説明

アクティブマトリクス装置およびその駆動方法

【課題】誘電体エレクトロウェッティング(EWOD)装置における迅速で高い空間解像度を有する温度制御を、簡易な加工かつ低コストにて実現する。
【解決手段】アレイ上の1つまたは複数の液滴を操作するよう構成された複数のアレイ素子42を備え、各アレイ素子駆動回路は、上部基板36上に形成される上部基板電極、下部基板72上に形成される第1の駆動電極38と、複数のアレイ素子間で1つまたは複数の液滴を移動させるために、第1の駆動電極に対し駆動電圧を選択的に与えるよう構成された回路と、を含み、複数のアレイ素子の少なくとも1つは、下部基板上にさらに形成され、1つまたは複数の液滴が、少なくとも1つのアレイ素子の上部基板電極および第1の駆動電極に挟まれたとき、1つまたは複数の液滴を加熱するよう構成された加熱素子と、加熱素子を制御するよう構成された回路と、を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アクティブマトリクスアレイマトリクスおよび該アレイの素子に関する。一態様において、本発明は、デジタルマイクロ流体工学に関し、より詳細には、アクティブマトリクス型の誘電体エレクトロウェッティング(AM−EWOD:active matrix electrowetting-on-dielectric)装置に関する。誘電体エレクトロウェッティング(EWOD:Electro-wetting-On-Dielectric)とは、アレイ上の液滴を操作する公知の技術である。アクティブマトリクスEWOD(AM−EWOD)は、EWODを、アクティブマトリクスアレイにおいて、例えば薄膜トランジスタ(TFT)を用いることによって実施することを指す。本発明はさらに、上述の装置の駆動方法に関する。
【背景技術】
【0002】
誘電体エレクトロウェッティング(EWOD)は、電場の印加によって液滴を操作する公知の技術である。故に、EWODはラボオンチップ(lab-on-a-chip)技術に関するデジタルマイクロ流体工学に関して好適な技術である。上記技術の基礎的な原理への導入は、“Digital microfluidics: is a true lab-on-a-chip possible?”,R. B. Fair,Microfluid Nanofluid (2007年)第3巻245-281に見出すことができる。
【0003】
米国特許6565727号(A. Shenderov; 2003年5月20日発行)には、液滴を、アレイを通して移動させるためのパッシブマトリクス型のEWOD装置が開示されている。
【0004】
米国特許6911132号(V. Pamula et al.; 2005年6月28日発行)には、2次元での液滴の位置および移動を制御するための2次元EWODアレイが開示されている。
【0005】
EWOD技術の用途の多くは、液滴の温度の制御および/または変更を必要とする。例として、分子診断、物質合成および核酸増幅が含まれる。後者は一般に、2段階以上の温度下を循環する生化学試薬を必要とする。温度制御を達成するための手法の一つとして、装置全体およびその筐体の温度を、外的手段、例えば電熱板によって制御することが挙げられる。この手法には、達成される温度変化率が一般に低く、また、配列全体の温度が均一になるまでに長い時間を要するという不都合がある。さらに、同一の装置内の異なる液滴が同時に異なる温度を有することができない。
【0006】
米国特許20080274513(A. Shenderov et al.; 2008年11月6日発行)には、1つの装置内の複数の加熱領域を異なる温度に維持する別の手法が開示されており、エレクトロウェッティングを用いて該液滴の温度を制御し、異なる領域間で液滴を移動させる手法が開示されている。
【0007】
国際公開第2009/003184号(C. Wu; 2008年12月31日発行)にはさらに、下部および上部の基板の各裏面上に熱交換器をマウントすることで、上述のような加熱領域を実装する方法が開示されている。この方法には、上記基板は一般的に熱伝導性の低い物質(例としてガラス)によって製造されるために、上記熱交換器と液滴との間の熱抵抗が相対的に大きくなるという不都合がある。このことは、達成される温度制御の空間解像度に悪影響を及ぼすとともに、熱時定数を長くする。
【0008】
米国特許第7163612号(J. Sterling et al.; 2007年1月16日発行)には、TFTに基づくエレクトロニクスを、AM表示技術に利用されるものと非常に類似した回路設計によって、EWODアレイに対する電圧パルスのアドレス制御に用いる方法が記載されている。このような手法は“アクティブマトリクス型の誘電体エレクトロウェッティング” (AM−EWOD:active matrix electrowetting-on-dielectric)と称されてもよい。米国特許第7163612号における問題は、上記AM−EWODのTFTバックプレーンを実現する回路の実施形態が一切開示されていない点である。
【0009】
