説明

WLANシステムスキャニング及び選択

【課題】WLANシステムスキャニング及び選択を実行する方法を提供する。
【解決手段】端末は複数回のスキャンの反復を実行してWLANシステムを検出する。検出すべき少なくとも1つのWLANシステムを含むスキャンリストが最初に判定される。スキャン反復ごとに、サポートされるスキャンタイプのうちからスキャンタイプが選択され得る。選択されたスキャンタイプは、パッシブスキャン又はアクティブスキャン、スキャンすべき周波数チャネル等を示し得る。スキャンは、選択されたスキャンタイプに基づいて実行され得る。信号強度測定値はスキャン期間に受信されたアクセスポイントについて取得され、検出されたアクセスポイントを識別するのに用いられる。検出されたアクセスポイントについての信号強度測定値及び検出閾値に基づいて、候補アクセスポイントが識別される。最良候補アクセスポイントが、端末によるアソシエーションのために選択される。

【発明の詳細な説明】
【関連出願】
【0001】
本出願は、2006年7月14日に出願され、"WLAN System Selection(WLANシステム選択)"と題され、本願の譲受人に譲渡され、本明細書に参照することで組み込まれる、米国仮出願第60/831,021号の優先権を主張する。
【技術分野】
【0002】
本発明は、一般に通信に関し、特に無線ローカルエリアネットワーク(WLAN)システムをスキャニング及び選択する技法に関する。
【背景技術】
【0003】
WLANシステムは広く採用されて、端末用の無線通信をサポートしているが、端末はコンピュータ、携帯電話等であり得る。WLANシステムは、オフィスビル、喫茶店、モール、空港ターミナル、学校、及びデータ使用量が高いことが予想される他の歓楽街といった種々の場所で採用される。WLANシステムは端末が実質的に世界のどこからでもデータ接続する(例えば、インターネットに接続する)ことを可能にする。
【0004】
多くのWLANシステムがIEEE802.11を導入しているが、これは米国電気電子学会(IEEE)によって提供される標準のファミリーである。IEEE802.11標準はアクセスポイントと端末との間、また端末間での無線インタフェースを明記する。現在、802.11a、802.11b及び802.11g標準が広く用いられている。各IEEE802.11標準は、一つ又は複数の変調技法を用いる特定の周波数帯域(例えば、2.4GHz又は5GHz)における動作を明記する。
【0005】
端末は、当該端末がパワーオンされているときにはいつでもWLANシステムを探索するように構成され得る。端末は自身の位置又はどのWLANシステムが自身の近傍にあるのかを識別しないことがあり得る。できる限り容易且つ効率的に、範囲内にあるWLANシステムを検出し、起こり得る通信について適当なWLANシステムを選択することが望ましい。
【発明の概要】
【0006】
WLANシステムのスキャニング及び選択を行う技法が本明細書に記載される。ある面において、端末は複数回のスキャンの反復を行ってWLANシステムを検出する。複数回のスキャン反復(multiple scan iterations)を用いて、アクセスポイントのより正確な測定値を取得し得る。複数回のスキャン反復はまた、異なるタイプのスキャン(例えば、パッシブスキャン(passive scan)及びアクティブスキャン(active scan))、異なる周波数チャネルのスキャニング、異なるWLANシステムのスキャニング等をサポートするのに用い得る。
【0007】
一つの設計において、検出すべき少なくとも一つのWLANシステムを含むスキャンリストが最初に決定される。スキャンリストは端末に設定されたWLANシステムの好適なリストから選択されてもよい。複数回のスキャンの反復が次いで行われて、スキャンリスト中のWLANシステムのアクセスポイントが検出される。
【0008】
スキャン反復の各々について、サポートされるスキャンタイプからスキャンタイプが選択され得る。選択されたスキャンタイプは、パッシブスキャン又はアクティブスキャン、スキャンすべき少なくとも一つの周波数チャネル等を示し得る。パッシブスキャンは端末の現在の位置に関わらず如何なるスキャン反復についても行われてよく、アクティブスキャンは現在の位置に対して許可された場合に行われ得る。次いで選択されたスキャンタイプに基づいてスキャンが行われ得る。信号強度測定値は、スキャン中に端末によって受信されたアクセスポイントについて取得され、検出されたアクセスポイントを識別するために用いられ得る。例えば、その測定された信号強度又はフィルタリングされた信号強度が検知閾値を越える場合、受信されたアクセスポイントは検出されたアクセスポイントとして宣言され得る。
【0009】
全てのスキャン反復が完了した後、アソシエーション(association)の候補であるアクセスポイントがスキャン結果に基づいて識別される。例えば、検出されたアクセスポイントは、そのフィルタリングされた信号強度が選択閾値を越える場合、候補のアクセスポイントとして宣言され得る。検出閾値及び選択閾値は一定の値であっても、可変の値であってもよい。(例えば、最も高いフィルタリングされた信号強度を有する)候補のアクセスポイントは、端末によってアソシエーションのために選択されてもよい。
【0010】
本開示の種々の面及び特徴は、以下に更に詳細に記載される。
【図面の簡単な説明】
【0011】
【図1】図1は、無線広域ネットワーク(WWAN)システム及びWLANシステムを示す。
【図2】図2は、アクセスポイントの送信タイムラインを示す。
【図3】図3は、アクセスポイントによって定期的に送信されるビーコンフレームを示す。
【図4】図4は、端末の動作状態の組を示す。
【図5】図5は、WLANシステムの種々のリストとアクセスポイントの組を示す。
【図6】図6は、自動スキャンを行う処理を示す。
【図7】図7は、規制領域を判定する処理を示す。
【図8】図8は、自動スキャンを行う別の処理を示す。
【図9】図9は、端末のブロック図を示す。
【発明を実施するための形態】
【0012】
本明細書に記載される技法は、IEEE802.11を導入するWLANシステム、ハイパーラン(Hiperlan)を導入するWLANシステム等を含む、種々のWLANシステムに用いられ得る。IEEE802.11は米国、日本及び他の多くの国で広く用いられている。ハイパーランは、欧州で広く用いられているWLAN無線技法である。明確にするために、本技法のある面は、IEEE802.11を導入するWLANシステムについて以下に記載される。
【0013】
図1は、WWAN110と3つのWLANシステム120a、120b及び120cの例示の配置を示す。WWANは、例えば、都市、州、又は国全体といった、広い地理的な領域に通信カバレッジを提供する無線ネットワークである。WWAN110は、(a)IS-95、IS-2000、IS-856及び/又は何らかの他のCDMA標準といった符号分割多元接続(CDMA)ネットワーク、(b)ワイドバンドCDMA(W-CDMA)を導入するユニバーサル移動電話システム(Universal Mobile Telecommunication System)(UMTS)ネットワーク、(c)GSM(登録商標)(Global System for Mobile Communications)ネットワーク、又は(d)何らかの他のセルラーネットワークといった、セルラーネットワークであってよい。WWAN110はまた、ブロードキャストネットワーク又は何らかの他のタイプのセルラーネットワークであってもよい。WWAN110は通常、WWANのカバレッジ領域内の端末の通信をサポートする多数の基地局112を備える。簡単のため、1つの基地局112のみが図1に示されている。基地局は一般に、端末と通信する固定された局であり、ノードB、ベーストランシーバステーション(BTS)等とも称され得る。
【0014】
WLANシステム120は、例えば、ビル、モール、店舗、学校等といった、中位の地理的な領域に通信カバレッジを提供する。各WLANシステム120は、任意の数の端末の無線通信をサポートする任意の数のアクセスポイントを備え得る。図1において、WLANシステム120aは1つのアクセスポイント122aを備え、WLANシステム120bは1つのアクセスポイント122bを備え、WLANシステム120cは2つのアクセスポイント122c及び120dを備える。各WLANシステム120は、SSID(service set identifier)によって識別され得るが、これは32バイト長まであり得る英数字の文字列(string)である。各アクセスポイント122は、BSS(basic service set)に対して調整機能を行い得るが、これは、アクセスポイントに関連付けられた一組の端末である。各BSSは、BSS識別子(BSSID)によって識別され得るが、これは48ビットの媒体アクセス制御(MAC)アドレスである。従って、各アクセスポイントは一意のBSSIDによって識別され得る。端末はアクセスポイントと、アソシエーション要求(Association Request)フレーム及びアソシエーション応答(Association Response)フレームを当該アクセスポイントと交換することでアソシエートし(associate)得る。アソシエーションの成功の後、端末は、アクセスポイントが属するWLANシステムに接続される。
【0015】
WLANシステム120は、1つ又は複数のIEEE802.11 標準を導入してもよく、また、世界のいかなる場所に配置されてもよい。802.11b及び802.11gは、2。4GHzの帯域で動作し、2400から2495MHzの周波数スペクトルを14個の時差的且つ重複する周波数チャネルに分割するが、これはチャネル1乃至14と番号を付される。異なる周波数チャネルが異なる規制領域(regulatory domains)での使用のために利用可能である。規制領域は、1つ又は複数の国についてIEEE802.11の動作を規制し得る。例えば、周波数チャネル1乃至11は米国及びカナダでサポートされており、周波数チャネル10及び11はスペインでサポートされており、周波数チャネル10乃至13はフランスでサポートされており、周波数チャネル1乃至13はそれ以外の欧州でサポートされており、周波数チャネル1から14は日本でサポートされている。異なる規制領域はまた、局からの最大出力に対して異なる制約を課し得るが、当該局はアクセスポイント又は端末であり得る。
【0016】
図2は、アクセスポイントについての例示の送信タイムライン200を示すが、当該アクセスポイントは図1のアクセスポイントのうちの任意の1つであってよい。アクセスポイントは、そのWLANシステムの種々のタイプの情報を伝えるビーコンフレームを定期的に送信する。ビーコンフレームは、対象ビーコン送信時刻(target beacon transmit time)(TBTT)に送信される。TBTT間の時間間隔は、通常、1つの局のみが無線チャネルで任意の所与の瞬間に送信するコンテンションフリー期間(CFP)と、1つよりも多い局が無線チャネルで同時に送信し得るコンテンション期間(CP)を含む。
【0017】
図3は、アクセスポイントによって定期的に送信されるビーコンフレームのフォーマットを示す。ビーコンフレームは、アクセスポイントによってカバーされるBSSのBSSIDを伝えるBSSIDフィールドと、ビーコンフレーム本体と、簡単のため図3には示されない他のフィールドとを備える。ビーコンフレーム本体は、TBTT間の持続時間を示すビーコンインターバルフィールドと、アクセスポイントが属するWLANシステムのSSIDを伝えるSSIDフィールドと、他の情報要素を備える。ビーコンインターバルは、100ミリ秒(ms)又は何らかの他の時間間隔であってよい。
【0018】
802.11dにおいて、ビーコンフレームは国情報要素を備え得る。この情報要素は、アクセスポイントが配置される国を示す国ストリングフィールドと、情報要素によって記載されるサブバンドの最も低いチャネル番号を示す第1のチャネル番号フィールドと、当該サブバンドの周波数チャネルの数を示すチャネル数フィールドと、送信することができる最大出力を示す最大送信出力レベルフィールドとを備え得る。一組の第1のチャネル番号フィールド、チャネル数フィールド、及び最大送信出力レベルフィールドは、サブバンド毎に供給され得るが、これは別の周波数チャネルのブロックとは隣接しない、連続する周波数チャネルのブロックである。
【0019】
