説明

Fターム[5J064BC16]の内容

圧縮、伸長、符号変換及びデコーダ (21,671) | 細部(回路)構成 (8,519) | 量子化器 (1,204)

Fターム[5J064BC16]に分類される特許

1 - 20 / 1,204


【課題】課題は、デルタシグマ変調器の低消費電力化および小型化を図ることである。
【解決手段】デルタシグマ変調器(1)は、減算器(11)と、積分器(12)と、それぞれが並列接続された複数のDA変換器(14−14)とを備える。減算器は、第1アナログ信号(A)と第2アナログ信号(IDAC)とを入力し、第1アナログ信号から第2アナログ信号を減算する。積分器は、減算器の減算結果を積分する。複数のDA変換器は、積分器の出力を基に量子化されたデジタル信号をアナログ信号にそれぞれ変換し、それぞれ変換したアナログ信号を第2アナログ信号として、減算器に異なるタイミングで出力する。 (もっと読む)


【課題】音声コーデックの品質向上装置およびその方法が開示される。
【解決手段】低帯域(low−band)コーデックによってデコードされた信号の第1エネルギーを求め、低帯域音質向上モードによってデコードされた信号の第2エネルギーを求めた後、第1エネルギーがあらかじめ設定された第1しきい値よりも小さいか、または第1エネルギーが第2エネルギーにあらかじめ設定された第2しきい値を乗算した値よりも小さい場合、デコードされた信号の大きさをスケーリングすることにより無音区間の量子化誤差を減少させる。 (もっと読む)


【課題】情報を埋め込むことで画像内容が元の画像内容と異ならないようにすること。
【解決手段】情報埋め込み装置は、画像データに情報を埋め込む情報埋め込み装置であって、埋め込み情報を取得する埋め込み情報取得部と、符号化対象の画像データである符号化対象データを取得する符号化対象データ取得部と、符号化対象データのうち、第1符号を用いて符号化できるデータ部分を検出するデータ検出部と、データ検出部が検出したデータ部分が第2符号で表されるデータを含むか否かを判断するデータ判断部と、第2符号で表されるデータを含むと判断されたデータ部分を、第2符号を用いて符号化するか否かを、埋め込み情報に基づいて決定する符号決定部と、第2符号で表されるデータを含むと判断されたデータ部分を、符号決定部の決定に従って符号化する符号化部と、を備える。 (もっと読む)


【課題】一方ではデータ速度が低く、他方では良好な主観的な品質が可能な、向上された信号合成概念を提供する。
【解決手段】エンコーダ側で、マルチチャネル入力信号は平滑化制御情報を得るために解析され、これはデコーダ側マルチチャネル合成により用いられ、量子化された送信されたパラメータまたは量子化された送信されたパラメータから導出される値を平滑化して、特に、ゆっくりと移動するポイントソースと急速に移動する正弦曲線等の音素材を有する急速に移動するポイントソースとに対して、主観的なオーディオ品質を向上する。 (もっと読む)


【課題】画像の符号化処理や復号処理を高速に行うことができるようにする。
【解決手段】量子化後の変換係数の絶対値と閾値「m」を比較して前記絶対値が前記閾値「m」より大きい場合に閾値を「m=m+1」として比較を行い、閾値が「m=1」から所定値となるまでの比較結果を示す第1の情報と、前記絶対値の前記所定値に対する超過分に応じた第2の情報と、前記変換係数の符号を示す第3の情報をそれぞれシンタックス要素として、第1の情報,第2の情報,第3の情報の順に符号化した符号化データに対して、算術復号処理部522は算術復号処理を行う。多値化部523は算術復号処理部522で算術復号処理を行うことにより得られた二値化データの多値化を行い、符号化前の変換係数を生成する。 (もっと読む)


【課題】より適した窓関数を適応的に用いてオーディオ信号を符号化することができるようにする。
【解決手段】窓がけ部は、フレームデータに対して窓関数WF1を乗算する。窓がけ部は、フレームデータに対して窓関数WF1と特性の異なる窓関数WF2を乗算する。窓選択部は、窓関数WF1が乗算されたオーディオ信号と窓関数WF2が乗算されたオーディオ信号とに基づいて、窓関数WF1または窓関数WF2を最適窓関数として選択する。符号化部は、最適窓関数が乗算されたオーディオ信号の周波数スペクトルを符号化する。多重化部は、符号化された周波数スペクトルと最適窓関数を表す窓関数情報を伝送する。本技術は、例えば、オーディオ符号化装置に適用することができる。 (もっと読む)


【課題】予測モードの過去の発生状況や周囲の符号化状況の変換テーブルへの反映等による符号化効率向上を図る。
【解決手段】予測モード数N=18およびN=35で共通の単一変換テーブル153を、予測モード復元部が復元した予測モードに対し、該予測モードの発生確率に応じたランクが対応付けられるように更新する変換テーブル更新部115を備える。 (もっと読む)


