説明

Fターム[4C061TT13]の内容

内視鏡 (60,615) | 特徴点(映像、画像の調整、補正) (764) | 色に応じた補正 (87)

Fターム[4C061TT13]に分類される特許

1 - 20 / 87


【課題】粘液等が赤色にならないように、表示する画像の色調を調節する。
【解決手段】体腔内の生体組織に複数色を含む照明光を照射する照明装置14と、照明光のもとで生体組織を撮像するとともに、複数色のカラーフィルタが画素毎に割り当てられ、撮像信号として各色の色信号を出力するCCD21と、色信号のうち、2色の色信号の比(R/G)を算出するR/G算出部60と、色信号をカラーフィルタと異なる色の画素に割り当てて表示画像を生成する表示画像生成手段であり、R/G算出部60が算出した比R/Gの値に基づいて粘液と血液を判別し、表示画像に粘液が写し出されているときに、粘液が所定色になるように色調を調節した表示画像を生成するDSP52と、を備える。 (もっと読む)


【課題】被写体距離などの観察条件が内視鏡診断中に変化したとしても、波長が異なる複数種類の照明光を照射したときに生ずる配光分布の違いを確実に補正する。
【解決手段】被検体からの反射光等は、波長可変素子によって、酸化ヘモグロビン(HbO2)と還元ヘモグロビン(Hb)の吸光係数に違いがある波長を有する狭帯域光に分光されるとともに、酸化ヘモグロビン(HbO2)と還元ヘモグロビン(Hb)の吸光係数が等しい波長を有する狭帯域光に分光される。分光毎に撮像素子で撮像して3以上の画像信号を得る。これら画像信号のうち、酸素飽和度画像の生成に用いられる画像信号は、各狭帯域光間の配光分布の違いによる信号分布の違いが無くなるように補正される。補正は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が等しい波長の画像信号から得られる補正データを用いて行われるため、画像信号に乗っている酸素飽和度の情報を消すことが無い。 (もっと読む)


【課題】酸素飽和度の情報をその正確性に応じて適切に表示する。
【解決手段】血中ヘモグロビンの酸素飽和度の変化により吸光係数が変化する波長範囲を有する第1の照明光を被検体内に照射し、その反射光等を撮像することにより第1の画像信号(フレーム1)を取得する。波長範囲が広帯域に及ぶ第2の照明光を体腔内に照射し、その反射光等を撮像することにより第2の画像信号(フレーム2)を取得する。第1及び第2の画像信号から酸素飽和度を算出する。第1または第2の画像信号から酸素飽和度の信頼度を算出する。酸素飽和度と関連付けられた色差信号を記憶するカラーテーブルから、算出した酸素飽和度に対応する色差信号を求める。色差信号の信号値を信頼度に応じて変化させ、その変化させた色差信号を用いて酸素飽和度画像を生成する。生成した酸素飽和度画像は、表示装置に表示される。 (もっと読む)


【課題】内視鏡装置によって撮影した画像において、狭帯域光を用いる特殊光観察画像と、白色光を用いる通常光観察画像との、両者の特性を備えた画像を表示できる画像処理装置を提供する。
【解決手段】白色光で撮影した通常光観察画像、および、この通常光観察画像と同時に所定の狭帯域光で撮影した特殊光観察画像を取得する画像取得手段と、画像取得手段が取得した特殊光観察画像に所定の処理を施し、所定の処理によって生成した特殊光観察画像の情報を、通常光観察画像に付与する画像処理手段とを有することにより、前記課題を解決する。 (もっと読む)


【課題】光学系部材の劣化に対して、高い色再現性を維持する。
【解決手段】画像処理部30は、カラーマトリックス処理回路32およびゲイン算出回路35を有する。ホワイトバランス初期化処理時に画像処理部30は撮像素子43から元画像信号を受信する。カラーマトリックス処理回路32は元画像信号を第1のマトリックスを用いて色処理画像信号に変換する。ゲイン算出回路35は色処理画像信号に基づいてR、Bゲインを算出する。システムコントローラ25はR、Bゲインが第1の範囲内であるかを判別する。第1の範囲外である場合に別のマトリックスを用いて元画像信号を色処理画像信号に変換する。再度、R、Bゲインを算出する。通常観察時、更新されたマトリックスおよびR、Bゲインを用いてカラーバランスを調整する。 (もっと読む)