国際公開第2010/041214号(C. J. M. Lasance et al.; 2010年4月15日発行)には、流体チャンバーのアレイを備えるマイクロ流体装置が記載されている。各チャンバーは、当該基板に結合された、独立に制御可能なヒータを含む。各チャンバーはまた、温度センサを含む。国際公開第2010/041214号にはさらに、統合された電子回路を、上記ヒータおよび温度センサを駆動するために、上記基板上に配置する方法が記載されている。国際公開第2010/041214号における問題は、上記装置の上記異なるチャンバー間で流体を移動させる、統合された手段が一切開示されていない点である。
【発明の概要】
【発明が解決しようとする課題】
【0010】
従来のEWOD装置に関連する上述した問題点に鑑み、EWOD装置には、迅速な(すなわち、温度変化率が増大した)、高い空間解像度を有する温度制御を、簡易な加工かつ低コストにて実現することが強く求められている。
【課題を解決するための手段】
【0011】
本発明の一態様に係るEWOD装置は、二重機能を有する、アレイ素子に統合された加熱機能を備える。加熱素子は、液滴の移動の制御に用いられる層と同一の導電性層において実現される。上記加熱素子における電圧入力は、以下の2つの動作モードを促進するために制御されてもよい。
・EWOD制御モード:加熱素子が、液滴の移動を制御する構造の一部を形成する。従って上記液滴は当該アレイ素子上に移動することができる。
・加熱モード:加熱素子が、液滴を加熱するためのエネルギーを放出する。
【0012】
本発明は、広い概念で捉えればアクティブマトリクス型のEWOD装置に限定されるものではないが、本発明の実施形態の記載では、EWOD装置はAM−EWODとして実施されている。上記装置は、上記加熱素子による放出熱の制御、およびEWODによる液滴の移動の制御のためのTFT駆動回路を内蔵していてもよい。
【0013】
本発明の一態様によれば、誘電体エレクトロウェッティング(EWOD:electrowetting on dielectric)装置が提供される。上記EWOD装置は、アレイ上の1つまたは複数の液滴を操作するよう構成された複数のアレイ素子を備え、上記アレイ素子のそれぞれは、対応するアレイ素子駆動回路を含み、各アレイ素子駆動回路は、当該二者間に1つまたは複数の液滴を配置可能であり、上部基板電極は上部基板上に形成され、第1の駆動電極は下部基板上に形成される、上部基板電極および第1の駆動電極と、上記複数のアレイ素子間で上記1つまたは複数の液滴を移動させるために、上記第1の駆動電極に対し駆動電圧を選択的に与えるよう構成された回路と、を含み、上記複数のアレイ素子の少なくとも1つは、上記下部基板上にさらに形成され、上記1つまたは複数の液滴が、上記少なくとも1つのアレイ素子の上記上部基板電極および上記第1の駆動電極に挟まれたとき、上記1つまたは複数の液滴を加熱するよう構成された加熱素子と、上記加熱素子を制御するよう構成された回路と、を含む。
【0014】
別の態様によれば、上記加熱素子は第2の駆動電極を含み、上記加熱素子を制御するよう構成された上記回路は、上記第2の駆動電極を、上記第2の駆動電極によって上記1つまたは複数の液滴に対し印加されるエレクトロウェッティング力を制御するために上記第2の駆動電極に駆動電圧が与えられる第1の動作モードと、上記第2の駆動電極に対し与えられる電圧によって、上記第2の駆動電極に、上記1つまたは複数の液滴を加熱するための熱エネルギーを放出させる第2の動作モードとの間で切り替える。
【0015】
別の態様に従えば、上記第1の動作モードにおいて、上記加熱素子を制御するよう構成された上記回路は、上記第2の駆動電極を、上記第1の駆動電極と同じ電位に維持する。
【0016】
別の態様によれば、上記第2の動作モードにおいて、上記加熱素子を制御するよう構成された上記回路は、抵抗熱エネルギーを発生させるために、上記第2の駆動電極内で電位差を生じさせる。
【0017】
さらに別の態様によれば、上記電位差は、上記第2の動作モードにおける加熱率を制御するためにパルス幅を変調させる。
【0018】
別の態様によれば、上記電位差の値は、上記第2の動作モードにおける加熱率を制御するために変更される。
【0019】
さらに別の態様に従えば、上記第1の駆動電極に対し与えられる駆動電圧は、AC駆動スキームに従う。
【0020】
さらに別の態様に従えば、上記複数のアレイ素子の上記少なくとも1つにおいて、上記第1の駆動電極は、上記第2の駆動電極の周囲を囲むように形成される。
【0021】
別の態様によれば、上記第2の駆動電極は、上記第1の駆動電極のコーナーとの距離を最大化するために傾けられる。
【0022】
さらに別の態様によれば、上記複数のアレイ素子の上記少なくとも1つは、複合的アレイ素子を含む。
【0023】
別の態様に従えば、上記複合的アレイ素子は近接するアレイ素子を含む。
【0024】
別の態様によれば、上記近接するアレイ素子の周囲を囲む第3の駆動電極がさらに含まれる。
【0025】
別の態様に従えば、上記複合的アレイ素子内の上記加熱素子を制御するよう構成された上記回路は、上記複合的アレイ素子間で共有される。
【0026】
