説明

Fターム[4K037EB09]の内容

薄鋼板の熱処理 (55,812) | 薄鋼板の鋼種、組織 (6,203) | Si上限 0.5%超 (1,138)

Fターム[4K037EB09]に分類される特許

1,121 - 1,138 / 1,138


【課題】亜鉛系めっき鋼材にて、焼き入れ後の成形品の耐食性を冷間成型品と同等以上とした、耐食性に優れた高強度焼き入れ成形体およびその製造方法を提供する。
【解決手段】耐食性に優れた高強度焼き入れ成形体は、焼き入れ後の成形体鋼材表面にZnを主成分としてFe:30質量%以下からなる層を30g/m以上含有している。合金化遅延機能および易酸化性機能を有するAl,Siを各々単独もしくは複合して0.15質量%以上含有する亜鉛めっき層を備えた亜鉛めっき鋼材を酸素0.1体積%以上の酸化雰囲気下で800℃以上950℃以下に加熱後、急冷して前記の焼き入れ成形体を製造する。 (もっと読む)


【課題】従来鋼より優れた深絞り成形性、張り出し成形性を有しつつ、かつ優れた材質均一性を有するTS:440MPa以上の高強度冷延鋼板およびその製造方法を提供する。
【解決手段】本発明の高強度冷延鋼板は、C:0.004〜0.01%、Mn:0.5〜2.5%、P:0.03〜0.10%、S:0.03%以下、N:0.01%以下を含有し、Si:1.0%以下、sol.Al:1.0%以下の一種または二種以上を0.15%≦Si+sol.Alで含有し、かつ、700≦785+40×Si-60×Mn+150×P+70×sol.Al≦800を満足し、さらに、Nb:0.045〜0.15%を1.3≦(Nb/93)/(C/12)≦3を満たす範囲で含有し、残部がFeおよび不可避的不純物からなる。また、特性に応じて、Ti:0.03%以下を1.3≦(Nb/93+Ti*/48)/(C/12)≦3を満たし含有することができる。 (もっと読む)


【課題】引張強度で980MPa以上の高強度を有するとともに均一かつ良好な曲げ性を備える高強度冷延鋼板の提供。
【解決手段】C:0.05〜0.20%、Si:0.1〜2.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.010%以下、Al:0.001〜0.20%及びN:0.020%以下を含有し、残部は鉄及び不純物からなる化学組成を有し、面積割合で95%以上のベイナイトを含み、かつ旧オーステナイトの粒径が20μm以下で、しかも、鋼板の幅方向の任意の3点における旧オーステナイトの粒径のうちの最大粒径と最小粒径の比が5.0以下である高強度冷延鋼板。 (もっと読む)


【課題】 形状凍結性に優れた高強度鋼板とその製造方法を提供する。
【解決手段】 フェライトまたはベイナイトを面積率で最大相とし、1/2板厚における板面の{001}<110>〜{223}<110>方位群のX線ランダム強度比の平均値が6.0以上で、かつ、これらの方位群の中で{112}<110>方位および{001}<110>方位のうちいずれか一方または両方のX線ランダム強度比が8.0以上であり、加えて、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.8以下で、かつ、径が15nm以下の化合物粒子の個数が全化合物粒子の個数の60%以上であることを特徴とする形状凍結性に優れた高強度鋼板。 (もっと読む)


【課題】優れた深絞り成形性を有し、かつ従来鋼より優れた耐二次加工脆性を示す高強度冷延鋼板およびその製造方法を提供する。
【解決手段】本発明の高強度冷延鋼板は、C:0.0003〜0.04%、Si:1.5%以下、Mn:0.4〜3%、P:0.15%以下、S:0.02%以下、sol.Al:0.1〜1%、N:0.01%以下を含有し、さらにNb:0.2%以下、Ti:0.2%以下のうち1種以上(もしくはNb:0.2%以下、Ti:0.2%以下、V:0.5%以下、Mo:0.5%以下のうち1種以上)を含有し、残部はFe及び不可避的不純物であり、0.6≦(Nb/93+0.8×Ti*/48)/(C/12)≦5(もしくは0.6≦(Nb/93+0.8×Ti*/48+0.3×V/51+0.3×Mo/96)/(C/12)≦5)とする。ただし、Ti*= Ti-48/14×N、Ti-48/14×N≦0のときはTi*=0。 (もっと読む)