【課題】位置の異なる2つの照明窓から照明光を照射して撮像された画像信号に現れる配光分布の違いを正しく補正することができ、正確な狭帯域光画像を得ることができる内視鏡診断装置を提供する。
【解決手段】内視鏡診断装置は、異なる位置に配置された第1および第2の照明窓を有し、第1の照明光を第1の照明窓から照射して撮像した第1の画像の画像信号、第3の照明光を内視鏡スコープの先端部に配置された蛍光体に照射することによって、蛍光体から発せられる疑似白色光である第2の照明光を第2の照明窓から照射して撮像した第2の画像の画像信号、および、第3の照明光を第1の照明窓からもしくは第1の照明光を第2の照明窓から照射して撮像した第3の画像の画像信号を取得する内視鏡装置と、第1および第2の画像の画像信号に現れる第1および第2の照明光の配光分布の違いを、第3の画像の画像信号を用いて補正する配光分布補正手段とを備える。 (もっと読む)


【課題】内視鏡の較正にかかる使用者の手間を低減する内視鏡システムを提供する。
【解決手段】常時もしくは、内視鏡の先端撮影部を被検体に挿入して撮影を行なっている間に、内視鏡の撮像素子が撮影した画像を取得し、この画像に高域通過フィルタを掛けて検出した高周波成分のデータを用いて、感度ムラ補正パラメータを生成して記憶手段に供給し、記憶手段が、この供給された感度ムラ補正パラメータを記憶することにより、前記課題を解決する。 (もっと読む)


【課題】狭帯域光観察時等の特殊光を用いた記録画像であっても、簡単に通常観察時の画像の色調に変換して表示でき、これにより、画像間の比較や各種画像処理の適用が可能となり、内視鏡診断の精度を向上できる内視鏡画像表示装置を提供する。
【解決手段】内視鏡から出力される撮像画像を記録した撮像画像データを読み出し、撮像画像を再生表示する内視鏡画像表示装置であって、撮像画像データは複数の基本色成分に対する強度情報を有している。この撮像画像データの特定色成分の強度を選択的に低減させる強度変更手段を備えた。内視鏡から出力される撮像画像が記録された撮像画像データを読み出し、撮像画像を再生表示する内視鏡画像表示装置であって、撮像画像データの特定色成分の強度を選択的に低減させる強度変更手段を備えた。 (もっと読む)


【課題】通常観察においても、特殊光観察においても、操作者が撮像画像を確認しつつ意図的に照射光量を調整する必要なく、表層微細血管等の生体の構造・成分の観察に関して、撮像距離に限らず、常に、明るくかつ色味が安定した撮像画像を得ることができる内視鏡装置を提供する。
【解決手段】狭帯域光を出射する第1の光源部と、広帯域光を出射する第2の光源部と、第1の光源部及び第2の光源部から出射、並びに出射光量を制御する光源制御部と、被写体からの戻り光により撮像画像を撮像する撮像手段と、撮影光量を算出する光量算出手段と、第1の光源部及び第2の光源部からの出射光量の割合を算出する光量割合算出手段と、所定の画像処理を施す画像処理手段と、を有し、光源制御部は、撮影光量に応じて出射光量を制御し、画像処理手段は、出射光量の割合に応じて、撮影画像の色味を調整するための画像処理条件を変更することにより、上記課題を解決する。 (もっと読む)


【課題】通常観察をする通常光モードから特殊光観察する狭帯域光モードに切り替える際に、狭帯域光が安定するまで立ち上がっていない間においても、ユーザにとって不利益を生じさせることない、表層組織の微細血管や微細構造の観察をするために適切な画像を表示し、ユーザに提供することができる内視鏡システムを提供する。
【解決手段】キャリブレーション部は、第1モードから第2モードに切り替える際に、1モードにおいて、撮影対象を第1光源部からの第1出射光を用いて撮像部で撮像して得られた第1撮影画像情報を用いて分光推定された前記撮影対象の分光反射率データと、第2モードに切り替えて、撮影対象を少なくとも第2光源部からの第2出射光を用いて撮像部で撮像して得られた第2撮影画像情報から得られる青色(B)信号値及び緑色(G)信号値に基づいて第2光源部の発光強度を補正することにより、上記課題を解決する。 (もっと読む)


