説明

Fターム[4K070AC18]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 原料 (1,319) | 副原料 (650) | ホタル石・ハロゲン化物 (23)

Fターム[4K070AC18]に分類される特許

1 - 20 / 23


【課題】取鍋精錬で発生する取鍋スラグを脱炭吹錬時に使用し、その使用原単位を高めることによって副原料使用コストを低減するとともに、取鍋スラグ投棄量を削減しスラグ処理コストをも低減することができる技術を確立する。
【解決手段】転炉内の溶銑に上吹きランスから酸素を吹き付けて脱炭処理する際に、転炉内に供給する取鍋スラグの量(R)を、該Rが溶鋼1トン当たり(1)式により規定する範囲に収まるように調整する。(1)式において、S:装入溶銑中のS濃度(質量%)、S:脱炭吹錬終了時の溶鋼中目標S濃度(質量%)、X:取鍋スラグ中のS濃度(質量%)、V:装入塩基度(CaO質量/SiO質量)、M:脱炭吹錬終了時の炉内スラグ生成予測量(kg/溶鋼t)である。
(もっと読む)


【課題】炭材量を削減でき、さらに高着熱効率による、溶銑配合率を低下することができる溶銑の脱燐および/または脱炭を行う溶鉄の精錬方法を提供する。
【解決手段】酸化性ガスを鉄浴型精錬炉内に供給する上吹きランス7と、上吹きランス7とは別に設けられ粉粒状の副原料を鉄浴型精錬炉内に装入する粉体装入ランス5とを設置し、粉体装入ランス5の先端に、粉粒状の副原料23を噴射する粉粒体噴射ノズルと、燃料を噴射する燃料噴射ノズルと、燃焼用の酸素ガスを噴射する酸素ガス噴射ノズルとを有するバーナノズルを設け、該バーナノズルから発生する火炎21の中を通過するように前記粉粒状の副原料23を前記鉄浴型精錬炉内に装入して脱燐を行う。 (もっと読む)


【課題】 溶銑を転炉で脱燐処理し、次いで、この溶銑を別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】 粉状精錬剤供給流路、燃料供給流路、燃料燃焼用ガス供給流路、脱燐精錬用ガス供給流路を、独立して有する上吹きランス3を用い、燃料供給流路から供給する燃料と燃焼用ガス供給流路から供給する酸化性ガスとにより火炎を形成させながら、粉状精錬剤供給流路から、酸化鉄、石灰系媒溶剤、可燃性物質のうちの1種以上を不活性ガスとともに供給し、且つ、脱燐精錬用ガス供給流路から酸化性ガスを供給して溶銑7を脱燐処理し、次いで、該溶銑を別の転炉に装入し、脱炭精錬用ガス供給流路を有する上吹きランスを用い、脱炭精錬用ガス供給流路から粉状の媒溶剤を脱炭精錬用酸化性ガスとともに転炉内の溶銑浴面に向けて供給して溶銑を脱炭精錬する。 (もっと読む)


【課題】生石灰粉を上吹きして溶銑を脱りんする方法において、上吹き酸素流量を2.0〜5.0Nm3/min/溶銑tに増加して、上吹き酸素の供給時間が5〜8分間という短時間に高速で溶銑脱りん処理する場合に、上吹きした生石灰粉の飛散ロスをCaO純分換算で1.0kg/溶銑t以下に抑制するとともに処理後溶銑中[%P]を0.015質量%以下にまで低減する方法を提供する。
【解決手段】上底吹き転炉でCaO含有粉体を上吹き酸素と共に溶銑へ上吹きして溶銑脱りんする方法において、上吹き酸素と共に生石灰粉を3kg/min/溶銑t以下の速度で溶銑表面へ吹き付け、底吹きガス流量を0.2〜0.6Nm3/min/溶銑t、サブランスから0.1〜1.0Nm3/min/溶銑tのガスと共に生石灰粉を3kg/min/溶銑t以下の速度で溶銑表面へ上吹きし、CaO・FetO・SiO2・Al2O3を含有するプリメルトフラックス4〜10kg/溶銑tと、前記生石灰粉と前記プリメルトフラックスと塊生石灰とのCaO純分に対して前記生石灰粉中のCaO純分が40質量%以上となるように定めた量の生石灰粉とを吹錬開始前後に添加し、且つ処理後スラグ塩基度を2.0〜3.0とする。 (もっと読む)