図1に戻ると、端末はWWAN110及びWLANシステム120全体に渡って分散され得る。端末は1つ又は複数の無線ネットワークと通信可能であってもよく、また、別の端末とピアツーピア(peer-to-peer)で通信可能であってもよい。図1に示される例では、端末130aは、WWAN110とWLANシステム120との双方と通信することができ、端末130bはWLANシステム120とだけ通信することができる。従って、端末は、WLAN局(例、端末130a)のみならずWWAN装置であってもよいし、単なるWLAN局(例、端末130b)であってもよい。端末はまた、移動局、アクセス端末、ユーザ端末、ユーザ機器、モバイル機器、局、加入者局等とも称され得る。端末はまた、携帯電話、ラップトップコンピュータ、無線通信装置、PDA(personal digital assistant)、ワイヤレスモデム、ハンドセット等であってもよい。
【0020】
端末(例、図1の端末130a又は130b)は種々の動作状態をサポートし得る。各動作状態は、1つ又は複数の条件に基づいて達してもよく、また当該状態で行われるべき特定の動作に関連付けられてもよい。
【0021】
図4は、一つの設計に係る、端末の一組の動作状態の状態図400を示す。この設計において、動作状態は、パワーアップ状態410、捕捉状態(acquired state)420、システムロス状態430、及び完全なシステムロス状態440を含む。端末は、パワーアップされるとパワーアップ状態410になる。状態410において、端末は自動スキャンを実行して、利用可能なLANシステムを検出し、起こり得る通信のためにWLANシステムを捕捉し得る。端末は、捕捉されたWLANシステムのアクセスポイントとのアソシエーションが成功すると、捕捉状態420に移行し得る。状態420において、端末は、必要に応じて、バックグラウンドスキャンを定期的に実行して、起こり得るハンドオフのために同じWLANシステムの他のアクセスポイントを検出し得る。
【0022】
端末は、捕捉されたWLANシステムを見失うと、システムロス状態430に移行し得る。状態430において、端末は、完全なシステムロスを宣言する前に、特定の回数、限定されたスキャンを実行し、以前に捕捉されたWLANシステムを再捕捉することを試みてもよい。端末は、以前に捕捉されたWLANを再捕捉すると、捕捉状態420に戻り得る。端末は、特定の回数の試行の後に、以前に補足したWLANシステムを再捕捉することができない場合、完全なシステムロス状態440に移行し得る。完全なシステムロス状態440において、端末は自動スキャンを実行して、利用可能なWLANシステムを検出し得る。端末は、WLANシステムを検出し、捕捉すると、捕捉状態420に移行し得る。
【0023】
図4に示されるように、端末は、異なる動作状態では異なるスキャンを実行し得る。端末はまた、異なるWLANシステムをスキャン、及び/又は、異なる動作状態においては異なる方法でスキャンを実行してもよい。例えば、パワーアップ状態410において、端末は任意の利用可能なWLANシステムをスキャンし得る。システムロス状態430において、端末は、より見つかりそうなWLANシステム、例えば、端末が最近検出又は捕捉したWLANシステムをスキャンし得る。完全なシステム状態440において、端末は任意の利用可能なWLANシステムをスキャンし得るが、バッテリ電力を保存するために、より少ない間隔でスキャンを実行してもよい。
【0024】
端末はまた、例えば、捕捉状態420の期間に、アイドル(idle)モード及びイントラヒック(in-traffic)モードといった、種々の動作モードをサポートし得る。端末は、当該端末が如何なるアクセスポイントとも長期間の間データをやり取りしなかった場合、アイドルモードにあり得る。端末はアクセスポイントとのアソシエーションの後にアイドルモードになり得る。端末は、当該端末がアソシエートされたアクセスポイントとデータをやり取りしている場合、イントラヒックモードであり得る。アイドルモードとイントラヒックモードとの双方において、端末は起こり得るハンドオフのために、同じWLANシステムの他のアクセスポイントを定期的にスキャンし得る。
【0025】
端末は、自動スキャン、手動スキャン、バックグラウンドスキャン、限定されたスキャン及び/又はWLANシステムを検出するための他のスキャンを実行し得る。端末は、自動スキャンをパワーオンされたときに(例えば、パワーアップ状態410において)実行してもよく、また、WLANシステムが捕捉されない場合(例えば、完全なシステムロス状態440において)、自動スキャンを定期的に実行してもよい。自動スキャンの目的は、起こり得る通信のために適当なWLANシステムを見つけることであり得る。端末は、ユーザによって要求されたときはいつでも手動スキャンを実行し得る。手動スキャンの目的は、端末によって検出された全てのWLANシステムの包括的なリストをユーザにリターンすることであり得る。端末は、バックグラウンドスキャン及び限定されたスキャンを実行して、1つ又は複数の特定のWLANシステムを検出してもよい。端末は、バックグラウンドスキャンを、他の通信タスクに対して補助的な(secondary)、バックグラウンドタスクとして実行してもよい。
【0026】
端末は、種々のリスト及びセット(sets)を保持して、WLANシステムのスキャニング及び選択を容易にし得る。「リスト」及び「セット」という用語は交互に(interchangeably)用いられ得る。明確にするために、以下の記載において「リスト」という用語はWLANシステムに用いられ、「セット」という用語はアクセスポイントに用いられる。これらの種々のリスト及びセットは、端末において事前に設定されても、及び/又は、動作中に形成されてもよい。
【0027】
図5は、一つの設計に従った種々のリスト及びセットを示す。端末は、サービスプロバイダ、ユーザ等によって好適なリスト510で設定され(configure)得る。好適なリスト510は、サービスプロバイダによって所有され、作動させられるWLANシステム、サービスプロバイダがローミング契約を有するWLANシステム、サービス申し込みによってカバーされるWLANシステム、ユーザによってプログラム又は選択されるWLANシステム等を含み得る。好適なリスト510はまた、ネットリスト、ローミングリスト等とも称され得る。一つの設計において、好適なリスト510は、自動スキャンの期間に捕捉され得る全てのWLANシステムを含む。好適なリスト510は、リスト中のWLANシステム毎に1つのレコードを備え得る。各レコードは、SSID、認証情報(例、鍵、パスワード等)、優先度、周波数チャネル情報等、そのWLANシステムについての関連情報(pertinent information)を含み得る。スキャンリスト520は、所与のスキャンイベントで検出すべき1つ又は複数のWLANシステムを含む。スキャンリスト520は、以下に記載するように、好適なリスト510に基づいて形成され得る。
【0028】
検出されたセット530は端末によって検出されたアクセスポイントを含む。自動スキャンの場合、検出されたセット530中のアクセスポイントは、好適なリスト510のWLANシステムからに制限されてもよい。候補セット540は、1つ又は複数の基準を満たす検出されたセット530中のアクセスポイントを含み、端末によるアソシエーションの候補である。アクティブセット550は、端末がアソシエートした1つ又は複数のアクセスポイント(通常は1つのアクセスポイント)を含む。
【0029】
端末は、パッシブスキャン及び/又はアクティブスキャンを実行して、アクセスポイントを検出し得る。パッシブスキャンの場合、端末はWLANシステムのアクセスポイントによって送信されるビーコンフレームを待ち受ける(listens for)。これらのビーコンフレームは、図3に示すように、送信元のアクセスポイントのBSSIDを伝え、また更に、アクセスポイントが属するWLANシステムのSSIDも伝え得る。従って、端末はアクセスポイントとWLANシステムとの双方を受信されたビーコンフレームに基づいて識別することができ得る。パッシブスキャンは、通常、より多くのバッテリ電力を消費するが、規制の情報を必要としない。従って、端末はパッシブスキャンをいつでもどこでも実行し得る。
【0030】
アクティブスキャンの場合、端末はプローブ要求(Probe Request)フレームを送信し、プローブ応答(Probe Response)フレームを待ち受けて、アクセスポイントを検出する。アクティブスキャンを用いて「隠された(hidden)」アクセスポイントを発見し得るが、これらは自身のビーコンフレームにSSIDを含まないアクセスポイントである。アクティブスキャンは通常、より少ないバッテリ電力を消費するが、規制の要件に従ってプローブ要求フレームを送信できるように、端末が規制の情報を有することを要求する。異なる規制領域は、局の最大出力レベルのみならず、WLANシステムが動作できる周波数チャネルに対しても異なる要件を課し得る。あらゆる規制領域の要件を満たすため、端末は規制の情報が利用可能なときにアクティブスキャンを実行し、そのような情報が利用不可能なときにはパッシブスキャンを実行し得る。
【0031】
ある面において、端末は複数回のスキャンの反復を行って、WLANシステムを検出する。端末はビーコンフレーム及び/又は他のフレームをアクセスポイントから受信し、受信したフレームについて受信信号強度インジケータ(received signal strength indicator)(RSSI)測定を行ってもよい。RSSI測定は、信号強度測定、信号測定、パイロット測定、受信電力測定等とも称され得る。所与のアクセスポイントについての測定は、例えば無線環境における変化に起因して、大きく変動し得る。複数回のスキャン反復(multiple scan iterations)を用いて、アクセスポイントについて、より正確な測定値を取得し得る。複数回のスキャン反復はまた、様々なタイプのスキャン(例えば、一部の反復はパッシブスキャン、他の反復はアクティブスキャン)、様々な周波数チャネルのスキャニング、様々なWLANシステムのスキャニング等をサポートするために用いられてもよい。
【0032】
図6は、WLANシステムを検出する自動スキャンを実行する処理600を示す。新たなスキャンイベントの開始にあたり、検出すべき1つ又は複数のWLANシステムを含むスキャンリストが、以下に記載されるように判定される(ブロック612)。スキャン反復の回数はまた、Nscanとして判定され、表示されてもよい(ブロック 614)。スキャン反復の回数は一定の値(例、5回、10回等)でもよいし、スキャン結果、所望の検索速度、利用可能なバッテリ電力等といった種々の要因に依存し得る可変の/設定可能な値であってもよい。複数回のスキャン反復を実行することで、捕捉が試行される前にWLANシステムが安定していることが保証され得る。
【0033】
各スキャン反復について、サポートされる全てのスキャンタイプの中から、以下に記載されるようにスキャンタイプが選択される(ブロック616)。次いで、スキャンタイプに従ってスキャンが実行され、端末によって受信され、スキャンリスト中のWLANシステムに属するアクセスポイントについてRSSI測定値が取得される(ブロック618)。所与の周波数チャネルについてのパッシブスキャンは、(a)当該周波数チャネルにチューニングすることで、(b)アクセスポイントからのビーコンフレームを特定の時間(例、130ms、又はビーコンインターバルよりも長い何らかの他の期間)待ち受けることで、(c)受信されたビーコンフレームにRSSI測定を行うことで、及び(d)受信したビーコンフレームを処理して送信元のアクセスポイントとそれらのWLANシステムを識別することで、実行され得る。所与の周波数チャネルについてのアクティブスキャンは、(a)当該周波数チャネルにチューニングすることで、(b)プローブ要求フレームを送信することで、(c)アクセスポイントからのプローブ応答を特定の時間待ち受けることで、(d)受信したプローブ応答フレームにRSSI測定を行うことで、(e)受信したプローブ応答フレームを処理して、送信元のアクセスポイントとそれらのWLANシステムを識別することで、実行され得る。パッシブスキャン及びアクティブスキャンは、他の方法で実行されてもよい。
【0034】
検出された一組のアクセスポイントは、スキャンで取得されたRSSI測定値に基づいて、以下に記載されるように更新される(ブロック620)。次いで、検出されたセットが空であるかどうかが判定される(ブロック622)。回答が「Yes」の場合、これはアクセスポイントが最後の反復又は先立つ全てのスキャン反復で検出されなかったことを意味し、現在のスキャンイベントが中止され得る。端末は特定の時間Twait_event待機し(ブロック624)、その後ブロック612に戻って新たなスキャンイベントを開始する。
