説明

Fターム[2H137HA12]の内容

ライトガイドの光学的結合 (62,150) | 目的、効果 (2,478) | 発光源等とのモードフィールド整合 (89)

Fターム[2H137HA12]に分類される特許

81 - 89 / 89


通常の光部品で要求される反射損失及び結合効率の仕様を十分に満たすことのできる実用的な光ファイバ端末を提供する。 中心部のコア101a及びその外周部のクラッド101bを有する光ファイバ101の端面に、前記コアと略同一で均一な屈折率を有する材料よりなるコアレスファイバ102、103の一端面を接合してなる光ファイバ端末において、光ファイバのコアを伝送してきた光がコアレスファイバ内で拡がりコアレスファイバの他端面から外部へ出射するときのビーム径がコアレスファイバの外径以内となるようにコアレスファイバの光路長を1mm未満に設定し、コアレスファイバ102、103の他端面を光ファイバ101の光軸に対して垂直な面とした。
(もっと読む)


【課題】光通信や光情報処理に用いる光モジュールに関し、光導波路構造体を構成するクラッドの両曲面にコア部を形成することで光導波路のアレイ化を図り、光モジュール形成時に必要とされる高い位置合わせ精度を確保するとともに、良好な組み立て性を有する光導波路構造体および光モジュールを提供する。
【解決手段】一方の面から入射された複数の入射光を、進行方向を変えて他方の面から出射させる光導波路構造体15或いは該光導波路構造体を含む光モジュールであって、光の進行方向に沿って表裏両面に溝が設けられた第1のクラッド16と、前記第1のクラッドの屈折率よりも高い屈折率を有する透明材料からなり、少なくとも前記溝に埋設されるコア17と、少なくとも前記コア17の表出面を含む面を覆い、前記第1のクラッドと一体化された状態で前記第1のクラッドの表裏面上にそれぞれ設けられた第2のクラッド18および第3のクラッド19とを有する。 (もっと読む)


フェムト秒レーザを用いて光ファイバ(1)または導波路上にレンズを作製する方法。レンズは、熱を適用することによってさらに滑らかにすることができる。
(もっと読む)


【課題】 LDから光ファイバへの結合効率を高くでき、かつ、光ファイバから出射される光のフォトダイオードにおける受光効率が高くできる光送受信モジュールを提供する。
【解決手段】 光ファイバに接続され、その光ファイバを介して第1の光を送信し第2の光を受信する光送受信モジュールであって、第1の光を出射する光源と、第2の光を受光する受光部と、第1の光と第2の光のうちの少なくとも一方の進行方向を変化させる回折素子と、光源から出射されて回折素子を介して入射される第1の光を光ファイバの光入出力面に集光し、光ファイバから出射される第2の光を回折素子を介して受光部に集光する第1レンズと、光源から出射される第1の光を、そのビームの広がりを抑制して回折素子を介して第1レンズに入射する第2レンズを含む。 (もっと読む)


【解決手段】テーパ導波路光学モード変換器(20)は、平面基板構造(16)上に形成されたテーパコアを含む。コア(21)に垂直方向のテーパを付けるために、コアの上面にステップ(22)がエッチングされる。段は、テーパ導波路の光学軸に沿って、所望の光ファイバの光学モード特性を所望の平面導波路の光学モード特性に変換するように選択された深さと長さとを有する。コアは、二次元テーパ導波路を形成するために水平方向にテーパを付けられることができる。テーパ導波路は、光ファイバとPLC導波路との間で光結合損失を減少させる平面光波回路(PLC)に一体的に含まれることができる。 (もっと読む)


【課題】偏光無依存型アイソレータにおいて、複屈折結晶によるビームシフトを補正する構造。角度調整が簡便で、レンズ特性が変動せず、反射減衰量も充分確保できる方法を提案する。
【解決手段】シングルモードファイバ6A、グレイデッドインデックスファイバ7A、コアレスファイバ8、グレイデッドインデックスファイバ7B、シングルモードファイバ6Bをこの順番に接続し光ファイバ体9とした。その後基体12に前記光ファイバ体9を接着固定し、その後、基体12ごと、光ファイバ体9のコアレスファイバ8の部分を分断し溝部10を形成した後に溝部10内にグレイデッドインデックスファイバ7Aのコアレスファイバ側端面とグレイデッドインデックスファイバ7Bのコアレスファイバ8側端面のいずれにも光結合するように光アイソレータ素子1を光軸に対して傾斜させたことを特徴とする (もっと読む)


【課題】保管や搬送などの取り扱いが容易なMFD変換アダプタを提供する。
【解決手段】一端側にプラグ部1pを有し他端側にレセプタクル部1rを有するハウジング1と、プラグ部1pからレセプタクル部1rに渡って貫通するフェルール2と、フェルール2に挿入されたMFD変換光ファイバ10とを具備する。MFD変換光ファイバ10は、モードフィールド径10.5μmの光ファイバとモードフィールド径6.5μmの光ファイバとを融着し、接続部を熱処理してモードフィールド径の変化を滑らかにしたものである。
【効果】MFD変換光ファイバをフェルール中に挿入したため、保管時や運搬時などにMFD変換光ファイバが折れることはない。2つのコネクタ部がハウジングで一体化されており、全体として小型になる。よって、保管時や運搬時などの取り扱いが容易になる。 (もっと読む)


光子放出デバイス(100)が、放射線を発生するための複数の固体放射線源(104)を含む。固体放射線源は、アレイパターンで配置することができる。対応するアレイパターンで配列された集光装置(120)が、対応する固体放射線源から放射線を受ける。集中された放射線は複数の光導波路(130)によって受け取られる。この複数の光導波路(130)もまた対応するアレイパターンで配列されている。各光導波路は、放射線を受けるための第1の端部(132)と、放射線を出力するための第2の端部(133)とを含む。支持構造(150)が、第1の端部と第2の端部との間で複数の光導波路を安定化するために設けられる。光子放出デバイスは、道路照明、スポットライティング、バックライティング、画像投影、および放射線活性化硬化を含むさまざまな用途における放電ランプデバイスの取替品を提供することができる。
(もっと読む)


ファイバレンズは、多モードファイバおよび多モードファイバの一端に配置される屈折レンズを備える。屈折レンズは、多モードファイバからのビームを回折限界スポットに集束する。一実施形態において、屈折率分布型レンズは、多モードファイバと屈折レンズとの間に挟まれる。一実施形態において、屈折率分布型レンズおよび屈折レンズの組合せにより、極度のアナモルフィックレンズ特性を可能にする。

(もっと読む)


81 - 89 / 89