説明

国際特許分類[H03F1/30]の内容

電気 (1,674,590) | 基本電子回路 (63,536) | 増幅器 (10,074) | 増幅素子として電子管のみ,半導体装置のみまたは汎用素子のみを用いた増幅器の細部 (3,631) | 温度変化または供給電圧変化の影響を低減するための増幅器の変形 (397)

国際特許分類[H03F1/30]に分類される特許

1 - 10 / 397



Notice: Undefined index: from_cache in /mnt/www/gzt_ipc_list.php on line 285

【課題】 ステップ式可変減衰器を実装することなく、低雑音特性及び高飽和特性を確保しながら、温度変動に伴う利得変化を抑制することができる高周波増幅回路を得る。
【解決手段】 高周波信号を減衰させる可変減衰器と、半導体のバンドギャップに基づき温度比例電流及び温度固定電流を出力するバンドギャップリファレンス電流源回路と、前記温度比例電流及び前記温度固定電流を入力とし、温度に対して所定の傾きで変化する電圧を出力する可変減衰器制御電圧生成回路とを備え、前記可変減衰器制御電圧生成回路の出力電圧で前記可変減衰器の減衰量を制御する。 (もっと読む)


【課題】バイアス電流の制御電圧の設定範囲を拡大させつつ、バイアス回路の構成の自由度を向上させ、簡単かつ小規模な構成で複数の通信方式への対応を実現する高周波増幅回路を提供する。
【解決手段】バイアス回路32を、入力されるベース電流に応じたバイアス電流を増幅器11に供給するトランジスタQ5、基準電圧Vrefに応じた電流を流すトランジスタQ3、トランジスタQ3に流れる電流に応じてトランジスタQ5のベース電流を補正することによりトランジスタQ5の温度特性を補償するトランジスタQ2、及びトランジスタQ5のベースに接続され制御電圧Vccの切り替えに応じてトランジスタQ5のベース電流量を切り替えるバイアス切り替え部(トランジスタQ4、Q6、及び抵抗R5〜R7、R9、R10)で構成する。増幅器11は、バイアス回路32から供給されるバイアス電流を用いて、入力される高周波信号を増幅する。 (もっと読む)


【課題】ICチップのプロセスばらつきによって高周波特性がばらついた場合でも、回路特性を最適化できるICチップを基板にフリップチップ実装する無線装置を提供する。
【解決手段】無線装置は、マイクロ波、ミリ波帯の電力増幅器用高周波ICチップ100、バンプ102、入力端子103、出力端子104、基板105、アンダーフィル106、プロセスばらつき検出部110を有する。プロセスばらつき検出部は、プロセスばらつきによる回路特性の変動量をモニタし、モニタされた回路特性の変動量を用いて、算出されたパラーメータを有するアンダーフィル106が、基板105とミリ波帯の電力増幅器用高周波ICチップ100との間に充填されることで、プロセスばらつき及びアンダーフィルの影響があっても、所望の回路特性が得られる無線装置を提供できる。 (もっと読む)


【課題】電力増幅回路の利得の温度依存性を抑制し、温度補償回路を有するバイアス回路を備えた電力増幅回路を提供する。
【解決手段】ドレインが高電位に接続され、ソースが接地された増幅用トランジスタを備え、ソースが接地され増幅用トランジスタGTrのゲートにゲートが接続されたカレントミラートランジスタCMTrによって増幅用トランジスタのバイアス電流を制御する電力増幅回路であって、アノードが制御電源端子に接続された第1のダイオードD1と、アノードが第1のダイオードD1のカソードに結合され、カソードがカレントミラートランジスタCMTrのドレインに接続された第2のダイオードD2と、一方の端子が第2のダイオードD2のカソードに接続され他方の端子が接地された第1の抵抗素子R1と、第2のダイオードD2と並列接続された第2の抵抗素子R2とを備える。 (もっと読む)


【課題】温度補正を行なわなくても、逆対数変換した際に得られる出力信号が線形性を保つことができる対数/逆対数変換回路を提供する。
【解決手段】対数変換回路1の電流帰還用トランジスタTR2を通過した電流信号Iinを逆対数変換回路2に入力し、電流/電圧変換回路3でこの電流信号Iinをこれに対応した電圧値に変換した後、引算回路4で電流/電圧変換回路3の出力電圧と予め設定された基準電圧との差分を出力する構成とし、かつ引算回路4はその差分出力が電流信号Iinに比例した線形性をもつように回路定数を設定している。 (もっと読む)


【課題】増幅トランジスタのトランスコンダクタンスgmの変動を抑制する。
【解決手段】バイアス回路は,第1のドレイン電流を生成する第1のトランジスタと,第2のドレイン電流を生成する第2のトランジスタと,直列に接続された複数の抵抗素子を有し,複数の抵抗素子に前記第2のドレイン電流と第1のドレイン電流の差電流が供給され,複数の抵抗素子間の複数のノードにそれぞれ対応する電圧を生成する抵抗回路とを有する。そして,抵抗回路の第1のノードの第1の電圧が第1のトランジスタのゲートに印加され,第2のノードの第2の電圧が第2のトランジスタのゲートに印加され,第1,第2のノードと異なる第3のノードの第3の電圧がバイアス電圧として出力される。 (もっと読む)


【課題】小規模の付加回路により、基準電圧の温度特性を簡易な調整によって十分に改善することができる基準電圧発生回路を提供する
【解決手段】バイポーラトランジスタ106、バイポーラトランジスタ106と並列に接続されるバイポーラトランジスタ107、バイポーラトランジスタ107のエミッタに一端が接続される抵抗素子104、バイポーラトランジスタ106のベース電位と、バイポーラトランジスタ107のベース電位との差分によって生じる差電圧を発生させる抵抗素子109、バイポーラトランジスタ106のエミッタ電位と抵抗素子104の他端の電位とが等しくなるように動作する演算増幅器105によって基準電圧発生回路を構成し、抵抗素子109が生成する差電圧が、温度によって変化する。 (もっと読む)


【課題】簡単な構成で入力オフセット電圧の温度依存性が小さいセンサ信号処理装置を提供する。
【解決手段】センサ用電源として第1の電源電圧V´ccを供給されて動作し、センサ出力Vs1、Vs2を出力するセンサ部100と、信号処理用電源として第2の電源電圧Vccを供給されて動作し、センサ出力Vs1、Vs2が入力される差動対を使用する差動増幅部を有して信号処理を行なう信号処理部200と、を有してセンサ信号処理装置1を構成する。この第1の電源電圧V´ccは、信号処理部200の差動増幅部250の入力電圧範囲の下限領域に設定される。 (もっと読む)


【課題】過熱検出回路の検出温度がばらつくことを抑制する。
【解決手段】コンパレータ170には、第1抵抗110と第1定電流源120の間の電圧Aと、ダイオード130と第2定電流源140の間の電圧Bが入力される。第1リーク電流源150は、ドレインが第1抵抗110と第1定電流源120の間に接続されており、ソース及びゲート電極が第1定電流源120と第2配線104の間に接続されている。第2リーク電流源160は、ドレインが第1配線102とダイオード130の間に接続されており、ソース及びゲート電極がダイオード130と第2定電流源140の間に接続されている。 (もっと読む)


1 - 10 / 397