【課題】通常観察をする通常光モードから特殊光観察する狭帯域光モードに切り替える際に、狭帯域光が安定するまで立ち上がっていない間においても、ユーザにとって不利益を生じさせることない、表層組織の微細血管や微細構造の観察をするために適切な画像を表示し、ユーザに提供することができる内視鏡システムを提供する。
【解決手段】第1光源部を用いて撮像部で撮像し、得られた第1撮影画像情報に第1画像処理を施す第1モードと、第1光源部と異なる第2光源部を少なくとも用いて撮像部で撮像し、得られた第2撮影画像情報に、第1画像処理と異なる第2画像処理を施す第2モードと、を切替制御するモード切替制御部を有し、モード切替制御部は、第1モードから第2モードに切り替える際に、第2光源部の時間的応答特性に応じて、画像処理部における第1画像処理から第2画像処理への画像処理の切替タイミングを制御することにより、上記課題を解決する。 (もっと読む)


【課題】異常なスコープ情報を読込んだ場合でも、内視鏡画像の劣化を抑制して、十分な画質の内視鏡画像を出力する。
【解決手段】 内視鏡システムは、内視鏡装置とビデオプロセッサとを具備し、内視鏡装置は、内視鏡装置に固有なスコープ情報を格納するメモリと、スコープ情報をメモリから読出してビデオプロセッサに送信する送信部と、具備し、ビデオプロセッサは、スコープ情報が正常に受信されたか否かの通信異常を判定する第1の判定部と、受信されたスコープ情報にデータ異常が生じているか否かを判定する第2の判定部と、映像処理設定初期パラメータを記憶する初期値メモリと、第1及び第2の判定部の判定結果に基づいて、映像処理設定パラメータとして、スコープ情報に基づく映像処理設定パラメータを設定するか又は初期値メモリに記憶された映像処理設定初期パラメータを設定する制御部と、を具備したことを特徴とする。 (もっと読む)


【課題】レンズ特性の異なるカメラによって取得された蛍光画像と照射光画像とを用いて、蛍光画像を精度よく規格化し、定量性の高い蛍光観察を行う。
【解決手段】被写体Aに照明光および励起光を照射する照明部3と、励起光の照射により被写体Aにおいて発生した蛍光を撮影し蛍光画像を取得する蛍光画像取得部16と、照明光の照射により被写体Aから戻る戻り光を撮影し戻り光画像を取得する戻り光画像取得部17と、これら画像取得部16,17に備えられる光学系14,15の配光特性に関する情報を記憶する配光特性情報記憶部21と、この配光特性に関する情報を用いて、蛍光画像および戻り光画像に含まれている配光特性を一致させるように、蛍光画像または戻り光画像の少なくとも一方を補正する画像補正部21と、補正後の蛍光画像および戻り光画像を用いて、蛍光画像を戻り光画像により規格化する画像規格化部22とを備える蛍光観察装置1を提供する。 (もっと読む)


【課題】内視鏡により特殊光観察を行う際に、観察対象や観察位置等の観察条件を変化させても、常に適正な輝度レベルの狭帯域光による観察画像を生成し、狭帯域光により得られる生体情報を明瞭に観察できるようにする。
【解決手段】白色照明光を出射する第1の光源部45と、狭帯域光を出射する第2の光源部47と、複数色の検出画素を有する撮像素子21により被観察領域を撮像する撮像部とを具備する内視鏡装置100において、被観察領域からの白色照明光による戻り光成分と狭帯域光による戻り光成分とを共に含む撮像画像信号を撮像部から出力させる。この撮像画像信号に基づいて、複数の基準色毎の撮像画像を生成する。生成した複数の撮像画像のうち、第2の光源部47からの狭帯域光による戻り光成分を最も多く含む第1の撮像画像に対して、第1の撮像画像の輝度レベルを他の基準色の撮像画像の輝度レベルとは独立して増減制御する。 (もっと読む)


【課題】常に安定してスペックル干渉のない画像が得られる内視鏡システムを提供する。
【解決手段】レーザ光のスペックルノイズが重畳した第1の基本色成分Bと、スペックルノイズを含まない第2の基本色成分Gとを含む撮像画像において、第1の基本色成分Bと第2の基本色成分Gとの差分情報からスペックルノイズ成分Bsを抽出し、抽出したスペックルノイズ成分Bsの量に基づいて、第1の基本色成分Bからスペックルノイズ成分Bsを除去してスペックルノイズのない良好な観察画像を得る。 (もっと読む)