【課題】冷鉄源を使用して溶湯を製造する際に、効率良く冷鉄源を溶解して電力使用量の削減と操業時間の短縮を可能とするアーク炉の操業方法を提供すること。
【解決手段】溶解室2と、溶解室2の上部に直結するシャフト型の予熱室3とを具備し、溶解室2で発生する排ガスを予熱室3に導入して予熱室3内の冷鉄源15を予熱するアーク炉1を用い、冷鉄源15が予熱室3と溶解室2とに存在する状態を保つように冷鉄源15を予熱室3へ供給しながら、溶解室2でアーク加熱にて冷鉄源15を溶解する際に、アーク炉1から出湯する溶湯の炭素濃度を1mass%以上とすることを特徴とするアーク炉の操業方法を用いる。溶解室2内に炭材を添加すること、溶解室2内に添加する炭材がバイオマス由来であることが好ましい。 (もっと読む)


【課題】蛍石等のハロゲン化物を使うことなく、高効率で、生産性の高い溶銑脱りん処理方法を提供する。
【解決手段】転炉型の溶銑予備処理炉において、脱りん処理後の目標塩基度を1.8〜2.2とし、微粉CaOの供給速度を、処理2分後に目標塩基度が1.0〜1.4、5分後に1.4〜1.8となりように制御することにより、初期のスラグの凝結を防止し、後半のスロッピングを防止する。処理前の珪素濃度が高い場合には、粒径5mm以上の転炉滓の上方添加を行っても良い。 (もっと読む)


【課題】蛍石を使用せず、生産性を低下させず、しかも低P鋼を効率よく製造する。
【解決手段】蛍石を使用せずに、上底吹き転炉を用いて溶銑からりんを除去する方法である。脱りん吹錬終了後にスラグを分析して得られる実塩基度(前記スラグ中のCaO質量濃度とSiO2質量濃度との比)が1.8以上、2.6以下となるように、カルシウムフェライトを含む精錬剤を少なくとも一部に使用する。
【効果】実塩基度が1.8以上、2.6以下となるように、カルシウムフェライトを含む精錬剤を少なくとも一部に使用することで、蛍石を使用せず、かつ生産性を低下させずに、低P鋼を効率よく製造することができる。 (もっと読む)


【課題】溶銑の脱りん吹錬において、りん濃度を適正に制御するために必要なCaO含有脱りん剤の供給量および供給期間を制御する吹錬制御方法、ならびに、該吹錬制御方法を用いた鋼の製造方法を提供すること。
【解決手段】溶銑2の浴面に、酸素を吹き付けるとともに粉状CaO含有脱りん剤8を吹き付ける、吹錬制御方法であって、吹錬期間に対する、粉状CaO含有脱りん剤の吹き付け期間の割合が、任意の下限値以上になるように、粉状CaO含有脱りん剤の供給量および供給速度を制御することを特徴とする、吹錬制御方法、ならびに、該吹錬制御方法を用いた鋼の製造方法とする。 (もっと読む)


【課題】鉄スクラップと高炉溶銑とを併用して溶鋼を製造する際に、効率良く鉄スクラップを溶解して電力使用量を削減すると同時にスクラップから混入するCu等不純物の濃度を極力下げて、高炉―転炉法で製造する高級鋼に匹敵する鋼の製造を可能とする、溶鋼の製造方法を提供すること。
【解決手段】溶解室と、溶解室に直結し、溶解室で発生する排ガスが導入されるシャフト型の予熱室と、を具備したアーク炉を用い、高炉溶銑を溶解室に直接装入すると共に、鉄スクラップが予熱室と溶解室とに連続して存在する状態を保つように、鉄スクラップを連続的又は断続的に予熱室へ装入しながら、溶解室の鉄スクラップ及び高炉溶銑をアークにて加熱して鉄スクラップを溶解して溶湯を出湯し、次に、この溶湯の少なくとも一部を高炉溶銑と混合して脱硫した後、転炉で精錬して溶鋼を得ることを特徴とする溶鋼の製造方法を用いる。 (もっと読む)