【0035】
ブロック622で、検出されたセットが空ではなく、回答が「No」である場合、全てのスキャン反復が完了したかどうか判定される(ブロック626)。回答が「No」の場合、端末は所定の時間Twait_scan待機し(ブロック628)、その後次のスキャン反復のためにブロック616に戻る。待機時間Twait_scanは、独立した測定値を取得するのに充分に長いが、自動スキャンを実行するときの遅延を削減するのに充分に短くてよい。
【0036】
Nscanは一定の値であり得るが、この場合Nscan回のスキャン反復はスキャン結果に関わらず実行される。Nscanはまた、スキャン結果に依存し得る可変の値であってもよい。例えば、強いRSSI測定値が取得される場合、スキャン反復の回数は、スキャン時間を短縮すべく削減され得る一方で、信頼できる結果が提供され得る。従って、ブロック626は実行すべきスキャン反復の回数を判定又は修正することを伴ってもよい。ブロック626について、全てのスキャン反復が完了し、回答が「Yes」の場合、候補のセットが全てのスキャン反復で取得されたRSSI測定値に基づいて判定される(ブロック630)。
【0037】
スキャンリストは、図6のブロック612におけるスキャンイベント毎に判定され得る。一般に、スキャンリストは任意の数のWLANシステムと任意のWLANシステムを含み得る。一つの設計において、スキャンリストは好適なリストに設定される。別の設計において、スキャンリストは好適なリスト中のWLANシステムのサブセット又は1つのWLANシステム又を含む。例えば、好適なリスト中のWLANシステムには、異なる優先度が割り当てられてもよく、スキャンリストは同一の優先度を有する1つ又は複数のWLANシステムを含んでもよい。別の例として、スキャンリストは、より検出されそうな、又はスキャンされていない、1つ又は複数のWLANシステムを含んでもよい。(例えば、異なる優先度の)異なるスキャンリストを異なるスキャンイベントに用いてもよい。また別の設計において、スキャンリストは、最近検出された又は捕捉されたWLANシステムを含む。
【0038】
スキャンイベントは所与のスキャンリストについて複数回のスキャン反復をカバーする。好適なリストは、(例えば、異なる優先度の)複数個のスキャンリストに分割されてもよく、また複数回のスキャンイベントを複数個のスキャンリストについて実行してもよい。フルスキャンは好適なリスト全体及び/又は他のWLANシステムをカバーしてもよく、1回又は複数回のスキャンイベントで実行されてもよい。フルスキャン後に適当なWLANシステムが検出されない場合、端末は特定の時間Twait_fs待機し、もう一度フルスキャンを実行してもよい。Twait_fsは一定の値でもよいが、この場合フルスキャンは一定の間隔で実行され得る。Twait_fsはまた、増加する値(例えば、指数関数的に増加する値)であってもよいが、この場合フルスキャンは次第に長い間隔で(又は、より低い頻度で)実行され得る。
【0039】
上述したように、端末は、パッシブスキャンをいつでもどこでも実行してよく、アクティブスキャンを端末の現在の位置を管理している規制領域によって許可された場合のみ実行し得る。パワーアップ時に、端末は、自身の現在の位置又は適用できる規制領域を識別しないことがある。端末は種々の方法で規制領域を確認し得る。
【0040】
図7は、端末の現在の位置について規制領域を判定する処理700を示す。処理700は、最初のスキャン反復に先立って、最初のスキャン反復の後、各スキャン反復の後等に実行され得る。
【0041】
最初に、端末はアクティブスキャンを実行することを許可されているかどうかが、例えばサービスプロバイダによって端末に供給され得るパラメータに基づいて、判定がなされる(ブロック712)。回答が「No」の場合、規制領域は、アクティブスキャンを許可しないデフォルトの規制領域に設定されてもよく(ブロック714)、処理はその後終了する。
【0042】
アクティブスキャンが許可される場合、先立つパッシブスキャンで検出されたアクセスポイントで802.11dをサポートするものがあるかどうか判定がなされる(ブロック722)。(例えば、図6のブロック618で)1回又は複数回のパッシブスキャン反復が実行されてアクセスポイントが検出され得る。検出されたアクセスポイントで802.11dをサポートするものがあれば、802.11dのアクセスポイントから受信された(図3に示されるような)ビーコンフレームの国情報に基づいて規制領域が判定されてもよく(ブロック724)、処理はその後終了する。
【0043】
802.11dのアクセスポイントが検出されない場合、ブロードキャストシステム又はセルラーシステムで基地局が検出されたかどうか判定がなされる(ブロック732)。回答が「Yes」の場合、規制領域は基地局から受信される情報に基づいて判定されてもよく(ブロック734)、処理はその後終了する。
【0044】
基地局が検出されなかった場合、端末についての位置推定が利用可能かどうかが、例えば衛星、基地局、及び/又は他の送信器の測定値に基づいて、判定がなされる(ブロック742)。回答が「Yes」の場合、規制領域は位置推定に基づいて判定されてもよく(ブロック744)、処理はその後終了する。規制領域を判定するために利用可能な情報が無い場合、規制領域はデフォルトの規制領域に設定されてもよく(ブロック746)、処理はその後終了する。
【0045】
端末は、セルラーネットワークの基地局によってブロードキャストされるモバイル国コード(Mobile Country Code)(MCC)に基づいて国情報を取得し得る。MCCは、国際電気通信連合(International Telecommunications Union)(ITU)によって、セルラーネットワークが配置されている国を識別する3桁のコードとして定義されている。各国には、1つ又は複数の一意のMCC値をITUによってRecommendation E.212で割り当てられているが、これは公に利用可能である。例えば、アメリカ合衆国には310乃至316(10進法)のMCC値が割り当てられている。MCCは、様々なセルラーネットワークによって様々な方法でブロードキャストされる。
【0046】
cdma2000を導入するCDMAネットワークの場合、これはIS-95、IS-2000、及びIS-856をカバーするが、各基地局は、MCCとネットワークオペレータコード(NOC)で構成されるネットワークオペレータ識別子をブロードキャストする。基地局はMCCを同期チャネル上の同期チャネルメッセージ(Sync Channel Message)で、又はページングチャネル上のシステムパラメータメッセージ(System Parameters Message)若しくは拡張されたシステムパラメータメッセージ(Extended System Parameters Message)でブロードキャストし得る。GSMネットワークの場合、各基地局は、3桁のMCC値と3桁のモバイルネットワークコード(MNC)を含むロケーションエリア識別情報エレメントを伝える、タイプ3のシステム情報(System Information Type 3)メッセージを定期的にブロードキャストする。UMTSネットワークの場合、各基地局は、UMTSネットワークが属する公有地モバイルネットワーク(Public Land Mobile Network)(PLMN)のPLMNアイデンティティを含むマスタ情報ブロックを伝えるシステム情報(System Information)メッセージを定期的にブロードキャストする。PLMNアイデンティティは、PLMNについての2桁又は3桁のMNC値と3桁のMCC値とから構成される。
【0047】
端末は、最初のスキャン反復を実行するのに先立って、セルラーネットワークの基地局から国情報を取得してもよく、また当該国情報に基づいて規制領域を判定してもよい。次いで、端末は、規制領域によって許可される場合、アクティブスキャンを最初のスキャン反復で実行し得る。端末はまた、パッシブスキャンの反復を一回実行してアクセスポイントを検出してもよい。802.11dのアクセスポイントが検出された場合、端末は802.11dのアクセスポイントから国情報を取得し、当該国情報に基づいて規制領域を判定し得る。次いで、端末は、規制領域によって許可される場合、アクティブスキャンをその後のスキャン反復で実行し得る。一般に、端末は、規制領域を最初のスキャン反復を実行する前に、又は最初のスキャン反復を実行した後で判定し得る。
【0048】
端末は、パワーアップ時に規制領域を(アクティブスキャンを許可しない)デフォルトの規制領域に初期化してもよい。端末は、国情報が利用可能なときはいつでも、例えば、802.11dのアクセスポイント又は基地局が検出されるときにはいつでも、規制領域を更新し得る。端末は、規制領域に基づいて各反復についてスキャンタイプを選択し得る。端末は、適用可能な規制制限と周波数チャネルと共に、異なる規制領域又は国/領域コードのテーブルを保持してもよい。端末は、アクティブスキャンが許可される領域でアクティブスキャンを用いてもよく、また、アクティブスキャンを、適用可能な規制制限に従って特定の周波数チャネルで実行してもよい。アクティブスキャンが許可されない場合、又は規制領域若しくは現在の位置について国/領域が分からない場合、端末はパッシブスキャンのみを実行し得る。
【0049】
パッシブスキャンとアクティブスキャン、周波数チャネル、及び/又は他の要因に基づいて、種々のスキャンタイプが定義され得る。例えば、以下のスキャンタイプがサポートされ得る:
・全ての周波数チャネルのパッシブスキャン、
・重複しない周波数チャネルのパッシブスキャン、
・奇数番号の周波数チャネルのパッシブスキャン、
・偶数番号の周波数チャネルのパッシブスキャン、
・好適なリスト中のエントリ(entries)の周波数チャネルのパッシブスキャン、
・好適なリスト中のエントリの重複しない周波数チャネルのパッシブスキャン、
・全ての周波数チャネルのアクティブスキャン、
・奇数番号の周波数チャネルのアクティブスキャン、
・偶数番号の周波数チャネルのアクティブスキャン、
・好適なリスト中のエントリの周波数チャネルのアクティブスキャン、及び
・好適なリスト中のエントリの重複しない周波数チャネルのアクティブスキャン。
【0050】
他のスキャンタイプがサポートされてもよい。使用できるスキャンタイプは、サポートされるスキャンタイプの全て又はサブセットであってよく、また、規制領域及び/又は他の要因に依存してもよい。一つの設計において、図6に示すように、スキャンタイプはスキャン反復毎に選択されてもよく、また、異なるスキャン反復には異なるスキャンタイプが選択されてもよい。
【0051】
検出されたセットは、スキャンイベントについての複数回のスキャン反復において端末によって検出されたアクセスポイントを含む。検出されたセットは、RSSI測定値、以下に記載されるようにRSSI測定値をフィルタリングすることによって取得されたフィルタリングされた測定値、及び/又は他の情報に基づいて更新され得る。検出されたセットは、図6のブロック620の各スキャン反復後に種々の方法で更新され得る。
【0052】
一つの設計において、検出されたセットは、各スキャン反復の後に当該スキャン反復で取得されるRSSI測定値に基づいて更新される。レコードは、スキャン反復毎に作成されてもよく、当該スキャン反復の検知閾値を越えるRSSI測定値を有する全てのアクセスポイントを含んでもよい。検出されたセットは、Nscan回のスキャン反復についてNscan個のレコードを含み得る。これらのレコードを用いて、どのアクセスポイントが各スキャン反復で検出されたか、及び所与のアクセスポイントがNscan回のスキャン反復においてどのくらいの頻度で検出されたかを判定し得る。
【0053】
別の設計においては、検知閾値を越えるフィルタリングされた測定値を有する全てのアクセスポイントが、検出されたセットに含まれる。各アクセスポイントのフィルタリングされた測定値は、各スキャン反復後に更新されてもよく、また、当該アクセスポイントを当該スキャン反復の検出されたセット中に含むか否かを判定するのに用いられてもよい。
【0054】
検知閾値は一定の値であり得る。検知閾値がゼロに設定される場合、全ての受信されたアクセスポイントが、それらのRSSI測定値に関わらず、検出されたセットに含まれる。検知閾値は、以下の様に、スキャン反復に依存する可変の値であってもよい:
【数1】

