説明

Fターム[5C024HX29]の内容

光信号から電気信号への変換 (72,976) | 回路構成 (15,472) | 減算、比較、差動増幅 (1,501)

Fターム[5C024HX29]に分類される特許

1 - 20 / 1,501








【課題】任意の焦点位置でのリフォーカス画像を生成するための画像信号に欠陥画素補正を行うことができる画像処理装置を提供すること。
【解決手段】撮影レンズの瞳分割領域に対応した被写体光の進行方向の情報が得られる撮像光学系を用いて撮像素子から取得される画像信号に適用される画像処理装置であって、リフォーカス画像を生成する焦点位置を設定する手段と、撮像素子の欠陥画素の画像信号を他の画素の画像信号を用いて補正する手段とを備え、設定された焦点位置と被写体光の進行方向の情報に基づいて、欠陥画素の画像信号の補正に使用する他の画素を決定する。 (もっと読む)


【課題】撮像素子においては、製造工程において生じる画素欠陥と、温度変化や宇宙線などの放射線による経時変化で生じる画素欠陥とがあり、画素欠陥には欠陥箇所の輝度が高くなるいわゆる「白欠陥」と欠陥箇所の輝度が低くなるいわゆる「黒欠陥」とがある。製造工程において生じる画素欠陥は固定位置であるため、工場出荷時に欠陥画素の出力を近隣画素の出力を補間した値で補正する欠陥補正を施してから出荷することがおこなわれている。しかしながら、温度変化や経時変化で生じた撮像素子の画素欠陥には補間できないため画質を損なう問題があった。
【解決手段】
上記目的を解決するために、本発明では注目画素に対して周辺画素との差を基に画素欠陥か否かを判定し、さらには注目画素と周辺画素との差分の分布に応じて周辺画素で補間することを特徴とする。 (もっと読む)


【課題】画質劣化を引き起こさないように欠陥画素を選別する。
【解決手段】撮像装置1の欠陥画素補正部13は、撮像素子16から利得調整部12を介して撮像信号a12を取得し、撮像素子16の欠陥についての検査対象となる画素の画素値とその検査対象の画素の周囲の画素値との差分の絶対値を算出する。次に、欠陥画素補正部13は、差分の絶対値と欠陥画素判定閾値とを比較して、差分の絶対値が欠陥画素判定閾値より大きい場合には、当該検査対象の画素が欠陥画素であると判定する。なお、欠陥画素判定閾値は、画像変化検出部15において、映像信号a14から画像変化を検出し、画像変化の大きさに応じて変化される。 (もっと読む)


【課題】電圧分解能を低下させることなく、高速化することができるA/D変換装置および固体撮像装置を提供する。
【解決手段】所定のアナログ・デジタル変換期間をTsとしたとき、(1−1/n)Ts(n:正の整数、n≧2)より短い第1のサンプリング期間と、(1/n)Tsの第2のサンプリング期間とを設定し、アナログ信号を出力して第1のサンプリングを行わせ、該アナログ信号をn倍に増幅し、デジタルオフセット信号で選択されたアナログオフセット信号を加えた増幅アナログ信号を出力して第2のサンプリングを行わせるA/D制御回路と、第1のサンプリング結果から第1のデジタル信号とデジタルオフセット信号とを生成し、第2のサンプリング結果から第2のデジタル信号を生成し、デジタルオフセット信号と第2のデジタル信号とに基づいて、期間Tsに対応した第3のデジタル信号を生成して出力するデジタル生成回路と、を備える。 (もっと読む)


【課題】ワイドダイナミックレンジ化を図るに当たって、被写体の持つ本来の輝度情報を階調性豊かに表現することを可能にする固体撮像素子の信号処理回路、信号処理方法、及び、当該信号処理回路を有する電子機器を提供する。
【解決手段】第1の画素群と、当該第1の画素群に対して電荷の蓄積時間または光感度がα倍異なる第2の画素群とを有する固体撮像素子の信号処理に当たって、第1の画素群における着目画素の信号値をα倍し、第2の画素群の画素の信号値と合成する際に、着目画素の信号値に対して当該着目画素に関連する画素の信号値を基に重み付けを行うようにする。 (もっと読む)


【課題】エンコードエラーの発生を抑圧することができるAD変換回路および撮像装置を提供する。
【解決手段】VCO100aの出力信号CK0〜CK8のうち出力信号CK7が上位計数部101のカウントクロックとなる。演算部106は、出力信号CK7を基準として定義される出力信号CK0〜CK8の状態(状態0〜状態7)を検出するため、各出力信号の論理状態の変化位置を検出し、検出された変化位置に基づいて下位計数信号を生成する。演算部106がこの変化位置を検出する際の手順では、立下りエッジが略同時になる出力信号CK0と出力信号CK7の論理状態の比較は行われない。このため、エンコードエラーの発生を抑圧することができる。 (もっと読む)