さらに別の態様によれば、上記複合的アレイ素子のそれぞれは、自身が含む上記加熱素子を制御するよう構成された個別の回路を含む。
【0027】
別の態様によれば、上記加熱素子を制御するよう構成された上記回路は、上記第1の駆動電極に対する駆動電圧を選択的に与えるよう構成された上記回路と同じ書き込み機能性によって、制御電圧を受信するよう構成される。
【0028】
さらに別の態様では、上記複数のアレイ素子の上記少なくとも1つはさらに、温度センサを含む。
【0029】
さらに別の態様によれば、上記温度センサは、上記加熱素子が上記温度センサと上記1つまたは複数の液滴との間に配置されるように、上記下部基板上に形成される。
【0030】
別の態様によれば、駆動電圧を選択的に与えるよう構成された上記回路と、上記加熱素子を制御するよう構成された上記回路とのうち少なくとも1つの全てまたは一部は、上記下部基板上に形成される。
【0031】
さらに別の態様に従えば、駆動電圧を選択的に与えるよう構成された上記回路と、上記加熱素子を制御するよう構成された上記回路とのうち少なくとも1つの全てまたは一部は、上記下部基板から離れて形成される。
【0032】
本発明の別の態様によれば、誘電体エレクトロウェッティング(EWOD:electrowetting on dielectric)装置の駆動方法が提供される。上記EWOD装置は、アレイ上の1つまたは複数の液滴を操作するよう構成された複数のアレイ素子を備え、上記アレイ素子のそれぞれは、対応するアレイ素子駆動回路を含み、各アレイ素子駆動回路は、当該二者間に1つまたは複数の液滴を配置可能であり、上部基板電極は上部基板上に形成され、第1の駆動電極は下部基板上に形成されることを特徴とする上部基板電極および第1の駆動電極と、上記複数のアレイ素子間で上記1つまたは複数の液滴を移動させるために、上記第1の駆動電極に対し駆動電圧を選択的に与えるよう構成された回路と、を含み、上記複数のアレイ素子の少なくとも1つは、上記下部基板上にさらに形成され、上記1つまたは複数の液滴が、上記少なくとも1つのアレイ素子の上記上部基板電極および上記第1の駆動電極に挟まれたとき、上記1つまたは複数の液滴を加熱するよう構成され、第2の駆動電極を備える加熱素子と、上記第2の駆動電極に対し駆動電圧を与えるよう構成された回路と、を含み、上記方法は、上記第2の駆動電極を、上記第2の駆動電極によって上記1つまたは複数の液滴に対し印加されるエレクトロウェッティング力を制御するために上記第2の駆動電極に駆動電圧が与えられる第1の動作モードと、上記第2の駆動電極に対し与えられる電圧によって、上記第2の駆動電極に、上記1つまたは複数の液滴を加熱するための熱エネルギーを放出させる第2の動作モードとの間で切り替える工程を含む。
【0033】
別の態様に従えば、上記方法は、上記第1の動作モード中、上記第2の駆動電極を、上記第1の駆動電極と同じ電位に維持する工程を含む。
【0034】
さらに別の態様に従えば、上記方法は、上記第2の動作モード中、抵抗熱エネルギーを発生させるために、上記第2の駆動電極内で電位差を生じさせる工程を含む。
【0035】
さらに別の態様によれば、上記方法は、上記第2の動作モードにおける加熱率を制御するために、上記電位差のパルス幅を変調する工程を含む。
【0036】
別の態様によれば、上記方法は、上記第2の動作モードにおける加熱率を制御するために、上記電位差の値を変更する工程を含む。
【0037】
さらに別の態様によれば、上記第1の駆動電極に対し与えられる駆動電圧は、AC駆動スキームに従う。
【発明の効果】
【0038】
本発明によれば、加熱素子は、上記液滴の、上記アレイ素子上への移動および上記アレイ素子からの移動を補助するとともに、上記液滴を加熱するためのエネルギーを放出するという2つの機能を実行できる。上記の加熱能力はTFT制御基板内に実装されてもよく、これにより加工が容易となるとともにコストを削減することができる。
【図面の簡単な説明】
【0039】
付属の図面において、類似の部材名は類似の部品または特徴を意味している。
【図1】本発明の第1の実施形態に係るEWOD装置を示す図である。
【図2】上記第1の実施形態に係る装置のある種の上記アレイ素子の断面を示す図である。
【図3】上記第1の実施形態に係る薄膜電子回路の一構成を示す図である。
【図4】上記第1の実施形態に係る標準アレイ素子のアレイ素子駆動回路を示す図である。
【図5】上記第1の実施形態に係る標準アレイ素子の別のアレイ素子駆動回路を示す図である。
【図6A】上記第1の実施形態に係る上記EW駆動電極の一構成を示す図である。
【図6B】上記第1の実施形態に係る加熱アレイ素子のアレイ素子駆動回路を示す図である。
【図6C】加熱アレイ素子において駆動信号を供給するための構造を示す図である。
【図7】液滴を移動させるまたは加熱するための典型的なシーケンスを示す図である。
【図8】一電極アレイ内に実装され得る複数の加熱領域を示す図である。
【図9】加熱領域を実現するための上記EW駆動電極の別の構成を示す図である。
【図10】2×2のアレイ素子を取り囲む加熱領域を実現するための上記EW駆動電極の別の構成を示す図である。
【図11】本発明の第2の実施形態に係るアレイ素子回路を示す図である。