【0055】
ここで、THdet,iは、i番目のスキャン反復における検出されたセットのアクセスポイントを含むのに用いられる検知閾値であり、THdet_stepはステップサイズであり、THdet_minは最小の検知閾値である。
【0056】
式(1)で、THdet,iは最初のスキャン反復についてTHdet_initに設定されてもよく、その後に続くスキャン反復毎にTHdet_stepだけ減少されてもよく、また、THdet_min以上に限定されてもよい。THdet閾値はまた、他の方法でも設定され得る。
【0057】
検出されたセットはまた、他の方法でも更新され得る。検出されたセット中のアクセスポイントは、それらのRSSI測定値又はフィルタリングされた測定値に基づいて、各スキャン反復後に順序付けられてもよい。各スキャン反復後に、最も高い測定値を有する最大でNap個までのアクセスポイントが検出されたセットに保持され得るが、ここでNapは任意の値であってよい。
【0058】
候補のセットは、図6のブロック630で、Nscan回のスキャン反復が全て完了した後に判定されてもよい。検出されたセット中のアクセスポイントは、RSSI測定値、アクセスポイントが検出セットに含まれたスキャン反復の回数等といった種々の要因に基づいて、候補セットに含めることを考慮され得る。例えば、少なくともNmin回のスキャン反復、及び/又は少なくともNcon回の連続するスキャン反復で検出セットに含まれなかったアクセスポイントは候補セットについての考慮から省略され得るが、ここでNmin及びNconはそれぞれ1からNscanまでの任意の値、例えば、
【数2】