【課題】高解像度化した画素を有する撮像素子を提供する。
【解決手段】本発明の撮像素子10は、X,Y軸平面上に正方又は六方配置された各感光部101から蓄積電荷に相当する信号をZ軸方向に並列に抽出して出力する積層素子100a,100b,100c,100dと、この積層素子における感光部101を有する素子100aに対して設けられ、それぞれの感光部101に対して一部の領域を遮光するための当該感光部101の面積よりも小さい面積を有する1つの遮光部110を、当該感光部101の領域の範囲内で走査することにより各感光部101を所定の分割数で分割し、当該分割した各領域における遮光による蓄積電荷の変化量によって画素を形成する液晶素子106とを備える。 (もっと読む)


【課題】複数枚のチップを接続した構成の固体撮像装置において、それぞれのチップの大きさの差を少なくすることによって、固体撮像装置のチップ面積(実装面積)の縮小化と、コストの削減を図ることができる固体撮像装置、固体撮像装置の制御方法、および撮像装置を提供する。
【解決手段】第1の基板と第2の基板とが接続部によって電気的に接続された固体撮像装置であって、第1の基板に配置された光電変換素子と、第2の基板に配置され、光電変換素子で発生した信号をアナログの読み出し信号として出力する読み出し回路とを具備する画素が複数配置された画素部と、読み出し信号に対して信号処理を行う信号処理回路とを備え、信号処理回路を構成する回路要素を区分基準に基づいて第1の基板側または第2の基板側に区分し、第1信号処理回路に区分された回路要素を第1の基板内に配置し、第2信号処理回路に区分された回路要素を第2の基板内に配置する。 (もっと読む)


【課題】 撮像面において、瞳分割方式の焦点検出を行う装置において焦点検出の正確性を向上させる。
【解決手段】 本発明は、光電変換ユニットの少なくとも1つの光電変換素子の信号を増幅部の入力ノードへ読み出し、増幅部を介して前記共通出力線へ信号を読み出す第1の動作により焦点検出用の信号を生じさせ、前記第1の動作により読み出された信号が増幅部において保持された状態で同じ光電変換ユニットに含まれる他の光電変換素子の信号を増幅部の入力ノードへ読み出し、増幅部を介して共通出力線へ信号を読み出す第2の動作により画像形成用の信号を生じさせる。 (もっと読む)


【課題】 撮像素子の暗電流ムラや欠陥画素に起因してクランプ時に発生する出力チャンネルごとのオフセットを新たなノイズを増加させることなく低減できる補正方法を提供することを目的とする。
【解決手段】 複数の画素を備える撮像素子と、前記撮像素子を遮光した状態でダーク画像を取得するダーク画像取得手段と、前記ダーク画像を行または列の1方向に平滑化する平滑化手段と、前記平滑化後のダーク画像を減算する減算手段とを有することを特徴とする撮像装置を構成する。 (もっと読む)


【課題】CMOS型イメージセンサを用いた撮像装置において、高輝度光が入射したときの横筋状又は横帯状のノイズの発生を抑制する。
【解決手段】複数の画素が二次元に配列され、光を受光する開口画素領域と、基準となる遮光されたオプティカルブラック領域とを含むCMOS型の撮像素子と、撮像素子の開口画素領域の特定の領域が高輝度被写体からの光を受光している場合の撮像素子の出力から得られる情報を予め記憶する記憶部と、開口画素領域の特定の領域が高輝度被写体からの光を受光しているか否かを判定する判定部と、判定部により特定の領域が高輝度被写体からの光を受光していると判定された場合に、記憶部に記憶された情報に基づいて、撮像素子からの出力を補正する補正部とを備える。 (もっと読む)


【課題】 撮像装置内での画像合成、特に、他の撮像装置で撮影した画像を合成に使用する場合でも、合成時の欠陥画素の追加補正を実施できる撮像装置を提供すること。
【解決手段】 最初の現像時に、欠陥画素情報のうち補正の必要がないと判断された軽度の欠陥画素情報を画僧に添付し、合成時には画像に添付された欠陥画素情報を使用して欠陥画素の追加補正を実施することを特徴とする構成とした。 (もっと読む)


【課題】 速写性を重視したうえで、連写等の駆動モードでの挙動が駒毎に変化する場合でも、各々の駒での画質劣化を抑え、好適な画像を得る。
【解決手段】 同一モード内で連続的に撮像動作を行う場合で、所定駒前後で、使用するシェーディング補正等の補正データを変更する。 (もっと読む)


【課題】 CMOSセンサの横筋ノイズ除去のために水平ライン平均でのクランプ補正があるが、水平OB画素が十分に多くないと水平ラインクランプによる横引きノイズが無視できなくなる。経験的にOB画素は1ラインあたり64画素以上必要であるがCMOSセンサは多チャンネル出力が主流であるため、1ch当たりの水平OB画素を64画素以上確保することは読み出し速度及びデバイスサイズの観点から非常に困難である。
【解決手段】 OB領域の複数ラインの平均値を用いて有効画素をクランプするクランプ回路と、各水平ライン毎の平均値を演算して有効画素をクランプするクランプ回路と、OB領域を用いて横筋ノイズを検出する検出ブロックを有し、該検出ブロックで線キズが検出されたどうかで前記2種類のクランプ回路を切り替えることでライン平均クランプによる横引きノイズの影響を低減する。 (もっと読む)


1 - 20 / 1,501