【図12A】上記第2の実施形態に係る上記アレイ素子回路を動作させるための供給電圧のタイミング信号を示す図である。
【図12B】加熱アレイ素子において駆動信号を供給するための構造を示す図である。
【図13】上記第2の実施形態に係る、第1の構成における上記アレイ素子回路を動作させるためのタイミング信号を示す図である。
【図14】は、上記第2の実施形態に係る、第2の構成における上記アレイ素子回路を動作させるためのタイミング信号を示す図である。
【図15】上記第2の実施形態に係る、第3の構成における上記アレイ素子回路を動作させるためのタイミング信号を示す図である。
【図16】上記第2の実施形態に係る、異なる構成を用いた上記アレイ素子回路を動作させるためのタイミング信号を示す図である。
【図17】本発明の第3の実施形態に係る加熱アレイ素子のアレイ素子回路を示す図である。
【図18】本発明の第4の実施形態に係る上記装置のある種の上記アレイ素子の断面を示す図である。
【発明を実施するための形態】
【0040】
図1は、本発明の第1の典型的な実施形態に係るAM−EWOD装置を示す図である。上記AM−EWOD装置は、下部基板72を含み、下部基板72上に薄膜電子回路74が配置されている。複数のアドレス可能なEW駆動電極38が電極アレイ42上に配置されており、電極アレイ42は、M×N個の素子(M、Nはそれぞれ任意の数値)を有する。薄膜電子回路74は、従来のアクティブマトリクスアドレススキームを用いて、駆動電極38に対し、対応する駆動電圧を選択的に与えるよう構成される。EWOD液滴4は、基板72と上部基板36とに閉じ込められている。ただし、複数の液滴4が存在する構成も本発明の範疇に入ることを理解されたい。
【0041】
図2は、上記アレイ素子の組の断面図である。先に述べたように、上記装置は、薄膜電子回路74が、その上に配置された下部基板72を含む。下部基板72(薄膜電子回路層74の一部と看做されてもよい)の最上層は、複数の駆動電極38(図2では38Aおよび38B)がそれぞれのアレイ素子に対応するようパターン配列される。駆動電極38は、EW駆動素子38と称されてもよい。EW駆動素子38という用語は、特定のアレイ素子と関連付けられた駆動電極38と、この電極38に直接接続された電機回路のノードと、の両方に言及するために付随する文章において用いられてもよい。液滴4は、イオン物質からなり、下部基板72と、上部基板36との間の面に閉じ込められている。上記2つの基板間の適切な間隙はスペーサ32によって実現されてもよく、非イオン液体34(例えばオイル)が、液滴4が占有しない体積を占有するために用いられてもよい。絶縁体層20は、下部基板72上に配置されており、導電性電極38A、38Bを、直上の液滴4がθで表される接触角で接する面である疎水面16から分離する。上部基板36の上部には、液滴4が接触するさらに別の疎水層26が設けられている。上部基板36と疎水層26との間には、上部基板電極28が設けられている。薄膜電子回路74の設計と操作とを適切に行うことで、EW駆動電圧(例えば、V、VおよびV00)と称される異なる電圧が、異なる電極(例えば、電極28、38Aおよび38Bの各々)に対し印加される。従って、疎水面16の疎水性は、上記2つの基板72と36との間の水平方向の平面内において、複数のアレイ素子間に亘る、1つまたは複数の液滴の移動を促進するように制御され得る。
【0042】
基板72上の薄膜電子回路74の構成が、図3に示されている。電極アレイ42の各素子は、対応する駆動電極38の電位を制御するための駆動電圧を選択的に与えるよう構成された回路を実現するアレイ素子駆動回路(詳細は後述する)を含む。統合された行駆動回路76および列駆動回路78が、後述するように、上記アレイ素子駆動回路に対し、対応する駆動電圧および制御信号を供給するために、薄膜電子回路74にさらに実装されている。シリアルインターフェース80が、連続的な入力データストリームを処理し、要求された電圧をEWODアレイ42に供給するためにさらに提供されてもよい。上記アレイ基板と、外部駆動エレクトロニクス、電力供給等との間の接続線82の数は、大きなアレイサイズに対してさえ、相対的に少なくてもよい。
【0043】
上記典型的な実施形態に係る電極アレイ42は、2つのタイプのアレイ素子、すなわち、標準アレイ素子84と、加熱アレイ素子88とを含む。標準アレイ素子84は、例えば、単一のEW駆動電極38と、該EW駆動電極38に書き込まれるエレクトロウェッティング電圧を制御するために用いられるアレイ素子駆動回路と、を有する。
【0044】
図4は、アレイ素子84におけるアレイ素子駆動回路の取りうる設計を示す図である。この回路は以下を備えている。
・アレイ42の同一列内のアレイ素子に共通であり得る、列書き込みラインSL(列駆動回路78に由来する)
・アレイ42の同一行内のアレイ素子に共通であり得る、行選択ラインGL(行駆動回路76に由来する)
・n型スイッチトランジスタ83
・キャパシタ86