【課題】回路面積が小さなΔΣ変調器を提供する。
【解決手段】このΔΣ変調器は、差動入力信号VIP.VINの電圧および2段の積分回路INT1,INT2の差動出力信号の電圧にそれぞれ重み付け係数WC1〜WC3を乗算して加算し、加算した電圧がしきい値電圧を超えた場合にパルス信号を出力するコンパレータCMP1を備える。コンパレータCMP1は、それぞれ重み付け係数WC1〜WC3に応じた値の増幅率gm1〜gm3を有し、出力ノードN1,N2を共有する3つの差動増幅回路を含む。したがって、重み付け加算を行なうためのスイッチトキャパシタ回路が不要となる。 (もっと読む)


【課題】ビット数が大きくなった場合にビット数及び計算量に見合う量子化性能を得るとともに、多段で量子化する際に前段で一旦小さくなった量子化歪みを後段で大きくしてしまうことを防ぎ、最終的な量子化歪みを小さくすること。
【解決手段】VQ部301、305、310、315は、量子化対象信号を量子化して復号信号を取得する。減算部302、307、312は、量子化対象信号から復号信号を減算して求めた誤差成分を後段の量子化対象信号として取得する。判定部303、308、313は、誤差成分の大きさが所定値未満の場合には、量子化を終了する。符号まとめ処理部317は、量子化の際の各段の符号を格納するとともに、量子化を終了する場合に、格納している各段の符号をまとめて出力する。 (もっと読む)


【課題】実装規模や処理負荷を軽減すること。
【解決手段】符号化装置100において、AACエンコーダ120は、低域成分のオーディオ信号に基づいて、オーディオ信号が過渡性であるか否かを判定する。SBRエンコーダ130は、AACエンコーダ120から取得する低域成分の過渡性情報を高域成分の過渡性情報に変換し、高域成分の過渡性情報を基にして、オーディオ信号が過渡性であるか否かを判定する。多重化部140は、符号化された低域成分のオーディオ信号と、符号化された高域成分のオーディオ信号とを多重化し、多重化したオーディオ信号を外部装置に出力する。 (もっと読む)


【課題】量子化値を求めるための処理負荷を軽減させること。
【解決手段】符号化装置100は、使用可能ビット数とマスキング閾値に基づいて量子化ステップを特定する。符号化装置100は、特定した量子化ステップに基づいて、入力オーディオ信号を量子化することで、量子化値を作成する。符号化装置100は、量子化値のビット数が使用可能ビット数よりも大きい場合には、不足するビット数を、ビットリザーバ140に蓄えられた補填ビット数により補う。 (もっと読む)


【課題】フィードバック経路において連続時間DACまたは離散時間型DACのいずれかを有するように構成可能なシグマデルタADCを提供する。
【解決手段】アナログ−デジタル変換器(ADC)10は、入力端子と出力端子とを有する連続時間フィルタ14と、連続時間フィルタ14の出力端子に結合された入力端子と、複数の出力端子とを有する量子化器18と、量子化器18の前記複数の出力端子に結合された複数の入力端子と、出力端子とを有する連続時間デジタル−アナログ変換器(DAC)20と、量子化器の前記複数の出力端子に結合された複数の入力端子と、出力端子とを有する離散時間型DAC24と、連続時間DAC20の出力端子に結合された第1の入力端子と、離散時間型DAC24の出力端子に結合された第2の入力端子と、連続時間フィルタの入力端子に結合された出力端子とを有するスイッチ26と、を備える。 (もっと読む)


【課題】チャネル間の音質のバランスを維持しながら音質が向上したオーディオ信号符号化方法および装置の実現。
【解決手段】オーディオ信号符号化装置であって、知覚エントロピー算出部21と、知覚エントロピーに応じて、各チャネルの使用可能ビット数を決定するビット配分部22と、窓判定部23と、使用可能ビット数を補正する補正部24と、各チャネルのオーディオ信号を、補正された使用可能ビット数以下となるように順次量子化し、その際にフレーム内で既に量子化されたチャネルの余りビット数を順次後のチャネルに加えながら量子化する量子化部25と、を有し、補正部24は、以前のフレームの窓のタイプごとの量子化ビット使用率を算出する使用率履歴算出部31と、量子化ビット使用率で量子化が行われた場合の各チャネルの使用可能ビット数に対する使用率が等しくなるように補正する補正ビット数算出部32と、を有する。 (もっと読む)


【課題】 量子化パラメータをブロック単位で制御する場合、従来は予測量子化パラメータの算出方法が単一であり、画像の符号化方法や画像の特性によっては、その差分値の絶対値が大きくなり、不要に量子化パラメータ符号の符号量が増加してしまっていた。
【解決手段】 入力画像を大きさの異なる複数のブロックに分割し、前記分割されたブロック単位で画像を符号化する画像符号化方法において、処理対象ブロックの属性情報を取得し、前記処理対象ブロックの画質を制御するパラメータを算出し、前記属性情報に基づいて予測制御パラメータを決定し、算出された前記制御パラメータと前記予測制御パラメータとの差分値を計算し、計算された差分値を符号化して制御パラメータ差分値符号化データを生成する。 (もっと読む)


