説明

Fターム[5F140BE20]の内容

Fターム[5F140BE20]に分類される特許

1 - 18 / 18


【課題】EOTの低減及びリーク電流の低減を両立できる半導体装置の製造方法を提供すること。
【解決手段】被処理体上に第1の高誘電率絶縁膜を成膜する第1の成膜工程と、前記第1の高誘電率絶縁膜を、650℃以上で60秒未満の間熱処理する結晶化熱処理工程と、前記第1の高誘電率絶縁膜上に、前記第1の高誘電率絶縁膜の金属元素のイオン半径よりも小さいイオン半径を有する金属元素を有し、前記第1の高誘電率絶縁膜よりも比誘電率が大きい、第2の高誘電率絶縁膜を成膜する第2の成膜工程と、を含む、半導体装置の製造方法。 (もっと読む)


【課題】基板表面に、均一な高品質シリコン酸化膜を、基板温度200−500度の低温で形成すること、および、シリコン酸化膜を用いた半導体装置を提供し、素子分離領域凹部分の側壁部のシリコン表面においてシリコン酸化膜の厚さ30%以内に抑え、デバイスの信頼性を向上する。
【解決手段】シリコン酸化膜中にKrを含有することを特徴とする。シリコン酸化膜中にKrを含有させることにより、シリコン酸化膜中および、シリコン/シリコン酸化膜界面でのストレスを緩和することにより、低温で形成したにも係わらず高品質なシリコン酸化膜を形成し、素子分離領域凹部分の側壁部のシリコン表面においてシリコン酸化膜の厚さの均一性を30%以内にする。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】nチャネル型MISFET用のメタルゲート電極であるゲート電極GE1とpチャネル型MISFET用のダミーゲート電極GE2とを形成してから、nチャネル型MISFET用のソース・ドレイン領域とpチャネル型MISFET用のソース・ドレイン領域をそれぞれ形成する。その後、ダミーゲート電極GE2を除去し、ダミーゲート電極GE2が除去されたことで形成された凹部にpチャネル型MISFET用のメタルゲート電極を形成する。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】半導体基板1の主面にゲート絶縁膜用のHf含有膜4、Al含有膜5及びマスク層6を形成してから、nチャネル型MISFET形成予定領域であるnMIS形成領域1Aのマスク層6とAl含有膜5を選択的に除去する。それから、nMIS形成領域1AのHf含有膜4上とpチャネル型MISFET形成予定領域であるpMIS形成領域1Bのマスク層6上に希土類含有膜7を形成し、熱処理を行って、nMIS形成領域1AのHf含有膜4を希土類含有膜7と反応させ、pMIS形成領域1BのHf含有膜4をAl含有膜5と反応させる。その後、未反応の希土類含有膜7とマスク層6を除去してから、メタルゲート電極を形成する。マスク層6は、窒化チタン又は窒化タンタルからなる窒化金属膜6aと、その上のチタン又はタンタルからなる金属膜6bとの積層構造を有する。 (もっと読む)


【課題】本発明は、半導体基板上にゲート誘電体層とゲート電極とのゲートスタックを含む半導体デバイスを製造する方法であって、ゲートスタックのV値を容易に調整することができる方法を提供する。
【解決手段】ゲート誘電体層とゲート電極とのゲートスタックを含む半導体デバイスを製造する方法は、第1の電気陰性度を有する金属酸化物または半金属酸化物であるゲート誘電体層を半導体基板上に形成するステップと、第2の電気陰性度を有する金属酸化物または半金属酸化物である誘電体V調整層を形成するステップと、ゲート誘電体層およびV調整層の上にゲート電極を形成するステップと、を含み、前記ゲートスタックの実効仕事関数が、誘電体V調整層の厚さおよび組成を調整することによって所望の値に調整され、第2の電気陰性度が、第1の電気陰性度およびAlのいずれよりも高い。 (もっと読む)


【課題】スループットを高く維持しつつリーク電流を抑制してリーク特性も高く維持することが可能な成膜方法を提供する。
【解決手段】被処理体の表面とゲート電極との間に介在されるゲート絶縁層を形成する成膜方法において、シリコンを含む界面膜を所定の温度で形成する界面膜形成工程S1と、被処理体を冷却する冷却工程S2と、冷却された被処理体に対して界面膜形成工程の所定の温度より低い温度でゲート絶縁膜を形成するゲート絶縁膜形成工程S3とを有する。 (もっと読む)