上記回路は以下のように接続される。同一列内の全てのアレイ素子に共通の列書き込みラインSLは、トランジスタ83のソースに接続される。同一行内の全てのアレイ素子に共通の行選択ラインGLは、トランジスタ83のゲートに接続される。トランジスタ83のドレインは、EW駆動電極38(ノード38として図示)に接続される。キャパシタ86は、EW駆動電極38とアースラインとの間に接続される。
【0045】
EW駆動電極38に電圧を書き込むために、上記列ラインSLに対する電圧がプログラムされる。次に、スイッチトランジスタ83がオンに切り替えられるよう、上記行ラインGLに対する電圧が高くなる。次に、SLに対する電圧がEW駆動電極38に書き込まれ、キャパシタ86において保存される。典型的な構成では、駆動状態にある液滴に対応するEW駆動電極38には電圧VEWが書き込まれてもよく、脱駆動状態にある液滴に対応するEW駆動電極38には電圧0Vが書き込まれてもよく、上部電極28の電位はV=0Vであってもよい。このように、本発明は、上記駆動電極に対して上記駆動電圧を選択的に与えることにより、1つまたは複数の液滴を複数のアレイ素子間で移動させることができる。
【0046】
当業者であれば、EW駆動電極38に対する電圧の書き込みおよび保存に、他のアレイ素子駆動回路が適用可能であることを容易に理解できるであろう。例えば、図5に示すように、標準アレイ素子84内の駆動回路として、SRAM(Static Random Access Memory)構成が用いられてもよい。このアレイ素子駆動回路は以下を備えている。
・同一列内のアレイ素子に共通であり得る、列書き込みラインSL(列駆動回路78に由来する)
・同一行内のアレイ素子に共通であり得る、行選択ラインGL(行駆動回路76に由来する)
・n型スイッチトランジスタ102
・p型スイッチトランジスタ104
・第1のインバータ106
・第2のインバータ108
上記アレイ素子駆動回路は以下のように接続される。
【0047】
列書き込みラインSLは、スイッチトランジスタ102のソースに接続される。行選択ラインGLは、スイッチトランジスタ102のゲート、および、スイッチトランジスタ104のゲートに接続される。スイッチトランジスタ104のドレインは、スイッチトランジスタ102のドレイン、および、第1のインバータ106の入力に接続される。第1のインバータ106の出力は、第2のインバータ108の入力に接続される。第2のインバータ108の出力は、スイッチトランジスタ104のソース、および、EW駆動電極38に接続される。
【0048】
上記アレイ素子駆動回路は標準SRAM素子として動作する。EW駆動電極38に対し高レベルの電圧を書き込むために、列書き込みラインSLに対し高電圧が書き込まれ、次に電圧パルスが行選択ラインGLに対し印加される。EW駆動電極38に対し低レベルの電圧を書き込むためには、列書き込みラインSLに対し低電圧が書き込まれ、同様の手順が実行される。
【0049】
図6Aに示すように、各加熱アレイ素子88は、複合駆動回路38’を含む点において、標準アレイ素子84と異なっている。複合駆動回路38’は、標準EW駆動電極38(本稿では第1のEW駆動電極とも称する)および第2のEW駆動電極38Dの両方を含む。第2のEW駆動電極38Dは、EW駆動電極38と電気的に接続されておらず、個別に駆動される。第2のEW駆動電極38Dは、加熱素子としての追加の機能を有する。図6Aは、複合駆動電極38’内に2つのEW駆動電極38および38Dを形成するために用いられる薄膜導電性物質の典型的な構成の平面図である。このケースでは、標準EW駆動電極38は、第2のEW駆動電極38Dの周囲を取り囲んで形成される。従って、駆動電極38は主として、標準アレイ素子84における、同等の電極と同様に機能する。AおよびBで示される、第2のEW駆動電極38Dに対する2つの個別の電気的入力が形成される。第2のEW駆動電極38Dは、抵抗加熱素子に一般的に見られるように、蛇行形状を有している。従って、EW駆動電極38Dは、第2のEW駆動電極38Dの構成の物質および形状の関数である抵抗Rを有する抵抗素子と、電気的に同等である。
【0050】
図6Bに示すように、加熱アレイ素子88に対するアレイ素子駆動回路は、上記標準アレイ素子のアレイ素子駆動回路と類似しているが、例外として、追加の制御ラインが、図6Bにおいて抵抗素子として示されている第2のEW駆動電極38Dにおけるバイアスを制御するための入力AおよびBに対するそれぞれの信号電圧を与えるという点で異なる。入力AおよびBに供給される電圧を制御するための制御回路は、標準デジタル技術によって実現されてもよく、外的に(例えばプリント基板によって)与えられる構成と、TFT基板72に組み込まれている構成とのいずれであってもよい。
【0051】
図6Cに、入力AおよびBを制御し、これによって上記加熱素子(第2のEW駆動電極38D)を制御するよう構成された回路となるヒータ制御回路110の典型例が示されている。
【0052】
ヒータ制御回路110は、EWODCおよびHEATSIGで表される2つのデジタル入力を有し、以下を含んでいる。
・第1のアナログスイッチ132
・第2のアナログスイッチ134
・第3のアナログスイッチ136
・インバータ138