【課題】 粗圧延時のスラブコーナー部近傍におけるスケール残りに起因する表面欠陥がなく、しかも製造コストも低い表面性状に優れた鋼板およびその製造方法を提供する。
【解決手段】 mass%で、C:0.1%以下、Si:1%以下、Mn:0.1〜2.5%、S:0.03%以下を含有し鋼板の表面粗さRzが10μm未満である鋼板。もしくは、mass%で、C:0.1%以下、Si:1%以下、Mn:0.1〜2.5%、S:0.03%以下を含有し、鋼板の表面粗さRzが10μm以上である領域の鋼板幅方向での幅が1mm未満であり、前記領域以外の領域の鋼板の表面粗さRzが10μm未満である鋼板。 (もっと読む)


【課題】 多段成型時の縦割れが発生せず高精度の最終製品形状に成型できる深絞り加工品を提供する。
【解決手段】 本発明は、フェライト系ステンレス鋼板を用いた多段成型加工時の縦割れを防止するため、成分、表面粗さを調整することにより、成型加工時の金型と材料間の潤滑状態を良好にすることにより、縦割れの発生を防止する。また、加工品の用途として、海浜環境における発銹を防止するため塗装を用いる際には、材料の表面粗さが適正であるために、材料と塗料の密着性が非常に高くなり、下地塗装なしでの塗装を可能として、発銹を防止するフェライト系ステンレス鋼板の加工品を提供するものである。 (もっと読む)


【課題】 加工性が良好な素材から作製され、湿潤環境下での疲労特性に優れた自動車用部材を提供する。
【解決手段】 完全非時効型の深絞り用冷延鋼板を素材とする自動車用部材である。冷延鋼板は、C:0.001〜0.015質量%,Si:1.5質量%以下,Mn:0.1〜2.5質量%,P:0.15質量%以下,S:0.015質量%以下,sol.Al:0.01〜0.10質量%,Ti:(48/12×C+48/32×S+48/14×N)〜0.15質量%,N:0.015質量%以下,残部が実質的にFeの組成に、B:0.0003〜0.0050質量%及び/又はNb:0.01〜0.10質量%,V:0.01〜0.10質量%,Mo:0.01〜0.10質量%の一種又は二種以上を含ませている。 (もっと読む)


【課題】 極薄鋼板で製造された加工品の剛性を損ねることなく、加工時の表面被膜の損傷低減効果を向上させる。
【解決手段】 質量%で、C:0.0800%以下、N:0.0600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feを主体としてなる鋼を、冷延の後、再結晶焼鈍またはその後の熱処理の雰囲気、温度、時間等を調整することで、鋼中N量の変化、特に表層部と中心層部のN量および硬度を適当な範囲に制御する。これにより極薄鋼板により変形加工時の表面被膜損傷が少なく、かつパネル剛性に優れた鋼板を得られる。 (もっと読む)


【課題】延性を犠牲にせず、耐型かじり性が良好な引張強度780MPa以上の高強度鋼板の製造方法を提供する。
【解決手段】鋼素材に熱間圧延、酸洗、冷間圧延、そして焼鈍を行って高強度冷延鋼板を製造するに当たり、焼鈍前の冷間圧延において、最終パスの圧延をワークロール表面の算術平均粗さRa2.0μm以上のワークロールを用い、圧下量8μm以上として行う。
焼鈍後にさらに、ワークロール表面の算術平均粗さRa1.0μm以上のワークロールを用いて、伸び率0.5%以下の調質圧延を行ってもよい。 (もっと読む)