【0059】
であってよい。省略されないアクセスポイントは、種々の基準に基づいて候補セットへ含めることが考慮され得る。
【0060】
一つの設計において、一定の選択閾値を越えるフィルタリングされた測定値を有する、検出されたセット中のアクセスポイントは候補セットに含められる。この選択閾値は、任意の適当な値、例えば、−70、−75、−80dB又は何らかの他の値であってよい。
【0061】
別の設計において、可変の選択閾値を越えるフィルタリングされた測定値を有するアクセスポイントは候補セットに含められる。可変の選択閾値は以下の様に設定され得る:
【数3】

【0062】
ここで、THsel(m)は、アクセスポイントmを候補セットに追加するのに用いられる選択閾値であり、THsel_initは、最初の選択閾値であり、THsel_stepはステップサイズであり、また、Nmは、アクセスポイントmが検出され、検出されたセットに含まれたスキャン反復の回数である。
【0063】
式(2)において、THsel(m)は、アクセスポイントmが1回のスキャン反復でのみ検出された場合、THsel_initに設定されてもよく、アクセスポイントmが更に検出される度にTHsel_stepだけ減少されてもよい。THsel(m)は、THsel_init以上であるように限定されてもよい。閾値は、
【数4】

【0064】
のように定義され得る。アクセスポイントは、他の閾値及び/又は基準に基づいて候補セットに含まれてもよい。
【0065】
一般に、候補セットは、ゼロ個、1個、又は複数個のアクセスポイントを含み得る。候補セットに少なくとも1個のアクセスポイントが含まれる場合、「最良の」アクセスポイントが端末によるアソシエーションのために選択され得る。最良のアクセスポイントは、(a)最も強いフィルタリングされた測定値を有する候補のアクセスポイント、(b)検出されたセットに含まれる全てのアクセスポイントのうちで、最も長い時間若しくは最も多くのスキャン反復で、最も強いフィルタリングされた測定値を有する候補のアクセスポイント、又は(c)フィルタリングされた測定値と検出されたセットにアクセスポイントが含まれたスキャン反復の回数間の重み付けに基づいて選択されるアクセスポイントであってよい。端末は最良のアクセスポイントとアソシエートしようと試み得る。このアクセスポイントとのアソシエーションが何らかの理由で失敗した場合、次善のアクセスポイントが選択され得る。アソシエーションは、最良のアクセスポイントから始めて、アソシエーションの成功が達成されるまで、又は候補のアクセスポイント全てに対してアソシエーションが試行されるまで、1度に1つの候補のアクセスポイントに対して試行され得る。
【0066】
図6に示されるように、端末はスキャン反復間でTwait_scan秒待機して、アクセスポイントのRSSI測定値の時間ダイバーシティ(time diversity)を実現し得る。一つの設計において、スキャン反復間の待機時間は、良好なパフォーマンスを提供すべく選択される一定の値である。
【0067】
別の設計において、待機時間Twait_scanは以下の様に設定され得る:
【数5】

【0068】
ここで、Twait_scan,iは、i番目のスキャン反復後、次のスキャン反復を実行する前に待機する時間の長さであり、Tstepは、待機時間の削減であり、Diはi番目のスキャン反復の後に待機時間を削減するか否かに関する決定である。決定Diは、RSSI測定値に基づいてもよく、例えば強いRSSI測定値の場合はDi=1、弱いRSSI測定値の場合はDi=0としてもよい。式(3)において、待機時間は、最初のスキャン反復についてはTwait_initに設定されてもよく、D=1の場合、続くスキャン反復についてはTstepだけ減少されてもよく、またTwait_min以上に制限されてもよい。この設計において、待機時間は、Twait_minに達するまで、各スキャン反復後に次第に削減されてもよい。
【0069】
また別の設計において、待機時間Twait_scanは以下の様に設定され得る:
【数6】

【0070】
式(4)において、待機時間は、最初のスキャン反復についてTwait_initに設定されてもよく、D>0の場合、続くスキャン反復については削減されてもよく、Twait_min以上に制限されてもよい。例えば、待機時間は、D=1の場合は半分だけ削減されるか、D=0の場合は維持されてもよい。この設計において、待機時間は、Twait_minに達するまで各スキャン反復後に指数関数的に削減され得る。
【0071】
また別の設計において、待機時間Twait_scanは以下の様に設定され得る:
【数7】

【0072】
ここでTstep,iは、i番目のスキャン反復のステップサイズである。式(5)において、待機時間は、最初のスキャン反復についてはTwait_initに設定されてもよく、続くスキャン反復毎に可変のステップサイズTstep,iだけ削減されてもよく、またTwait_min以上に制限されてもよい。例えば、Tstep,iは、強いRSSI測定値についてはより大きくても良いが、これはより短い待機期間という結果になるであろうし、弱いRSSI測定値についてはより小さくてもよいが、これはより長い待機時間という結果になるであろう。Tstep,iは、RSSI測定値の種々の関数(functions)に基づいて判定され得るが、これは検出されたセット中の最も強い及び/又は最も古いアクセスポイントのうちの1つ又は複数のためであり得る。
【0073】
図6にも示されるように、端末はスキャンイベント間にTwait_event秒間待機し得る。スキャンイベント間の待機時間は、良好なパフォーマンスを提供すべく選択された一定の値であってもよい。この待機時間はまた、利用可能なバッテリ電力等といった、種々の要因に基づいて選択される設定可能な(configurable)値であってもよい。
【0074】
図8は、WLANシステムを検出するための自動スキャンを実行する処理800を示す。処理800において、Nps回のパッシブスキャンが最初に実行され、次いでNas回のアクティブスキャンが所与のスキャンイベントについて次に実行されるが、一般に、
【数8】

【0075】
である。スキャンイベントの開始にあたり、検出すべき1つ又は複数のWLANシステムを含むスキャンリストが判定される(ブロック810)。
【0076】
パッシブスキャンの場合、検出されたセットにアクセスポイントを含めるために用いられる検知閾値、THdet_ps,iと、パッシブスキャン反復間の待機期間、Twait_ps,i、が初期化される(ブロック812)。Nps回のパッシブスキャン反復全てが完了したかどうかについて判定がなされる(ブロック814)。答えが「Yes」の場合、これはNps = 0の場合だが、処理はブロック826に進む。さもなければ、スキャンリスト中のアクセスポイントを検出すべくパッシブスキャンが実行される(ブロック816)。検出されたセットは、受信されたアクセスポイントについてのRSSI測定値及びTHdet_ps,i閾値に基づいて、例えば上述したスキームのうちの任意のものに従って、更新される(ブロック818)。次いで、検出されたセットが空かどうかの判定がなされる(ブロック820)。答えが「Yes」の場合、処理はブロック828に進む。さもなければ、端末はi番目のパッシブスキャン反復後にTwait_ps,iの間待機し(ブロック822)、THdet_ps,iとTwait_ps,iを適切に更新し(ブロック824)、次のパッシブスキャン反復のためにブロック814に戻る。Nps回のパッシブスキャン反復全てが完了し、ブロック814の答えが「Yes」の場合、少なくともNpsd回のパッシブスキャン反復についてアクセスポイントが検出されたかどうか判定がなされるが、ここで、
【数9】

【0077】
である(ブロック826)。答えが「Yes」の場合、処理はブロック832に進み、さもなければブロック828に続く。
【0078】
アクティブスキャンの場合、検出されたセットにアクセスポイントを含めるために用いられる検出閾値、THdet_as,i、及びアクティブスキャン反復間の待機期間、Twait_as,i、が初期化される(ブロック832)。Nas回のアクティブスキャン反復全てが完了したかどうか判定がなされる(ブロック834)。答えが「Yes」の場合、これはNas=0の場合だが、処理はブロック846に進む。さもなければ、スキャンリスト中のアクセスポイントを検出すべくアクティブスキャンが実行される(ブロック836)。検出されたセットは、受信されたアクセスポイントについてのRSSI測定値とTHdet_as,i閾値に基づいて、例えば上述したスキームの任意のものに応じて、更新される(ブロック838)。次いで、検出されたセットは空かどうか判定がなされる(ブロック840)。答えが「Yes」の場合、処理はブロック828に進む。さもなければ、端末はi番目のアクティブスキャン反復後にTwait_as,i、待機し(ブロック842)、THdet_as,iとTwait_as,iを適切に更新し(ブロック844)、次のアクティブスキャン反復のためにブロック834に戻る。Nas回のパッシブスキャン反復全てが完了し、ブロック834の答えが「Yes」の場合、Nasd回のアクティブスキャン反復の間にアクセスポイントが検出されたかどうか判定がなされるが、ここで、
【数10】

【0079】
である(ブロック846)。 答えが「Yes」の場合、処理はブロック848に進み、さもなければ、ブロック828に続く。
【0080】
任意のパッシブスキャン反復後、検出されたセットが空である場合(ブロック820で「Yes」)、又は任意のアクティブスキャン反復後、検出されたセットが空である場合(ブロック840で「Yes」)、適当なアクセスポイントが見つからなかった旨の表示(indication)がリターンされる(ブロック828)。少なくともNpsd回のパッシブスキャン反復の間に、また少なくともNasd回のアクティブスキャン反復の間に、検出されたセットにアクセスポイントが含まれなかった場合、適当なアクセスポイントが見つからなかった表示もリターンされる(ブロック828)。少なくともNpsd回のパッシブスキャン反復の間に、検出されたセット中に少なくとも1つのアクセスポイントが含まれた場合(ブロック826で「Yes」)、また、少なくともNasd回のアクティブスキャン反復の間に、検出されたセット中に少なくとも1つのアクセスポイントが含まれた場合(ブロック846で「Yes」)、候補セットが、検出されたアクセスポイントについて取得されたRSSI測定値に基づいて判定される(ブロック848)。
【0081】
THdet_ps,i及びTHdet_as,i閾値は、一定の値であっても、上述されたスキームのうちの任意のものに基づいて、例えば式(1)に示されるように、判定され得る可変の値であってもよい。待機期間Twait_ps,i及びTwait_as,iもまた、一定の値であっても、上述されたスキームのうちの任意のものに基づいて、例えば式(3)、(4)又は(5)に示されるように、判定され得る可変の値であってもよい。
【0082】
所与のスキャンイベントについて、各スキャン反復は、当該スキャン反復で受信又は検出された一組のアクセスポイントについて、一組のRSSI測定値を供給し得る。スキャン反復はまた、アクセスポイントが受信又は検出されない場合、空のセットをリターンしてもよい。所与のアクセスポイントについてのRSSI測定値は、異なるスキャン反復に渡って広く変動し得る。各アクセスポイントのRSSI測定値はフィルタリングされて、当該アクセスポイントのより信頼できる測定値が取得されてもよい。フィルタリングは種々の方法で達成され得る。
【0083】
一つの設計において、フィルタリングは、以下のように、等平均(equal averaging)に基づく:
【数11】

