033・TiOとなる固体混合物を得た。
【0176】
この固体混合物を5mlのテフロン(登録商標)製ビーカーに入れ、イオン交換水1.5gとPI(和光純薬工業株式会社製 純度98%)2.5gが予め入れられた50mlのテフロン(登録商標)製のオートクレーブにPI水溶液を隔離して仕込み、170℃の温度下で158時間静止加熱した。加熱終了後、内容物を25℃まで冷却し、濾過により内容物から固体生成物を分離し、更に、イオン交換水を用い、固体生成物を洗浄し、洗浄水のpHが9以下になるまで洗浄を繰り返した。こうして得た固体生成物を80℃の温度下で乾燥し、その得られた固体生成物1gに対して、2mol/lの硝酸を100ml加え、100℃の温度下で20時間酸処理し、酸処理終了後,濾過により得た固体を600℃の温度下で10時間焼成し、最終的な目的生成物であるMWW型チタノシリケートを得た。このMWW型チタノシリケートのチタン/ケイ素のモル比は0.0167であり、硼素/ケイ素のモル比は0.0018であった。
【0177】
得られたチタノシリケートのXRDパターンには表1に示す回折線が認められ、UVスペクトルには250nm以下の領域に吸収が認められた。
【図面の簡単な説明】
【0178】
【図1】本発明のMWW型ゼオライト物質を説明するための模式図である。
【図2】実施例1で得られた錫シリケートの粉末X線回折パターンを示すグラフである。
【図3】実施例1で得られた錫シリケートのUVスペクトルを示すグラフである。
【図4】実施例1で得られた錫シリケート前駆体物質の粉末X線回折パターンを示すグラフである。
【図5】実施例2で得られたジルコニウムシリケートのUVスペクトルを示すグラフである。

【特許請求の範囲】
【請求項1】
周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型構造を有するメタロシリケート物質。
【請求項2】
周期律表でいう第5周期以上の3〜14族の元素から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型構造を有するメタロシリケート物質。
【請求項3】
チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型構造を有するメタロシリケート物質。
【請求項4】
以下の第1工程〜第4工程を含む方法で製造されたことを特徴とするMWW型構造を有するメタロシリケート物質。
第1工程
テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体(A)を得る工程
第2工程
第1工程で得た前駆体(A)を酸処理する工程
第3工程
第2工程で得た酸処理された前駆体(A)に、周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有する化合物を共存させて、テンプレート化合物および水を含有する混合物と共に加熱して前駆体(B)を得る工程
第4工程
第3工程で得られた前駆体(B)を焼成してMWW型構造を有するメタロシリケート物質を得る工程
【請求項5】
周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【請求項6】
周期律表でいう第5周期以上の3〜14族の元素から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【請求項7】
チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、インジウム、錫および鉛からなる群から選ばれる少なくとも一種の元素を含有することを特徴とするMWW型ゼオライト物質の層状前駆体メタロシリケート物質。
【請求項8】
以下の第1工程〜第3工程を含む製造方法で製造されたことを特徴とするMWW型ゼオライト物質の前駆体メタロシリケート物質。
第1工程
テンプレート化合物、周期律表でいう13族元素含有化合物、ケイ素含有化合物および水を含有する混合物を加熱して前駆体(A)を得る工程
第2工程
第1工程で得た前駆体(A)を酸処理する工程
第3工程
第2工程で得た酸処理された前駆体(A)に、周期律表でいう第4周期以上の3族〜14族の元素から選ばれる少なくとも一種の元素を含有する化合物を共存させて、テンプレート化合物および水を含有する混合物と共に加熱して前駆体(B)を得る工程
【請求項9】
前駆体メタロシリケート物質が層状であることを特徴とする請求項8に記載の前駆体メタロシリケート物質。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2008−290942(P2008−290942A)
【公開日】平成20年12月4日(2008.12.4)
【国際特許分類】
【出願番号】特願2008−200163(P2008−200163)
【出願日】平成20年8月1日(2008.8.1)
【分割の表示】特願2003−26529(P2003−26529)の分割
【原出願日】平成15年2月3日(2003.2.3)
【出願人】(000002004)昭和電工株式会社 (3,251)
【Fターム(参考)】