【課題】可変長符号を常に高速に復号可能とする。
【解決手段】可変長符号復号装置は、可変長符号を、連続したゼロ値の数が(M−1)個以上(Mは2以上の整数)の復号データに変換可能な第1テーブル格納部と、符号長がN(Nは2以上の整数)未満で、対応する復号データのゼロ値がゼロ個である可変長符号、あるいはこの可変長符号と、対応する復号データのゼロ値がゼロ個以上で(M−2)個以下の可変長符号との組合せを、非ゼロ値およびゼロ値の合計が少なくとも(M−1)個である第2復号データに変換可能な第2テーブル格納部と、符号長がN以上で、対応する復号データのゼロ値がゼロ個である可変長符号、あるいはこの可変符号と、対応する復号データのゼロ値がゼロ個以上で(M−2)個以下の可変長符号との組合せを非ゼロ値およびゼロ値の合計が少なくとも(M−1)個である第3復号データに変換可能な第3テーブル変換部と、ビットシフト部と、第4テーブル格納部と、を備える。 (もっと読む)


【課題】直交変換または逆直交変換を整数精度で行う際に、基底ベクトルのノルムをできるだけ等しくすると共に、基底ベクトルの直交性を考慮した基底を用いることにより、符号化効率の改善を可能にする。
【解決手段】符号化装置11の直交変換部3は、整数DCT基底を用いてDCTを行う。直交変換部3にて用いる整数DCT基底は、直交変換基底算出装置20により算出される。直交変換基底算出装置20の基底算出手段22は、小数DCT基底の各要素が整数に丸められた基底の各要素を±n(nは1以上の整数)の範囲で操作し、基底ベクトルのノルムの大きさの統一性と基底ベクトルの直交性とを向上させるための以下の数式のコスト関数を用いて、コストが最小になるように整数DCT基底の要素を求め、整数DCT基底を出力する。
cost=a×Σ|(xi,xi)−b|+Σ|(xi,xj)| (もっと読む)


【課題】ΔΣ型A/D変換器の長所を備え、かつシングルチップマイクロコンピュータと簡易なアナログ部品で構成されたA/D変換器を提供する。
【解決手段】差分器130が、入力アナログ信号とフィードバック信号との差分信号を生成し、積分器140が、差分信号を積分し、アナログ/デジタル変換器150が、変換クロックに同期して積分器140の出力に応じたデジタル信号を生成する。デジタル/デューティ変換器160が、デジタル信号に応じたデューティを有するパルス信号をフィードバック信号として差分器130へ出力し、デジタルフィルタ180が、デジタル信号に対してデシメーションフィルタリング処理を行う。分周器120、アナログ/デジタル変換器150、デジタル/デューティ変換器160、およびデジタルフィルタ180をシングルチップマイクロコンピュータ190の周辺機能を用いて実現する。 (もっと読む)


【課題】符号化効率を高めて符号化の複雑度を低減することを目的とする新たな符号化規格が開発されている。本発明は、CABACエントロピ符号化におけるデルタQP(dQP)符号化の改善を示すものである。
【解決手段】符号化及び/又は復号中にコンテキスト適応型2値算術符号化(CABAC)を利用するビデオ符号化システム又は装置を、本発明により非ゼロのデルタQP(dQP)を高度に2値化するように構成する。2値化中、単進符号化を使用してdQPの値と正負記号を別個に符号化し、その後dQP非ゼロフラグも含む2進列に組み合わせる。本発明は、dQPの正値及び負値の統計的対称を利用してビットを節約し、従って符号化効率を高める。 (もっと読む)


【課題】 目標圧縮率を保証しながらも画像データの劣化を抑制することが可能な符号化装置や符号化方法、当該符号化装置や当該符号化方法により符号化されたデータを復号化する復号化装置や復号化方法、当該符号化装置と当該復号化装置とを備えた符復号化システムを、提供することを目的とする。
【解決手段】 符号化装置1は、予測値データdipを順次生成する予測値データ生成部11と、画素データdiと予測値データdipとの差である予測誤差データdpを順次生成する予測誤差データ生成部12と、予測誤差データdpを順次符号化して可変長符号データdcを順次生成する符号化部13と、符号化部13を順次制御する符号化制御部14と、を備える。符号化制御部14は、可変長符号データdcの符号長と目標符号長との差分を累積して累積値を順次算出し、最終的な累積値が0以下になるように符号化部13を制御する。 (もっと読む)


【課題】可変長符号の出現パターンに依存せずに復号処理性能を向上可能とする。
【解決手段】VLD装置3は、第1テーブル記憶部11と、第2テーブル記憶部12と、優先度判定部13と、係数バッファ14と、係数格納制御部15と、DCT係数記憶部16とを有する。第2テーブル記憶部12は、複数種類の可変長符号の組合せを、それに対応する複数種類のDCT係数のゼロ値情報の組合せに対応づけた第2のテーブルを記憶する。第2のテーブルにより、入力ビットストリーム中の最大2つの可変長符号を同時に復号可能であり、可変長符号のビットパターンに依存せずに、復号処理性能を向上できる。また、ブロック単位で復号するのに必要な可変長符号のみを合成テーブルに登録しておくため、合成テーブル内の可変長符号の登録数を削減できる。 (もっと読む)


1 - 20 / 1,204