【0084】
ここで、RSSIi(m)は、スキャン反復iにおけるアクセスポイントmのRSSI測定値であり、Nmは、アクセスポイントmについて利用可能なRSSI測定値の数であり、RSSIfiltered(m)は、アクセスポイントmのフィルタリングされた測定値である。
【0085】
RSSI測定値は、所与のスキャン反復においてアクセスポイントmについて取得されても、取得されなくてもよい。従って、Nscan回のスキャン反復が実行される場合、
【数12】

【0086】
である。式(6)は、全てのRSSI測定値に等しい重みを与える。
【0087】
別の設計において、フィルタリングは、以下のように、無限インパルス応答(infinite impulse response)(IIR)フィルタを用いる指数平均(exponential averaging)に基づく:
【数13】

【0088】
ここで、αは、フィルタリングの量を判定する係数であり、RSSIfiltered,i(m)は、スキャン反復iにおけるアクセスポイントmのフィルタリングされた測定値である。
【0089】
係数αは、0と1との間の任意の適当な値、即ち、
【数14】

【0090】
であり得る。小さなαの値は、より少ないフィルタリングに対応し、大きなαの値は、より多くのフィルタリングに対応する。最後のフィルタリングされた測定値は、Nm個のRSSI測定値全てが指数平均化された後に取得され得る。式(7)は、より最新のRSSI測定値に対して、より大きな重みを与える。
【0091】
更に別の設計において、フィルタリングは、以下のように、有限インパルス応答(finite impulse response)(FIR)フィルタに基づく:
【数15】

【0092】
ここで、αiは、スキャン反復iにおけるアクセスポイントmのRSSI測定値に対する重みであり、また、
【数16】

【0093】
である。
【0094】
一般に、任意の重みの組をFIRフィルタに用い得る。例えば、重みは、式(6)の等平均についてαi=1/Nmとして選択されても、又は、式(7)の指数平均について
【数17】

【0095】
として選択されてもよい。式(8)は各RSSI測定値に任意の重みを与えることができる。
【0096】
更に別の設計において、フィルタリングは、スライディングウィンドウへの等平均又は指数平均に基づく。スライディングウィンドウは、Nwin個の最新のRSSI測定値をカバーし得るが、ここでNwinは、任意の適当な値、例えば3、5等であってよい。フィルタリングはNwin個の最新のRSSI測定値に対して実行され、より古いRSSI測定値は無視される。
【0097】
更に別の設計において、フィルタリングはWMEWMA(windowed mean exponentially weighted moving averaging)に基づく。この設計においては、例えば式(6)に示されるように、Nwin個の最新のRSSI測定値を等平均することで、中間の測定値が各スキャン反復iについて取得される。異なるスキャン反復の中間の測定値は、例えば式(7)に示されるように指数平均化される。WMEWMAは本質的に、指数平均が後に続く、ボックスカー平均(boxcar mean)のカスケードである。指数平均は測定値が合理的に素早く対処することを可能にする一方で、ボックスカー平均はローパスフィルタとして動作する。
【0098】
フィルタリングはまた、異なる平均化(averaging)スキーム又は平均化スキームの異なる組み合わせを用いて他の方法で行われてもよい。
【0099】
イントラヒックモードでWLANシステムに接続されている間、端末は、必要であれば、見込まれるハンドオフのためのアクセスポイントの最新のリストを保持するために、周期的にバックグラウンドスキャンを実行し得る。端末は、バックグラウンドスキャンを現在のWLANシステム、好適なリスト中の任意のWLANシステム等に実行し得る。
【0100】
バックグラウンドスキャンの場合、端末は、接続されたWLANシステムの周波数チャネルとは異なる周波数チャネルにチューニングし得る。端末は、スキャン時間を短く保つために、アクティブスキャンを実行し得るが、これはVoIP(Voice-over-Internet Protocol)といった、トラヒックを周期的に送信するアプリケーションにとって望ましいことがある。端末は各バックグラウンドスキャン期間にバックグラウンドスキャンを周期的に実行し得るが、これは以下の様に選択され得る:
【数18】

【0101】
ここで、Nchはスキャンすべき周波数チャネルの数であり、Nmeasは所与のアクセスポイントについて取得すべきRSSI測定値の数であり、TshahowはRSSI測定値がフィルタリングされる時間窓であり、また、Tbg_scanはバックグラウンドスキャン期間である。
【0102】
Tshadowは、無線環境において一時的な障害によって引き起こされるフェードを考慮する(account for)ために選択され得る。例えば、Tshadowは、3から5フィート/秒の歩行者の速度で20フィートの一時的な障害をカバーするために約7秒であってもよい。より小さなTshadowは、より頻繁なバックグラウンドスキャンと、より高いバッテリ消費という結果を招く。NmeasはRSSI測定値における可変性を考慮するために選択されてもよく、また、3、5、又は何らかの他の値に設定されてもよい。
【0103】
端末はまた、アソシエートされたアクセスポイントのパフォーマンスをモニタして、別のアクセスポイントへのハンドオフを実行すべきかどうかを判定し得る。パフォーマンスは、受信されたパケットのパケットエラーレート(PER)及び/又は送信されたパケットのPER、不正確に受信されたビーコン又は失われたビーコンの数、RSSI測定値等によって測られ得る。PERは、スライディングウィンドウの間に(over)計算され得るが、これは所定の数の最新のパケットをカバーし得る。RSSI測定値は、上述したスキームのうちの任意のものを用いてフィルタリングされ得る。アクセスポイントmのRSSI測定値はまた、以下の様に、低速フィルタ(slow filter)及び高速フィルタ(fast filter)を用いてフィルタリングされ得る:
【数19】

【0104】
ここで、αslow及びαfastは、それぞれ低速フィルタ及び高速フィルタの係数であり、RSSIslow,i(m)及びRSSIfast,i(m)は、それぞれi番目のRSSI測定後のアクセスポイントmについての低速フィルタ及び高速フィルタからのフィルタリングされた測定値である。
【0105】
低速フィルタリングされた測定値はハンドオフについての決定をするのに用い得る。高速フィルタリングされた測定値は、アクセスポイントmのチャネル状態を判定するのに用いられ得る。高速フィルタリングされた測定値はまた、例えばフィルタ係数を選択するために、フィルタ応答を調整するのに用いられてもよい。単独の係数値は、高速で降下する(falling)パイロットを検出するには遅すぎるか、端末を別のWLANシステムにハンドオフするには速すぎることがある。2つのフィルタは、高速で変化するパイロットの正確な検出とハンドオフのための安定した測定との双方を達成し得る。一つの設計において、αfastについては一定の値が用いられ、αslowについては可変の値が用いられる。αslowの値は、高速フィルタリングされた測定値に基づいて判定され得る。一つの設計において、高速フィルタリングされた測定値は一組の閾値と比較され、複数の取り得るαslowの値のうちの一つが比較結果に基づいて選択される。高速フィルタリングされた測定値が弱い場合、より高速に適合させることが望ましいことがあるが、これは低速フィルタがより速い応答を有すべきであり、また、より大きな重み(又は、より小さなαslow値)が現在のRSSI測定に用いられるべきであることを意味する。逆に、より大きなαslowの値は、また従ってより低速のフィルタ応答は、強い高速フィルタリングされた測定値に用い得る。
【0106】
ハンドオフは、上述した任意の判定基準又は判定基準の任意の組み合わせによってトリガされ得る。低速フィルタリングされた測定値(2つのフィルタが用いられる場合)又は通常のフィルタリングされた測定値(単独のフィルタが用いられる場合)は、測定値の閾値と比較され、PERはPER閾値と比較され、及び/又は不正確に受信されたビーコンの数はビーコン閾値と比較され得る。フィルタリングされた測定値が測定値の閾値を下回る場合、PERがPER閾値を超える場合、及び/又は不正確に受信されたビーコンの数がビーコン閾値を超える場合、ハンドオフはトリガされ得る。
【0107】
ハンドオフの候補であるアクセスポイントのリストは保持され得る。これらのアクセスポイントは、サービスの質(QoS)の適合性(compatibility)、セキュリティの適合性、RSSI、過去の履歴等といった、種々の判定基準に基づいて選択され得る。アクセスポイントは、当該アクセスポイントがQoSと端末によって要求されるセキュリティとをサポートできる場合はハンドオフの候補となり得るが、さもなければ不適格とみなされ得る。RSSIは、ハンドオフ候補のアクセスポイントについて測定され得る。所与のアクセスポイントの過去の履歴は、当該アクセスポイントへのこれまでのハンドオフの成功率に関連し得る。最良のハンドオフ候補のアクセスポイントは、RSSI、過去の履歴等に基づいて選択されてもよい。例えば、測定基準又はスコア(score)は以下の様に定義され得る:
【数20】