【課題】 Bの無添加、あるいは極微量添加であっても、耐二次加工割れ性に優れた深絞り用冷延鋼板を提供する。
【解決手段】 C:0.0005〜0.0070質量%,Si:0.01〜1.5質量%,Mn:0.05〜2.5質量%,S:0.001〜0.010質量%,N:0.007質量%以下,P:0.002〜0.1質量%を含み、さらにTi:0.005〜0.2質量%及びNb:0.005〜0.2質量%の1種又は2種を含み、必要に応じてさらに、V,Zrの1種又は2種を合計で0.005〜0.1質量%、Cu,Ni,Cr,Moの1種又は2種上を合計で0.02〜3.0質量%、あるいはB:0.00002〜0.0003質量%を含み、残部が実質的にFeの組成を有する冷延鋼板であって、面内全方向に沿って測定したランクフォード値rの平均値rmean値を1.4以上に、かつ|Δr値|を0.3以下にしたもの。 (もっと読む)


【課題】 750N級以上の強度を維持しながら、薄肉化しても十分な強度をもち、自動車,家電機器,建材等の部材として使用される高強度冷延鋼板を提供する。
【解決手段】 炭素当量Ceq(C+Si/24+Mn/6+Cr/5+B×5+V/14+Mo/4+Ni/40)を0.45〜0.7質量%に調整したC-Si-Mn鋼を加熱温度:1000℃以上で粗圧延した後、仕上げ温度:Ar3+50℃以上,巻取り温度:700℃以下で熱間圧延する。冷延後、830℃以上×60秒以上の加熱保持→10℃/秒以下で720〜600℃まで冷却する一次冷却→7℃/秒以上で二次冷却温度T:(-248×Ceq+538)℃まで冷却する二次冷却→T+30℃以上×3分以上の恒温処理の連続焼鈍を施すことにより、曲げ性,疲労特性が共に良好な高強度冷延鋼板を製造する。 (もっと読む)


【要 約】
【課 題】 延性と穴広げ加工性に優れた高強度冷延鋼板の製造方法を提供する。
【解決手段】 C、Mn、P、S、Nを適正量に調整し、Nb:0.005〜0.20%を含み、Si:0.2〜1.5%、Al:0.2〜2.0%を、Si+1/2(Al)≧0.50% を満足するように含有し、残部が実質的に鉄からなる鋼素材に、仕上圧延終了温度がAr変態点以上、巻取り温度が400〜650℃の熱間圧延と、冷間圧延と、さらに、Ac変態点以上で20℃/s以下の加熱速度で800〜900℃の温度域の焼鈍均熱温度まで加熱し、800〜900℃で60〜300s間滞留したのち、600〜700℃の温度域の徐冷停止温度まで1〜10℃/sの冷却速度で徐冷却し、ついで350〜500℃の温度域の急冷停止温度まで15〜200℃/sの冷却速度で急冷却し、350〜500℃の温度域で30〜300s間滞留したのち、冷却する焼鈍処理を施す。これにより、延性と穴広げ加工性に優れた高強度冷延鋼板となる。なお、Cr、Ni、Mo、Bのうちから選ばれた1種または2種以上、Ti、Vのうちから選ばれた1種または2種を含有してもよい。 (もっと読む)


【課題】本発明の目的の一つは、極薄手材を使用して製造される容器で問題となる、鋼板の表面状態に起因した容器の色調、表面被覆密着性、溶接性について、素材の表面状態を、窒化物形態を制御することで改質するとともに、鋼板表面の状態の制御が可能で、生産性を阻害するような格別な処理を回避することにある。
【解決手段】この容器用鋼板の製造方法では、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feを主体としてなる鋼を、冷延の後、再結晶焼鈍してもよい。その後の熱処理の雰囲気、温度、時間を調整することで、表面における窒化物の面積率を1.0%以上にすることができる。また、表面における直径0.1μm以上の独立した窒化物領域または独立した鋼領域の数密度のうちの高い方の数密度を0.001個/μm2以上に制御することができる。 (もっと読む)