【課題】 溶融金属容器から他の溶融金属容器に流出孔を介して溶融金属を排出する際に、溶融金属の排出の末期、溶融金属に混入して流出するスラグを、溶融金属容器からの排出流が細くてもまた太くても、その形状に拘わらず的確に検知し、スラグの流出量をばらつきなく所定量に制御する。
【解決手段】 溶融金属容器3の流出孔12から流出する排出流1Aを赤外線カメラ6で撮影し、赤外線カメラで測定される排出流の放射エネルギー値と予め設定したエネルギー閾値とを対比することによって溶融金属1とスラグ2とを判別し、前記流出孔から流出する溶融金属に混合して流出するスラグを検知するスラグの流出検知方法であって、前記赤外線カメラで撮影される排出流の幅を逐次算出し、算出された排出流の幅に応じて溶融金属とスラグとを判別するためのエネルギー閾値を変更する。 (もっと読む)


【課題】 転炉における精錬において熱源として或いは回収ガス量の増大のために使用しても、また、その精錬がたとえフッ素レス精錬であったとしても、プラスチックによる脱燐反応の阻害を効果的に防止し、溶銑及び溶鋼を効率的に脱燐処理することのできるプラスチック含有精錬剤を提供するともに、このプラスチック含有精錬剤を用いた溶銑の脱燐処理方法を提供する。
【解決手段】 本発明のプラスチック含有精錬剤は、プラスチックと砂鉄との混合物が、押出し成形されて製造される成形体からなることを特徴とする。その際に、前記砂鉄の粒径を125μm以下とすることが好ましい。また、本発明の溶銑の脱燐処理方法は、製鋼用転炉を用いた溶銑の脱燐処理において、前記プラスチック含有精錬剤を転炉内に投入することを特徴とする。 (もっと読む)


【課題】 転炉型精錬炉において溶銑を脱燐処理するに当たり、大型の重量スクラップを含めて多量のスクラップの溶解を可能とする、溶銑の脱燐処理方法を提供する。
【解決手段】 上底吹き機能を有する転炉型精錬炉4を用いて、スクラップ18を溶解しながら溶銑2の脱燐処理を行うに際し、前記精錬炉で連続して行われる脱燐処理のうちで、スクラップ配合比率が10%以上である脱燐処理を1チャージ目として脱燐処理を実施し、この脱燐処理後に未溶解のスクラップを溶銑の一部及びスラグ3とともに前記精錬炉内に残したまま溶銑を出湯し、次いで、2チャージ目として溶銑のみを前記精錬炉に装入してこの溶銑に脱燐処理を施し、この脱燐処理後、溶銑を出湯した後にスラグを前記精錬炉から排出し、このスラグの排出後に、再度、前記1チャージ目及び前記2チャージ目と同様の脱燐処理を繰り返し実施する。 (もっと読む)


【課題】 溶銑に対して燐の富化処理を実施することなく、通常の溶銑処理工程のなかで高濃度のP25 を含有する高燐スラグを製造することのできる方法を提供する。
【解決手段】 転炉における溶銑の脱炭精錬によって発生した転炉スラグを80質量%以上含有する脱燐精錬剤を溶銑に添加するとともに酸素源を溶銑に供給して溶銑の脱燐処理を行い、溶銑中の燐を前記脱燐精錬剤に吸収させることにより、スラグ中のP25 の濃度が5質量%以上である高燐を得る。 (もっと読む)


【課題】スラグからのフッ素溶出を効果的に抑制することができ、かつpHの上昇も抑えることができるスラグ処理方法を提供する。
【解決手段】製鋼スラグまたは高炉水砕スラグにリン酸成分を含有する水溶液を散布し、このリン酸成分とスラグ中のフッ素及びカルシウムにより難溶性化合物を生成させることで、スラグからのフッ素及びカルシウムの溶出が抑制されるようにする。難溶性化合物を生成させるためのカルシウム成分として、スラグに元々含まれるカルシウムを利用するので、処理後のスラグには溶出可能なカルシウム量が少なくなる。このため、フッ素溶出が抑制されるだけでなく、カルシウムの溶出による水や土壌のpH上昇も効果的に抑えられる。 (もっと読む)


【課題】脱炭工程において、スロッピングの発生が防止されながら、高濃度のMnを含有する溶鋼中の炭素が安全に除去される、高Mn鋼の製造方法を提供する。
【解決手段】高Mn鋼の製造方法は、原材料を溶解し、第1の溶鋼を得る溶解工程S10と、前記第1の溶鋼に造滓剤を添加するとともに酸素ガス及び不活性ガスを吹き込んで前記第1の溶鋼中の炭素を除去し、第2の溶鋼を得る脱炭工程S20と、前記第2の溶鋼の成分を調整し、第3の溶鋼を得る成分調整工程S30と、前記第3の溶鋼を鋳込み、10質量%以上20質量%以下のMn及び0.15質量%以下のCを含有する鋳塊を得る鋳込み工程S40とを備える。前記第1の溶鋼は、0.20質量%以下のSiと0.30質量%以下のCとを含有する。 (もっと読む)