回路110は以下のように接続される。デジタル入力信号HEATSIGは、アナログスイッチ134の入力、インバータ138の入力、アナログスイッチ134のn型トランジスタのゲート、アナログスイッチ132のp型トランジスタのゲート、および、アナログスイッチ136のn型トランジスタのゲートに接続される。この回路ノードはHDと称される。インバータ138の出力は、アナログスイッチ132のn型トランジスタのゲート、アナログスイッチ134のp型トランジスタのゲート、および、アナログスイッチ136のp型トランジスタのゲートに接続されている。この回路ノードはHDBと称される。アナログスイッチ132の出力は、抵抗加熱素子38Dの端子Aに接続されているアナログスイッチ134の出力に接続されている。アナログスイッチ136の入力は、抵抗加熱素子38Dの端子Bに接続されている。アナログスイッチ136の出力は接地されている。
【0053】
上記ヒータ制御回路の動作は以下のとおりである。デジタル入力信号HEATSIGおよびEWODCは、外部から上記装置に供給され、低論理レベル=0Vおよび高論理レベル=VEWを有している。
【0054】
デジタル入力HEATSIGが低論理レベルにあるとき、ノードHD=0V且つノードHDB=VEWである。この結果、アナログスイッチ134が閉じられ、アナログスイッチ132が開き、アナログスイッチ136が閉じられる。これらの条件の下、ノードAおよびBの電位は、論理レベル入力EWODCによって決定される。EWODCが低レベル0Vにある場合は、ノードAおよびBにおいても0Vの電位が取得される。EWODCが高レベルVEWにある場合は、ノードAおよびBにおいてもVEWの電位が取得される。交代して、デジタル入力HEATSIGが高論理レベルにあるとき、ノードHD=VEW且つノードHDB=0Vである。続いて、アナログスイッチ134が開き、アナログスイッチ132が閉じられ、アナログスイッチ136が開く。この状況において、ノードBはアナログスイッチ136を介して0Vに放電され、ノードAの電位はVEWとなる。このように、この条件は、EW駆動電極38Dとしての抵抗加熱素子における電位VEWの生成に対応する。その際、外部から供給された入力信号HEATSIGが、有効な電流を得るために、および、適切にバッファされるために要求されることは、当業者にとっては明らかであろう。
【0055】
上述のように、ヒータ制御回路110は、以下の3つの設定のうち任意の1つを任意の時点において実現するよう、上記電圧入力AおよびBを制御するために構成される。
設定1:A=B=VEW
設定2:A=VEW、B=0V
設定3:A=B=0V
設定1では、第2のEW駆動電極38Dの入力AおよびBの両方が、高レベルの電圧VEWとなる。その結果、電極38Dにおいて電位エネルギーが降下されず、上記抵抗において熱という形でエネルギーが放出されない。同時に、加熱アレイ素子88内の標準駆動電極38も高レベルの電圧VEWにプログラムされてもよい。従って、標準EW駆動電極38および第2のEW駆動電極38Dは、高レベルの電圧VEWで組み合わさって、上記アレイ素子において液滴を駆動状態にする。設定3では、入力AおよびBの両方が、低レベルの電圧0Vとなる。従って、上記と同様に、第2のEW駆動電極38Dにおいて抵抗熱エネルギーは放出されない。設定3では、標準駆動電極38および第2のEW駆動電極38Dは、共に低レベルの電圧0Vにプログラムされ、上記アレイ素子において液滴を脱駆動状態にする。
【0056】
設定2では、入力AおよびB間の電位差VEW−0Vの結果として、電圧VEWが第2のEW駆動電極38Dにおいて降下される。これにより、VEW/Rの値を有する合計電力が、ジュール加熱によって駆動電極38D内で放出される。上記抵抗Rの値は、加熱素子38Dの配置およびこの構造を作る物質に依存する。典型的には、Rの値は、用途によって求められる温度まで液滴4を加熱するよう、有効な量の熱が放出されるために十分小さくなるように選択される。例えば、ポリメラーゼ連鎖反応(PCR:polymerase chain reaction)に関しては、上記液滴の温度上昇は最大摂氏90度程度までであることが要求されてもよい。他の用途では、例えば、より小さい温度上昇が求められてもよく、例えば、多くの免疫アッセイでは、典型的な実行温度は摂氏37度である。上記抵抗Rの値の選択において、上記ヒータ駆動回路における接続線および回路部品の抵抗(例えば、図6Cを参照すれば、オン状態であるときのアナログスイッチ134および136の抵抗)に起因する電圧降下を考慮することが必要であってもよい。この理由により、上記接続線等の抵抗に起因する電圧降下の影響が大きくなるように、抵抗Rの値はあまり低くならないことが好ましくてもよい。さらに考慮すれば、過度の加熱による当該素子に対する損傷(例えば素子の融解)を避けるために、Rの値は十分に大きいことが望ましい。これらの要素全てを考慮すれば、実際の最適なRの値は、状況に依存するが、典型的には100−10Kオームの範囲内が期待されてもよい。
【0057】