本発明は、自動車、家電製品などの素材として用いられる冷延鋼板に関するものである。
【解決手段】本発明の冷延鋼板は、重量%でC:0.003%以下、S:0.003〜0.03%、Al:0.01〜0.1%、N:0.02%以下、P:0.2%以下、さらにMn:0.03〜0.2%とCu:0.005〜0.2%の1種または2種を含有し、上記Mn、Cu、Sが次の条件0.58×Mn/S≦10、0.5×Cu/S:1〜10、Mn+Cu≦0.3、0.5×(Mn+Cu)/S:2〜20を満足し、MnS、CuS、(Mn、Cu)Sの析出物の平均大きさが0.2μm以下に分布し、残部Fe及びその他の不可避的不純物から成るものである。なお、この冷延鋼板の製造方法も提供される。該冷延鋼板は、微細なMnS、CuS、(Mn、Cu)Sの析出物によって結晶粒中の固溶炭素量が調節され耐時効特性とともに加工性が改善され、微細な析出物により降伏強度が高く、かつ強度−延性バランスおよび加工性に優れる。 (もっと読む)


【課題】 本発明は、自動車、家電製品などの素材として用いられる冷延鋼板に関するものである。
【解決手段】 本発明の冷延鋼板は、重量%でC:0.003%以下、S:0.003〜0.03%、Al:0.01〜0.1%、N:0.02%以下、P:0.2%以下、さらにMn:0.03〜0.2%とCu:0.005〜0.2%の1種、または2種を含有し、上記Mn、Cu、Sが次の条件0.58×Mn/S≦10、0.5×Cu/S:1〜10、Mn+Cu≦0.3、0.5×(Mn+Cu)/S:2〜20を満足し、MnS、CuS、(Mn、Cu)Sの析出物の平均大きさが0.2μm以下に分布し、残部Fe及びその他の不可避的不純物から成るものである。なお、この冷延鋼板の製造方法も提供される。該冷延鋼板は、微細なMnS、CuS、(Mn、Cu)Sの析出物によって結晶粒中の固溶炭素量が調節され耐時効特性とともに加工性が改善され、微細な析出物により降伏強度が高く、かつ強度-延性バランスおよび加工性に優れる。 (もっと読む)


【課題】陰極防食が付与された焼入れ鋼部品の製造方法、焼入れ鋼部品へ施される防食層、及び焼入れ鋼部品を提供する。
【解決手段】焼入れ鋼部品の製造方法を、a)焼入れ可能な鋼合金から成る薄鋼板へ連続コーティング処理によってコーティングを施し、b)前記コーティングをほぼ亜鉛で構成し、c)前記コーティングへさらに酸素親和性元素の1または2種以上を全量としてコーティング全重量に対して0.1重量%〜15重量%の割合で含ませ、d)次いで前記コーティングされた薄鋼板の少なくとも一部を大気中の酸素を取り入れながら焼入れに必要な温度まで至らしめて該薄鋼板に焼入れに必要な微細構造変化が起こるまで加熱し、e)前記コーティング上へ酸素親和性元素酸化物から成る表面被膜を形成させ、f)加熱前あるいは加熱後に薄鋼板を形状化し、及びg)十分な加熱後に、薄鋼板合金の焼入れが完了するように算出された冷却速度で薄鋼板を冷却する各工程から構成する。 (もっと読む)


【課題】 寸法精度の厳しいプレス加工用途にも適合し得る、加工性に優れ、かつ加工性の幅方向で均一な薄鋼板の製造方法を提供すること。
【解決手段】 重量%にて、C:0.2%以下、Si:2.0%以下、Mn:3.0%以下、P:0.2以下、S:0.05%以下、O:0.004%以下、sol.Al:0.01〜0.1%、N:0.02%以下を含有する連続鋳造スラブを再加熱後または直接熱間圧延するに際して、Ar3以上で圧下率70%以上で1次圧延を施し、鋼帯全体をAr3+10℃〜1150℃の範囲内で再加熱し、その再加熱の前または後またはその両方で鋼帯の幅方向エッジを100℃以下で加熱し、Ar3点以上の温度で80%以上の圧下率にて2次圧延を施し、その終了温度をAr3〜Ar3+30℃の範囲内とし、引き続き750℃以下の温度で巻き取る。 (もっと読む)


1,121 - 1,138 / 1,138