【課題】半導体集積回路を製造するプロセスを変更した場合において、デバイスモデルによって変更後のプロセスにより製造された半導体素子を表すためにデバイスモデルに含まれるモデルパラメータを容易に決定できるようにする。
【解決手段】モデルパラメータ決定装置は、第1の製法により製造された半導体素子を特徴付ける第1の物理パラメータ群と、半導体素子の特性を表すためのデバイスモデルに含まれるモデルパラメータ群であって第1の製法により製造された半導体素子を表すための第1のモデルパラメータ群と、第2の製法により製造された半導体素子を特徴付ける第2の物理パラメータ群とを入力し、第2の製法により製造された半導体素子の特性を当該デバイスモデルによって表すためのモデルパラメータ群を、第1の物理パラメータ群及び第1のモデルパラメータ群並びに第2の物理パラメータ群に基づいて決定する。 (もっと読む)


【課題】高誘電率ゲート絶縁膜及びメタルゲート電極を備えたCMISFETの生産性や性能を向上させる。
【解決手段】半導体基板1の主面にゲート絶縁膜用のHf含有絶縁膜5を形成し、その上に窒化金属膜7を形成し、窒化金属膜7上のフォトレジストパターンをマスクにしたウェットエッチングによって、nチャネル型MISFET形成予定領域であるnMIS形成領域1Aの窒化金属膜7を選択的に除去する。それから、希土類元素を含有するしきい値調整層8を形成し、熱処理を行って、nMIS形成領域1AのHf含有絶縁膜5をしきい値調整層8と反応させるが、pチャネル型MISFET形成予定領域であるpMIS形成領域1BのHf含有絶縁膜5は、窒化金属膜7があるためしきい値調整層8とは反応しない。その後、未反応のしきい値調整層8と窒化金属膜7を除去してから、nMIS形成領域1AとpMIS形成領域1Bにメタルゲート電極を形成する。 (もっと読む)


【課題】偏析不純物による仕事関数の制御の可能な半導体装置または半導体装置の製造方法を提供する。
【解決手段】半導体装置は、半導体基板10と、半導体基板10上に設けられた絶縁膜(HfSiON膜30)と、絶縁膜30上にフルシリサイド電極(NiSi51)と、フルシリサイド電極51に接するように、絶縁膜30とフルシリサイド電極51の間に設けられたバリア膜(SiOC膜40)と、を備え、SiOC膜40と接するフルシリサイド電極51の部分に、N型またはP型いずれかの不純物60が偏析し、SiOC膜40は、シリコン酸窒化膜の誘電率以下の誘電率を有し、以下の(a)、(b)および(c)を主成分として含み、((a)シリコン(Si)、(b)炭素(C)、(c)酸素(O)または窒素(N))、HfSiON膜30またはNiSiフルシリサイド電極51を構成する金属元素を主成分としてバリア膜の少なくとも内部に含まないもの。 (もっと読む)


【課題】 CZ基板を用いた絶縁ゲート型の半導体装置の製造方法において、ゲート酸化膜の絶縁耐圧を十分に確保することができる製造方法を提供すること。
【解決手段】 プラズマCVD法によって、CZ基板6の表面に水素が含有されたゲート酸化膜10を形成する工程と、ゲート酸化膜10を熱処理する工程を備えている。ゲート酸化膜10を熱処理することによって、ゲート酸化膜10内の水素と、ゲート酸化膜10とCZ基板6の界面近傍のCZ基板6内に存在する酸素析出欠陥との間で還元反応が生じる。これによって、CZ基板6内の酸素が除去され、ゲート酸化膜10の絶縁耐圧を十分に確保することができる。 (もっと読む)


【課題】半導体装置の製造歩留まりを向上させる。
【解決手段】
半導体基板1の主面にゲート絶縁膜用の絶縁膜を形成する。それから、プラズマ処理装置51の処理室51a内で、半導体基板1の主面のゲート絶縁膜用の絶縁膜をプラズマ窒化する。その後、プラズマ処理装置51から半導体基板1をフープ31内に移送し、フープ31をベイステーションBSに移動させてそこで待機させて半導体基板1を保管する。ベイステーションBSに待機している間、半導体基板1を保管しているフープ31内に、フープ31に設けられた第1の呼吸口から窒素ガスを供給し、フープ31に設けられた第2の呼吸口からフープ31内の窒素ガスを排出する。その後、フープ31を熱処理装置52に移動させて、半導体基板1を熱処理装置52の処理室内に搬入して熱処理する。 (もっと読む)


【課題】従来技術の問題の少なくとも一つを解決する、ゲート酸化膜上に窒化珪素膜を形成する方法を提供する。
【解決手段】半導体装置におけるゲート構造の形成の一部として、ゲート酸化膜上に窒化珪素膜を形成する方法であって、窒化処理プロセスにより、半導体基板のゲート酸化膜の上部に、窒化珪素の層を形成するステップと、熱処理チャンバ内で、前記半導体基板を加熱するステップと、前記熱処理チャンバ内で、前記半導体基板をN2に暴露するステップと、前記熱処理チャンバ内で、前記半導体基板をN2およびN2Oの混合物に暴露するステップと、を有する方法。 (もっと読む)