【0108】
ここで、Srssi(m)、Shist(m)、Sqos(m)及びSsec(m)は、それぞれアクセスポイントmについてのRSSI、過去の履歴、QoS及びセキュリティのスコアであり、Krssi、Khist、Kqos及びKsecは、それぞれRSSI、過去の履歴、QoS及びセキュリティについての重みであり、Stotal(m)はアクセスポイントmの全体的なスコアである。
【0109】
QoSのスコア及びセキュリティのスコアは、各々0又は100であり得る。全体的なスコアは、QoSのスコア又はセキュリティのスコアが0の場合、0であり得る。RSSIスコアは、より高いRSSI測定値にはより大きな値が割り当てられ、逆もまた同様であれば、0から100まで変動し得る。過去の履歴のスコアは、ハンドオフの成功率に基づいていてもよい。アクセスポイントmに対するハンドオフの試みごとに、ハンドオフが成功なら100の値がフィルタ(例えば、ウィンドウサイズが50のEWMA)に供給され、ハンドオフが失敗なら0の値が供給され得る。アクセスポイントmへのハンドオフが所定の回数(例えば、50回)試みられていない場合、デフォルト値(例えば、50)を過去の履歴のスコアに用いてもよい。重みKrssi、Khist、Kqos及びKsecは任意の適当な値であってよく、例えば、各重みは4つのパラメータ全てに対して等しい重みを与えるべく25に等しくてもよい。(例えば、最良のスコアを有する)最良のアクセスポイントへのハンドオフは、ハンドオフがトリガされる度に試みられ得る。一つの設計において、最良のアクセスポイントについてのフィルタリングされた測定値(例えば、RSSIslow,i(m))が最小のRSSI閾値を超える場合はハンドオフが実行され、さもなければスキップされてもよい。別の設計において、最良のアクセスポイントへのハンドオフは、フィルタリングされた測定値に関わらず実行される。
【0110】
図9は、端末130の設計のブロック図を示すが、これはWLANシステムのアクセスポイントとWWAN(例えば、セルラーシステム)の基地局と通信することができる。送信パス上で、端末130によって送信されるべきデータは、符号器922によって処理され(例えば、フォーマットされ、符号化され、及びインタリーブされ)、更に変調器(Mod)924によって処理され(例えば、変調及びスクランブルされ)て、データチップが生成される。符号器922及び変調器924による処理は、データが送信される無線ネットワークの無線技術(例えば、802.11、cdma2000、GSM、UMTS等)に依存する。送信機(TMTR)932は、データチップを調整し(例えば、アナログに変換し、フィルタリングし、増幅し、また周波数アップコンバートし)、無線周波数(RF)出力信号を生成するが、これはアンテナ934を介して送信される。
【0111】
受信パス上で、WLANシステムのアクセスポイント及びWWANの基地局によって送信されるRF信号は、アンテナ934によって受信され、受信器(RCVR)936に供給される。受信器936は、受信されたRF信号を調整し(例えば、フィルタリングし、増幅し、周波数ダウンコンバートし、及びデジタル化し)、データサンプルを生成する。復調器(Demod)926は、データサンプルを処理し(例えば、デスクランブル及び復調し)て、シンボル推定値(symbol estimates)を取得する。復号器928は、シンボル推定値を処理し(例えば、デインタリーブ及び復号し)て、復号されたデータを取得する。復調器926及び復号器928による処理は、アクセスポイント又は基地局における変調器及び符号器による処理に対して補完的である。符号器922、変調器924、復調器926及び復号器928は、モデムプロセッサ920によって実施されてもよい。
【0112】
コントローラ/プロセッサ940は、端末130における種々の処理ユニットの動作を指示する。メモリ942は端末130のためのデータ及びプログラムコードを格納する。コントローラ/プロセッサ940は、図6の処理600、図7の処理700、図8の処理800、及び/又はWLANシステムのスキャニング及び選択のための他の処理を実施し得る。メモリ942は、図5に示される種々のリスト及びセット、スキャン結果等といった情報を格納し得る。メモリ942はまた、MCC値の表、関連付けられる国、及び、例えば周波数チャネル、出力レベル等、スキャニングに用いられる情報を格納し得る。
【0113】
本明細書に記載される技法は、種々の手段によって実施され得る。例えば、これらの技法は、ハードウェア、ファームウェア、ソフトウェア、又はこれらの組み合わせによって実施され得る。ハードウェアによる実施の場合、WLANシステムのスキャニング及び選択を実行するために用いられる処理ユニットは、1つ又は複数の特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブルロジックデバイス(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書に記載される機能を実行すべく設計された他の電子ユニット、コンピュータ、又はこれらの組み合わせの内部で実施され得る。
【0114】
ファームウェア及び/又はソフトウェアによる実施の場合、該技法は本明細書に記載される機能を実行するモジュール(例えば、プロシージャ、関数等)を用いて実施され得る。ファームウェア及び/又はソフトウェアのコードは、メモリ(例えば、図9のメモリ942)に格納され、プロセッサ(例えば、プロセッサ940)によって実行され得る。メモリは、プロセッサ内部に実現されても、プロセッサの外部に実現されてもよい。
【0115】
本明細書に記載される技法を実施する装置は、スタンドアロンのユニットであっても、デバイスの一部であってもよい。デバイスは、(i)スタンドアロンの集積回路(IC)、(ii)データ及び/又は命令を格納するためのメモリICを備え得る1つ又は複数のICのセット、(iii)モバイルステーションモデム(MSM)といったASIC、(iv)他のデバイス内部に埋め込まれ得るモジュール、(v)携帯電話、無線デバイス、ハンドセット、又はモバイルユニット、(vi)その他、であってもよい。
【0116】
先行する開示の記載は、如何なる当業者も本開示を作成又は使用することを可能にするために提供される。該開示に対する種々の変形は、当業者には容易に明白となるであろうし、本明細書に定義される一般的な原理は、本開示の範囲又は精神から逸脱することなく他のバリエーションに適用し得る。従って、本開示は、本明細書に記載される例に限定されることを意図するものではないが、本明細書に開示される新規な特徴及び原理と合致する最も広範な範囲に一致すべきものである。