【課題】 溶銑の脱硫処理で発生するCaO系脱硫スラグに含まれる地金を、当該CaO系脱硫スラグに破砕処理や磁選処理を施すことなく、効率良く回収することのできる地金の回収方法を提供する。
【解決手段】 上記課題を解決するためのCaO系脱硫スラグからの地金の回収方法は、溶銑の脱硫処理で発生したCaO系脱硫スラグを転炉装入鍋に装入し、次いで、該転炉装入鍋に溶銑を装入して前記CaO系脱硫スラグに含有される地金を溶解し、その後、該転炉装入鍋内の溶銑上に存在するスラグを排出した後、転炉装入鍋内の溶銑を転炉に装入することを特徴とする。 (もっと読む)


【課題】 本発明は、上記のような耐火物の損耗、精錬能の低下を伴わずにCaO分の滓化不良問題を解決する精錬法を提示する。
【解決手段】 30mass%以上の2CaO・Fe23を含む精錬材を用いる精錬法において、設定塩基度が1.1以上3.5以下である場合において、処理に用いる全CaOのうち該精錬材で供給するCaOの割合λ(mass%)を、λ=50(1−1.1/(設定塩基度))+10以上とし、さらに、精錬材の投入が終了する前に、生石灰の投入が終了することを特徴とする精錬方法。 (もっと読む)


【課題】 蛍石などのフッ素源を使用しなくてもCaO系媒溶剤を迅速に滓化させることができ、溶銑を効率的に且つ安価に脱燐することのできる脱燐処理方法を提供する。
【解決手段】 CaO、SiO2 及び酸化鉄を主成分とし、CaO、SiO2 及び酸化鉄中のT.Feの各含有量が下記の(1)式の関係を満足し、且つCaO含有量とSiO2含有量との比が1.5〜5.0の範囲である粉粒状の脱燐用媒溶剤34を、上吹きランス5の軸心部に配置した中心孔から酸素含有ガスとともに溶銑32に吹き付けると同時に、中心孔の周囲に配置した第1の周囲孔から炭化水素系のガス燃料または液体燃料を供給して火炎を形成し、この火炎によって脱燐用媒溶剤を加熱・溶融するとともに、第1の周囲孔の外側に配置した第2の周囲孔から酸素含有ガスを溶銑に吹き付けて脱燐する。
T.Fe≧4×CaO/SiO2+4 …(1) (もっと読む)


本発明は、塩基性酸素炉スラグを、組積用ブロック、平板、レンガ及びタイルのための水硬結合剤;セメント製品のための混合物;並びに、様々な用途のためのモルタル;のような建設材料に転化するための方法を提供する。その溶融スラグに所要量のホタル石を添加して、溶融スラグの流動性を増大させて、その混合物を冷却する。次いで、そのスラグを3mm以下の粒度に粉砕し、次いで、磁気分離機を使用して、あらゆる金属分画を分離する。3mm以下の粒度の非金属分画は、それを必要とする用途に応じて、約3000〜4000ブレインに粉砕する。所要量のセッコウを、前記の3mm以下のスラグの非金属分画と混合し、次いで、粉砕することができる。 (もっと読む)


【課題】 従来に比べて少ない石灰の使用量であっても、しかも、フッ素を含有する媒溶剤を使用しなくても、従来と同等の脱燐効率で脱燐処理する。
【解決手段】 CaOを主体とする媒溶剤を添加し、酸素源として気体酸素源及び/または固体酸素源を供給して、添加したCaOを主体とする媒溶剤を滓化させてスラグとなし、溶銑に対して脱燐処理を施す、溶銑の脱燐処理方法において、CaOを主体とする媒溶剤に加えて、酸化チタンを含有する物質を媒溶剤の一部として使用する。この際に、前記スラグの酸化チタンの含有量を10質量%以下とすること、造滓剤の一部として更に酸化アルミニウムを含有する物質を使用すること、前記CaOを主体とする媒溶剤、酸化チタンを含有する物質及び酸化アルミニウムを含有する物質は実質的にフッ素を含有しないこと、更に、前記酸化チタンを含有する物質として砂鉄を使用することが好ましい。 (もっと読む)


1 - 20 / 23