【課題】 占有面積を拡大することなく特性バラツキの抑制を可能にする半導体装置及びその製造方法を提供する。
【解決手段】 低濃度P型の半導体基板1の上層にゲート酸化膜3を形成した後、ゲート酸化膜3上層にP型のゲート電極4を形成する。その後、ゲート酸化膜3及びゲート電極4をマスクとしてN型の不純物イオンを注入することで、N型のソース・ドレイン拡散領域6を複数離間形成する。その後、半導体基板1及びゲート電極4の上層に層間絶縁膜7を形成した後、各ソース・ドレイン拡散領域6及びゲート電極4夫々との電気的接続を確保する複数のコンタクトプラグ8を形成する。その後、所望の閾値電圧となるよう、コンタクトプラグ8を介してソース・ドレイン拡散領域6とゲート電極4の間に所定の高電圧を印加してゲート酸化膜3内に正電荷を注入する。 (もっと読む)


【課題】不純物の侵入やリーク電流の発生を抑制し、信頼性を向上させる。
【解決手段】シリコン(111)基板1上にシリコン酸化膜2aおよびシリコン窒化膜3aを順に備える絶縁部11と、シリコン(111)基板4上にシリコン窒化膜3bを備える絶縁部12とを、シリコン窒化膜3aおよびシリコン窒化膜3bを張り合わせて成るシリコン窒化膜3を介して、接合し、絶縁部13が形成され、絶縁部13のシリコン(111)基板1を除去した絶縁部13aと、シリコン(100)基板5上にシリコン酸化膜2bを備える絶縁部14とを、シリコン酸化膜2aおよびシリコン酸化膜2bを張り合わせて成るシリコン酸化膜2を介して、接合し、さらに、シリコン(111)基板4を除去して、シリコン(100)基板5上にゲート絶縁膜15が形成されるようになる。 (もっと読む)


【課題】プラズマ窒化処理によりゲート電極膜を形成するプロセスにおいてシリコン基板中に拡散した窒素元素量を簡便に測定する方法を提供し、さらにデバイス特性に与える影響の小さいプラズマ窒化プロセスによるゲート電極膜の形成方法を提供する。
【解決手段】シリコン基板上のシリコン酸化膜を除去し、それにより露出したシリコン基板表面の窒素元素量をXPSにより測定することで、シリコン基板中の窒素元素量を測定する。ゲート電極膜の形成にあたっては、プラズマ窒化処理後かつ熱処理前の前記シリコン基板中の窒素元素量をM1、熱処理後のシリコン基板中の窒素元素量をM2としたとき、M2/M1が2以下となる条件で熱処理を行う。 (もっと読む)


【課題】トランジスタの微細化に伴うショートチャネル効果やリーク電流の低減を可能とする。
【解決手段】p型シリコン基板101の主平面上に形成されたエピタキシャルSi層と、少なくともエピタキシャル層に形成されたチャネル領域と、該チャネル領域上にゲート絶縁膜106を介して形成されたゲート電極107とを含むトランジスタ構造を有し、このトランジスタ構造同士は互いに素子分離絶縁膜105を挟んで形成される半導体であって、チャネル領域の下部のパンチスルー・ストッパ層102にはチャネル領域よりも高濃度の不純物が含まれ、かつソース・ドレイン拡散層108は素子分離絶縁膜105上には延在しない。 (もっと読む)


【課題】MOSトランジスタのゲート長の微細化に伴う短チャネル効果の抑制、及び電流
駆動力の低下並びにホットエレクトロン効果の抑制を図る。
【解決手段】ダミーのゲート絶縁膜及びゲート電極膜、拡散層、及び層間絶縁膜を形成後
、前記ダミーゲート絶縁膜及びゲート電極膜を除去し、ゲート電極埋め込み用溝を形成す
る。さらに、前記ゲート電極埋め込み用溝に前記ダミーゲート絶縁膜よりも膜厚の薄いゲ
ート絶縁膜を形成し、前記ゲート絶縁膜上に電極材料を埋め込んでゲート電極を形成する
(もっと読む)


アミン系有機金属材料を使ったMOCVD法によるhigh−K誘電体膜の形成時に、膜中に残留する炭素の量を最小化できるhigh−K誘電体膜の製造方法を提供する。被処理基板表面が露出されたプロセス空間に前記アミン系有機金属分子を含む原料ガスを供給し、前記アミン系有機金属分子を前記被処理基板表面に化学吸着させる。その後、前記被処理基板表面に水素ガスを供給する工程と、前記プロセス空間に酸化ガスを導入する工程を行うことにより、前記被処理基板表面にhigh−K誘電体膜が形成される。
(もっと読む)


1 - 18 / 18