【特許請求の範囲】
【請求項1】
複数回のスキャン反復を実行してアクセスポイントを検出し、前記複数回のスキャン反復の結果に基づいてアソシエーションのための候補のアクセスポイントを識別するように構成されたプロセッサと、
前記プロセッサに結合されるメモリと
を備える、装置。
【請求項2】
前記プロセッサは、少なくとも1つの無線ローカルエリアネットワーク(WLAN)システムを選択し、前記少なくとも1つのWLANシステムのアクセスポイントを前記複数回のスキャン反復で検出するように構成される、請求項1の装置。
【請求項3】
前記プロセッサは、前記少なくとも1つのWLANシステムを前記装置に設定されるWLANシステムのリストから選択するように構成される、請求項2記載の装置。
【請求項4】
前記プロセッサは、同一の優先レベルを有する前記少なくとも1つのWLANシステムを、前記装置に設定されるWLANシステムのリストから選択するように構成される、請求項2記載の装置。
【請求項5】
前記プロセッサは、前記複数回のスキャン反復の各々についてスキャンタイプを選択し、各スキャン反復を当該スキャン反復について選択された前記スキャンタイプに基づいて実行するように構成される、請求項1記載の装置。
【請求項6】
各スキャン反復について前記選択されたスキャンタイプは、パッシブスキャン又はアクティブスキャンを示す、請求項5記載の装置。
【請求項7】
各スキャン反復について前記選択されたスキャンタイプは、スキャンすべき少なくとも1つの周波数チャネルを示す、請求項5記載の装置。
【請求項8】
前記プロセッサは、前記装置の現在の位置についてアクティブスキャンが許可される場合、アクティブスキャンを前記複数回のスキャン反復のうちの少なくとも1回について実行し、前記現在の位置についてアクティブスキャンが許可されない場合、前記複数回のスキャン反復の全てについてパッシブスキャンを実行するように構成される、請求項1記載の装置。
【請求項9】
前記プロセッサは、前記現在の位置についてアクティブスキャンが許可されるかどうかを、アクセスポイントから受信されるビーコンフレームに基づいて判定するように構成される、請求項8記載の装置。
【請求項10】
前記プロセッサは、前記現在の位置についてアクティブスキャンが許可されるかどうかを、セルラーネットワークの基地局から受信される送信に基づいて判定するように構成される、請求項8記載の装置。
【請求項11】
各スキャン反復について、前記プロセッサは、受信されるアクセスポイントについて信号強度測定値を取得し、検出されるアクセスポイントを前記受信されるアクセスポイントについての前記信号強度測定値に基づいて識別するように構成される、請求項1記載の装置。
【請求項12】
各スキャン反復について、前記プロセッサは、受信されるアクセスポイントを、前記スキャン反復で前記受信されるアクセスポイントについて取得される信号強度測定値が検出閾値を超える場合、検出されたアクセスポイントとして宣言するように構成される、請求項11記載の装置。
【請求項13】
各スキャン反復について、前記プロセッサは、現在及び先立つスキャン反復について受信されるアクセスポイントごとに取得される信号強度測定値をフィルタリングし、受信されるアクセスポイントを、前記受信されるアクセスポイントについてのフィルタリングされた信号強度測定値が検出閾値を超える場合、検出されるアクセスポイントとして宣言するように構成される、請求項11記載の装置。
【請求項14】
各スキャン反復について、前記プロセッサは、前記スキャン反復について可変の検出閾値を判定し、前記検出されたアクセスポイントを前記受信されるアクセスポイントについての前記信号強度測定値と前記可変の検出閾値とに基づいて識別するように構成される、請求項11記載の装置。
【請求項15】
前記プロセッサは、信号強度測定値を前記複数回のスキャン反復で検出されるアクセスポイントについて取得し、前記候補のアクセスポイントを前記検出されるアクセスポイントについての前記信号強度測定値に基づいて識別するように構成される、請求項1記載の装置。
【請求項16】
前記プロセッサは、検出されるアクセスポイントを、前記検出されるアクセスポイントについて取得される信号強度測定値が少なくとも所定の回数のスキャン反復で検出閾値を超える場合、候補のアクセスポイントとして宣言するように構成される、請求項15記載の装置。
【請求項17】
前記プロセッサは、前記複数回のスキャン反復で、検出されるアクセスポイントごとに取得される信号強度測定値をフィルタリングし、検出されるアクセスポイントを、前記検出されるアクセスポイントについてのフィルタリングされた信号強度閾値が選択閾値を超える場合、候補のアクセスポイントとして宣言するように構成される、請求項15記載の装置。
【請求項18】
前記プロセッサは、検出されるアクセスポイントごとの可変の選択閾値を、前記検出されるアクセスポイントが充分に強い信号強度測定値を有するスキャン反復の回数に基づいて判定し、各検出されるアクセスポイントが候補のアクセスポイントであるかどうかを、前記検出されるアクセスポイントについての前記可変の選択閾値と信号強度測定値とに基づいて判定するように構成される、請求項15記載の装置。
【請求項19】
前記プロセッサは、可変のスキャン反復の回数を、前記検出されるアクセスポイントについての信号強度測定値に基づいて選択するように構成される、請求項1記載の装置。
【請求項20】
前記プロセッサは、スキャン反復間に特定の時間、待機するように構成される、請求項1記載の装置。
【請求項21】
前記プロセッサは、前記特定の時間を各スキャン反復後に削減するかどうかを、当該スキャン反復で取得される信号強度測定値に基づいて判定するように構成される、請求項20記載の装置。
【請求項22】
前記プロセッサは、前記特定の時間を、各スキャン反復後に、当該スキャン反復で取得される信号強度測定値に基づいて判定される時間だけ削減するように構成される、請求項20記載の装置。
【請求項23】
複数回のスキャン反復を実行してアクセスポイントを検出し、
アソシエーションのための候補のアクセスポイントを、前記複数回のスキャン反復の結果に基づいて識別する、
ことを含む、方法。
【請求項24】
前記複数回のスキャン反復を実行することは、
前記複数回のスキャン反復の各々についてスキャンタイプを選択し、
各スキャン反復を当該スキャン反復について選択された前記スキャンタイプに基づいて実行する
ことを含む、請求項23記載の方法。
【請求項25】
前記複数回のスキャン反復を実行することは、
端末の現在の位置についてアクティブスキャンが許可される場合、前記複数回のスキャン反復のうちの少なくとも1回についてアクティブスキャンを実行し、
前記現在の位置についてアクティブスキャンが許可されない場合、前記複数回のスキャン反復の全てについてパッシブスキャンを実行する
ことを含む、請求項23記載の方法。
【請求項26】
前記複数回のスキャン反復を実行することは、
受信されるアクセスポイントについて信号強度測定値を取得し、
検出されるアクセスポイントを、前記受信されるアクセスポイントについての前記信号強度測定値に基づいて識別する、
ことを含む、請求項23記載の方法。
【請求項27】
前記候補のアクセスポイントを識別することは、
前記複数回のスキャン反復で検出されたアクセスポイントについての信号強度測定値を取得し、
前記候補のアクセスポイントを前記検出されたアクセスポイントについての前記信号強度測定値に基づいて識別する、
ことを含む、請求項23記載の方法。
【請求項28】
複数回のスキャン反復を実行してアクセスポイントを検出する手段と、
前記複数回のスキャン反復の結果に基づいてアソシエーションのための候補のアクセスポイントを識別する手段と、
を備える、装置。
【請求項29】
前記複数回のスキャン反復を実行する手段は、
前記複数回のスキャン反復の各々についてスキャンタイプを選択する手段と、
各スキャン反復を当該スキャン反復について選択された前記スキャンタイプに基づいて実行する手段と、
を備える、請求項28記載の装置。
【請求項30】
前記複数回のスキャン反復を実行する手段は、
受信されるアクセスポイントについての信号強度測定値を取得する手段と、
検出されるアクセスポイントを前記受信されるアクセスポイントについての前記信号強度測定値に基づいて識別する手段と、
を備える、請求項28記載の装置。
【請求項31】
前記候補のアクセスポイントを識別する手段は、
前記複数回のスキャン反復で検出されるアクセスポイントについての信号強度測定値を取得する手段と、
前記候補のアクセスポイントを前記検出されるアクセスポイントについての前記信号強度測定値に基づいて識別する手段と、
を備える、請求項28記載の装置。
【請求項32】
複数回のスキャン反復を実行してアクセスポイントを検出し、
前記複数回のスキャン反復の結果に基づいてアソシエーションのための候補のアクセスポイントを識別する
ための命令を格納する、プロセッサ読み取り可能な媒体。
【請求項33】
前記複数回のスキャン反復の各々についてスキャンタイプを選択し、
各スキャン反復を当該スキャン反復について選択された前記スキャンタイプに基づいて実行する
ための命令を更に格納する、請求項32記載のプロセッサ読み取り可能な媒体。
【請求項34】
受信されるアクセスポイントについての信号強度測定値を取得し、
検出されるアクセスポイントを前記受信されるアクセスポイントについての前記信号強度測定値に基づいて識別する
ための命令を更に格納する、請求項32記載のプロセッサ読み取り可能な媒体。
【請求項35】
前記複数回のスキャン反復で検出されるアクセスポイントについて信号強度測定値を取得し、
前記候補のアクセスポイントを前記検出されるアクセスポイントについての前記信号強度測定値に基づいて識別する
ための命令を更に格納する、請求項32記載のプロセッサ読み取り可能な媒体。
【請求項36】
アクセスポイントについての信号強度測定値を取得し、前記信号強度測定値を第1のフィルタに基づいてフィルタリングして第1のフィルタリングされた値を取得し、前記信号強度測定値を第2のフィルタに基づいてフィルタリングして第2のフィルタリングされた値を取得し、前記第1のフィルタリングされた値に基づいてハンドオフを実行するかどうかを決定し、前記第2のフィルタリングされた値に基づいてチャネル状態を確認するように構成されたプロセッサと、
前記プロセッサに結合されるメモリと、
を備える、装置。
【請求項37】
前記第1のフィルタは前記第2のフィルタよりも遅い、請求項36記載の装置。
【請求項38】
前記プロセッサは、前記第1のフィルタの応答を前記第2のフィルタリングされた値に基づいて調整するように構成される、請求項36記載の装置。
【請求項39】
前記プロセッサは、前記第2のフィルタリングされた値が閾値未満である場合、前記第1のフィルタの帯域幅を増加させ、前記第2のフィルタリングされた値が前記閾値よりも大きい場合、前記第1のフィルタの帯域幅を削減させる、請求項36記載の装置。
【請求項40】
前記第1及び第2のフィルタは、異なる係数を有する2つの無限インパルス応答(IIR)フィルタである、請求項36記載の装置。
【請求項41】
アクセスポイントについて信号強度測定値を取得し、
前記信号強度測定値を第1のフィルタに基づいてフィルタリングして、第1のフィルタリングされた値を取得し、
前記信号強度測定値を第2のフィルタに基づいてフィルタリングして、第2のフィルタリングされた値を取得し、
ハンドオフを実行するかどうかを、前記第1のフィルタリングされた値に基づいて決定し、
チャネル状態を前記第2のフィルタリングされた値に基づいて確認する
ことを含む、方法。
【請求項42】
前記第1のフィルタの応答を前記第2のフィルタリングされた値に基づいて調整する、
ことを更に含む、請求項41記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−31193(P2013−31193A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−185588(P2012−185588)
【出願日】平成24年8月24日(2012.8.24)
【分割の表示】特願2009−520925(P2009−520925)の分割
【原出願日】平成19年7月13日(2007.7.13)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.WCDMA
【出願人】(595020643)クゥアルコム・インコーポレイテッド (7,166)
【氏名又は名称原語表記】QUALCOMM INCORPORATED
【Fターム(参考)】