説明

次世代パワーデバイス技術研究組合により出願された特許

31 - 40 / 46


【課題】MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させ、かつ、チップサイズの増加を抑制した、窒化物系半導体装置を提供することができる、窒化物系半導体装置を提供することを目的とする。
【解決手段】ショットキー電極30が、ソース電極24とドレイン電極26とが対向する領域の、ソース電極24とドレイン電極26とが対向する方向と略直交する方向にゲート電極28と並んで形成されている。ショットキー電極30は、AlGaN層20とショットキー接合されており、ソース電極24に電気的に接続されている。 (もっと読む)


【課題】窒化物半導体層の表面に形成したオーミック電極のコンタクト抵抗を低減した窒化物半導体装置およびその製造方法を提供すること。
【解決手段】第一の窒化物半導体層3と、第一の窒化物半導体層3の上に形成された第二の窒化物半導体層4と、第二の窒化物半導体層4の表面に形成されるオーミック電極としてのカソード電極6と、を備え、第二の窒化物半導体層4の表面におけるカソード電極6が形成される領域に、凹凸構造を有するコンタクト部4aが形成され、このコンタクト部4aの表面粗さ(RMS)が0.25nm以上5nm以下であり、かつコンタクト部4aの表面の酸素の組成比率が5at.%以下に設定されている。 (もっと読む)


【課題】導通抵抗が低く、かつ高い電圧を維持すると共に、ゲート絶縁膜の破壊を抑制したゲート信頼性の高い窒化物系半導体装置を提供することを目的とする。
【解決手段】AlGaN層20上に形成されたショットキー電極22が、正孔をソース電極30に流す(輸送する)ため、ゲート絶縁膜24、特にトレンチ部23のコーナー部に集中して電圧が印加されることがなくなる。 (もっと読む)


【課題】長期信頼性が高い窒化物系化合物半導体および窒化物系化合物半導体素子を提供すること。
【解決手段】アルミニウム原子、ガリウム原子、インジウム原子およびボロン原子から選択される1以上のIII族原子と、窒素原子とを含む窒化物系化合物半導体であって、添加物としてドープした金属原子とガリウム格子間原子とが複合体を形成している。好ましくは、前記添加物は鉄またはニッケルである。好ましくは、前記添加物のドープ濃度は、前記ガリウム格子間原子の濃度と同程度である。 (もっと読む)


【課題】長期信頼性が高い窒化物系化合物半導体、窒化物系化合物半導体素子、およびその製造方法を提供すること。
【解決手段】アルミニウム原子、ガリウム原子、インジウム原子およびボロン原子から選択される、少なくともガリウム原子を含むIII族原子と、窒素原子とを含む窒化物系化合物半導体であって、前記III族原子の格子間原子を拡散させる拡散促進物質を添加物としてドープしたものである。好ましくは、前記拡散促進物質はリン、砒素、またはアンチモンである。 (もっと読む)


【課題】長期信頼性が高い窒化物系化合物半導体および窒化物系化合物半導体素子を提供すること。
【解決手段】アルミニウム原子、ガリウム原子、インジウム原子およびボロン原子から選択される1以上のIII族原子と、窒素原子とを含む窒化物系化合物半導体であって、添加物としてリチウム、銅、銀、または金を含む。好ましくは、前記添加物のドープ濃度は、ガリウム格子間原子の濃度と同程度である。好ましくは、前記添加物のドープ濃度は、5×1016cm−3〜5×1018cm−3である。 (もっと読む)


【課題】逆方向のリーク特性を向上した窒化物系半導体材料を用いたショットキーダイオードを提供すること。
【解決手段】シリコン基板2の表面側に、バッファ層3、GaN層4、AlGaN層5が積層され、これら半導体層における能動領域内のAlGaN層5の上にAlGaN層5に対してオーミック接触するカソード電極6と、AlGaN層5に対してショットキー接触するアノード電極7とが形成され、AlGaN層5の周縁部が除去されてGaN層4が露出した段差部5Aが周回して形成されている。段差部5AのGaN層4の上には、半導体層の能動領域を囲むように、GaN層4に対してショットキー接触する囲い込み電極7Aが形成されている。ここで、囲い込み電極7Aは、アノード電極7と同電位に設定されている。 (もっと読む)


【課題】オン抵抗が低く耐圧および信頼性が高い電界効果トランジスタを提供する。
【解決手段】基板1上に形成されたキャリア走行層3と、前記キャリア走行層上に形成され前記キャリア走行層よりもバンドギャップエネルギーが高いキャリア供給層4a、4bと、前記キャリア供給層から前記キャリア走行層の表面または内部に到る深さまで形成されたリセス部5と、前記キャリア供給層上に形成されたドレイン電極11と、前記リセス部に形成され、前記ドレイン電極側のキャリア供給層と重畳するように延設したゲート電極7と、前記リセス部の底面と前記ゲート電極との間に形成された第1絶縁膜6と、前記ゲート電極と前記ドレイン電極側のキャリア供給層との間に形成され前記第1絶縁膜よりも誘電率が高い第2絶縁膜8aとを備える。 (もっと読む)


【課題】MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させた、窒化物系半導体装置を提供することを目的とする。
【解決手段】ドレイン電極26とゲート電極28との間に設けられたSBD金属電極30がAlGaN層20とショットキー接合されている。また、SBD金属電極30とソース電極24とが接続されており、電気的に短絡している。これにより、ゲート電極28にオフ信号が入ると、MOSFET部32がオフ状態となり、MOSFET部32のドレイン側の電圧がドレイン電極26の電圧値と近くなる。ドレイン電極26の電圧が上昇すると、SBD金属電極30の電圧値が、MOSFET部32のドレイン側の電圧値よりも低くなるため、SBD金属電極30によってMOSFET部32のドレイン側とドレイン電極26とが電気的に切断される。 (もっと読む)


【課題】高い電子移動度と耐圧特性を両立する窒化物半導体の炭素ドーピング方法を提供すること。
【解決手段】窒化物半導体に中性子線を照射する工程を有する窒化物半導体の炭素ドーピング方法である。そして、当該炭素ドーピング方法を利用した、窒化物半導体及びその製造方法、並びに半導体素子及びその製造方法である。具体的には、例えば、シリコン基板1上に、バッファ層3、GaN層4、AlGaN層5を形成した後、中性子線を照射して、GaN層4に炭素ドーピングを行い、その後、ゲート電極7G、ソース電極7S、ドレイン電極7Dを形成して、半導体素子を得る。 (もっと読む)


31 - 40 / 46