上記のように、第2のEW駆動電極38Dは、2つの動作モード間で切り替え可能である。第1の動作モードでは、第2のEW駆動電極38Dは、設定1と3との間で切り替わることによって、液滴に印加されるエレクトロウェッティング力を制御するために使用される。第2の動作モードでは、駆動電極38Dは、設定2で用いられ、液滴4を加熱するために用いられ得る熱エネルギーを放出する。
【0058】
このスキームの変形例において、第2のEW駆動電極38Dの入力Aに供給される電圧は、一定期間上記電圧がVEWとなり、残りの期間上記電圧が0Vとなるよう、ヒータ制御回路110の入力信号HEATSIGのパルス幅変調(PWM:Pulse Width Modulation)によって制御されてもよい。その場合、放出される合計電力は、nVEW/Rに等しくなる(パラメータnは、PWMによって制御されるHEATSIG信号のデューティサイクルに対応し、0から1の値を取る)。従って、HEATSIG信号のデューティサイクルを変更することによって、加熱率を制御することができる。このスキームのさらなる変形例において、設定2において端子Aに印加されるデジタル入力信号HEATSIGの高レベル電圧は、Vの値を取ってもよく、VEWと異なり、この場合に上記抵抗器において放出される電力はV/Rとなる。
【0059】
上述したように、第2のEW駆動電極38Dは、液滴4の移動の制御と、液滴4の加熱との両方のために用いられてもよい。図7は、上記AM−EWOD装置において、この二重機能がどのように利用されるかの例を示す図である。液滴4は、初めは、従来型の第1のAM−EWODアレイ素子84Aの位置に存在する。ここでは、液滴4が、第2のアレイ素子88上に移動し、第3のアレイ素子84B(第1のアレイ素子84Aと同様に従来型である)に移動する前に、当該第2のアレイ素子88上に保持されて加熱されるシーケンスを説明する。第1のアレイ素子84A上に配置されたとき、第1のアレイ素子84のEW駆動電極38に供給される電圧はVEWであり、第2のアレイ素子88のEW駆動電極38および第2のEW駆動電極38D(入力AおよびB)に供給される電圧は0Vであり、第3のアレイ素子84BのEW駆動電極38に供給される電圧は0Vである。液滴4を第2のアレイ素子88上に移動させるために、第2のアレイ素子88のEW駆動電極38に供給される電圧、および、第2のEW駆動電極38Dの入力AおよびBの両者に対する電圧は、全てVEWとなり、第1のアレイ素子84AのEW駆動電極38に供給される電圧は0Vとなる。続いて、液滴4は、上記エレクトロウェッティング力の作用により、第1のアレイ素子84Aから第2のアレイ素子88へと移動する。
【0060】
第2の、加熱アレイ素子88において、液滴4を加熱するために、EW駆動電極38Dの上記入力の1つ(例えばB)に供給される電圧は0Vとなり、一方で、他方の入力(例えばA)に供給される電圧はVEWに維持される。これらの条件下でEW駆動電極38Dに電流が流れ、電気的エネルギーが放出された結果ジュール加熱が生じる。これにより、液滴4を加熱するという効果を奏する。上記システムは、液滴4を当該の用途で求められる温度まで加熱するために十分な時間(例として、化学反応を生じさせるために十分な時間)、この状態に維持されてもよい。ここで、上記加熱操作中の全期間において、第2の、加熱アレイ素子88のEW駆動電極38において、電圧VEWが維持されてもよく、これにより、この期間中は、上記液滴を第2のアレイ素子88の位置に維持してもよい。上記加熱操作が完了すると、第2のEW駆動電極38Dの両方の接続における電圧は0Vに設定される。そして、液滴4は、第3のアレイ素子84Bに移動する。これは、第2のアレイ素子88のEW駆動電極38の電圧を0Vにし、第3のアレイ素子84BのEW駆動電極38の電圧をVEWにすることで達成される。そして、液滴4は、上記エレクトロウェッティング力により、第3のアレイ素子に移動する。これにより、操作は完了となる。
【0061】
図8は、電極アレイ42内に複数の加熱領域が実装され得る、本発明の一実施例を示す図である。本図は、電極アレイ42内の異なる位置に存在する、大きさの異なる2つの液滴4Aおよび4Bを示している。上記液滴は、単一のアレイ素子(4A)または複数の近接するアレイ素子(4B)を覆うサイズを有していてもよい。加熱アレイ素子88A、88B、88C、88D、88E、88F、および88Gの位置によって様々な加熱領域が決定される。
【0062】
複数の液滴(例えば4A、4B)は、アレイ素子間を移動してもよく、図中の矢印が示すように、1つまたは複数の加熱領域を通過するよう構成されていてもよい。上記加熱領域は、加熱素子を含むよう構成された、単一(例えば88E)または複数(例えば88A、88B、88C、88D)の加熱アレイ素子を備えていてもよい。加熱領域内の加熱アレイ素子88の、第2のEW駆動電極38Dの電気的入力AおよびBは、各加熱アレイ素子において個別であってもよく、例えば、各加熱素子に対し個別のヒータ駆動回路110が提供されてもよい。別の例として、多数の加熱アレイ素子が、共有された共通のヒータ駆動回路110によって制御され得るよう、並列に接続されていてもよい。この場合、各駆動電極38Dの入力Aは互いに接続され、各駆動電極38Dの入力Bは互いに接続される。
【0063】