【課題】場所によらず内視鏡画像の色の見えを一定に保つことを可能にする。
【解決手段】内視鏡プロセッサ20は第2の映像信号処理回路22b、メモリ23、およびマスク輝度生成回路27を有する。メモリ23は第1〜第4および第6〜第9の色の基準値を記憶する。マスク輝度設定モードにおいてマスク輝度生成回路27は周囲の照度、マスク画像の輝度、観察画像の白色の輝度、観察画像の白色の三刺激値、および第1〜第4および第6〜第9の色の三刺激値に基づいて、第1〜第4および第6〜第9の色の見え属性を算出する。マスク輝度生成回路27は第1〜第4および第6〜第9の色の見え属性が第1〜第4および第6〜第9の基準値に近付くように、マスク画像の輝度を補正する。第2の映像信号処理回路22bは補正された輝度のマスク画像を含む表示画像を作成する。 (もっと読む)


【課題】固体撮像素子で発生する漏れ込みによる画質の劣化を改善するのに好適な撮像装置を提供すること。
【解決手段】撮像装置を、カラーフィルタを持ち、被写体のカラー画像を撮像する固体撮像素子と、該固体撮像素子が出力する撮像信号を処理してモニタ表示可能なカラー画像を生成する画像生成部であって、該固体撮像素子の各画素が周辺画素に及ぼす光学的な又は電気的な混色による画素値変動を除去する画素値変動除去演算を所定の視感度補正処理前に行う画像生成部と、から構成した。 (もっと読む)


【課題】プロセッサおよび画像処理装置が、表示装置等に出力するための出力手段を共用することが可能な電子内視鏡システムを提供することを目的とする。
【解決手段】電子内視鏡システムであって、体内を撮影して画像信号を生成する電子内視鏡と、画像信号に第1の画像処理を施して、第1の映像信号を生成する第1の画像処理手段、および第1の映像信号をプロセッサに出力する映像信号出力手段を備える画像処理装置と、画像信号を画像処理装置に出力する画像信号出力手段、画像信号に第2の画像処理を施して、第2の映像信号を生成する第2の画像処理手段、および第1の映像信号または第2の映像信号のいずれかを表示装置に出力する表示出力手段を備えるプロセッサと、からなる構成とした。 (もっと読む)


【課題】レーザ光源と蛍光体を有する照明光学系及び撮像素子を有する撮像光学系を備えた内視鏡を使用する場合に、経年変化等に伴って生じる撮像画像の色調変化に対してユーザ側で行うメンテナンス作業を簡単化する。
【解決手段】蛍光体57を有する照明光学系及び撮像素子21を有する撮像光学系を備えた内視鏡11と、内視鏡11に接続される制御装置13とを具備する内視鏡システムであって、制御装置13が、蛍光体57を励起するための光を発生する半導体発光素子を有する光源部41と、予め定めた色補正情報を記憶した記憶部72と、撮像素子21から出力される画像信号を色補正情報に基づき演算処理して撮像画像データを生成する画像処理部73を備えており、蛍光体57及び半導体発光素子の少なくとも一方の光学特性を検出して、この検出された光学特性に基づいて記憶部72に記憶された色補正情報を校正する。 (もっと読む)


【課題】常にカラーバランスの良好な撮像画像が得られる内視鏡装置を提供する。
【解決手段】内視鏡挿入部19の先端に、撮像光学系及び照明光学系を備えた内視鏡11と、内視鏡11に接続され照明光学系に蛍光体57を発光させる励起光を少なくとも供給する光源部45,47、及び予め定めたカラー補正テーブル99により撮像素子21から出力される画像信号を補正して出力する画像処理部91を備えた制御手段43と、を具備する。制御手段43は、色度値が既知である複数のカラーパッチを含むカラーチャートを撮像素子21により撮像する。カラーチャートの撮像信号から、複数のカラーパッチに対する色度をそれぞれ求めて測定色度値とする。各カラーパッチの測定色度値が既知の色度値となるようにカラー補正テーブル99の内容を変更するキャリブレーション処理を実施する。 (もっと読む)


1 - 20 / 87