EW複合駆動電極38’を形成するために用いられる導電性層の構成には様々な変形例が考えられ、それらは本発明の範囲に含まれ得る。図9は、そのような構成の一つを示す図であり、第2のEW駆動電極38Dが、EW駆動電極38のコーナーとの距離を最大化するために、45度傾けられている。このような構成により、液滴の運搬速度を向上させることができる。
【0064】
図10は、加熱領域が2×2の加熱アレイ素子88A、88B、88C、および88Dのサブアレイからなる別の構成を示す図である。上記加熱領域は、標準アレイ素子84(例えば84Aおよび84B)によって、上記加熱領域の1(図示)または複数の辺を取り囲まれていてもよい。
【0065】
これらの加熱アレイ素子の各々は、上述したように、EW駆動電極38と、第2のEW駆動電極38Dとを含む。第2のEW駆動電極38Dとの電気的接続は、A1、A2、A3、A4で表され、互いに接続されていてもよく、または、独立に制御されていてもよい。B1、B2、B3およびB4についても同様である。図に示すとおり、第3のEW駆動電極38Eは、加熱アレイ素子88A、88B、88C、および88Dの2×2のサブアレイの周囲を囲む環状構造を有している。第3のEW駆動電極38Eに対する電気的接続A5およびB5は、図に示すとおり、上記環状構造の対側のエッジに配置されてもよい。この構造において、電流がA5からB5に流れる経路は、第3のEW駆動電極38Eの上部および底部を通る2経路が存在する。電気的には、第3のEW駆動電極は、並列な2つの抵抗器のように振舞い、A5およびB5への電気的接続は、第3のEW駆動電極38Eが、当該位置にある任意の液体の加熱に寄与するよう、電極38E内で熱を放出するように駆動されてもよい。第3のEW駆動電極38Eの電位はさらに、上述の方法による、加熱領域への、または加熱領域からの液滴の移動によって評価を行えるように、(A5およびB5に供給される電圧によって)制御可能であってもよい。
【0066】
図10の構成の利点は、第2のEW駆動電極38Dおよび第3のEW駆動電極38Eの抵抗の適切な選択、および、A1、A2、A3、A4およびA5に印加されるPWM信号の適切な制御によって、上記加熱領域内の温度は、正確に制御されてもよく、該加熱領域内において均一に、または意図的に不均一に設定されてもよい。図10に示す配置は典型的なものであり、当該の概念は、上記加熱領域が多数の加熱アレイ素子88を包含する構成を含み得ることは明らかであろう。
【0067】
本発明の利点は、上記ヒータ機能がTFT制御基板に実装されており、これにより、加工が容易となるとともに、低コスト化が実現される。
【0068】
さらなる利点は、上記液滴の移動をエレクトロウェッティング制御するために、上記加熱素子(すなわち駆動電極38D)を、AM−EWOD装置内の、EW駆動電極38に用いられる層と同一の層内に統合することができる点である。これにより、特に高効率なヒータオプションが、以下の理由によって実現される。
・上記加熱素子は、上記液滴の近傍に位置し、絶縁体層20と、疎水面16を形成する層とのみによって分離されている。これらの層を合計した厚みは、典型的にはわずか数百ナノメートルであり、よって、加熱素子38Dと液滴4との間の熱抵抗は比較的小さい。これにより、高効率な加熱が促進される(上記放出された熱エネルギーが高い割合で液滴4を加熱するために使用される)とともに、該加熱は、熱時定数が比較的短いために迅速に行われ得る。
・上記加熱素子は、ITOによって好都合に実現されてもよい。この構成の利点は、透明である(上記液滴を光学的に観測するために有用)点、および、高効率な加熱素子を実現するために好都合な電気的抵抗値を有する点である。上記加熱素子は、典型的には、ヒータとして動作するよう設定されたときに有効な熱エネルギーを放出することができるよう十分に低く、一方、流れる電流が接続線において相当の電圧ドロップを生じるようあまり低くない電気的抵抗を有するよう設計される。典型的な薄膜エレクトロニクス処理によって蒸着されたITOのシート抵抗は、加熱素子の適切な抵抗を実現するために好都合な値(典型的には〜数Kオーム)を取る。
【0069】
第2のEW駆動電極38Dが、上記液滴の移動の制御または加熱のいずれかのために構成され得る上述の実施例は、さらに次の利点を有する。すなわち、この素子の上記二重機能がなければ、液滴4を、加熱を行うための加熱アレイ素子88上に移動させることは困難であり得る。上記二重機能を含むことにより、第2のEW駆動電極38Dは、液滴4を正しい位置に操作し、続いて加熱を行うために用いられ得る。
【0070】
さらなる利点は、本発明は、装置内の複数の加熱領域の設置を容易にすることである。これらは、液滴の温度を複数の値の間で変化させることが求められる用途、または、温度サイクリングが実施される場合(例えば、核酸合成)に用いられてもよい。
【0071】
本発明の第2の実施形態は、図11に示すとおり、上記第1の実施形態において、アレイ素子84について別のアレイ素子駆動回路が用いられる例である。
【0072】
本実施形態に係る上記アレイ素子駆動回路は、以下の構成要素を含んでいる。
・以下を備える、SRAMセルからなるメモリ機能118。
・・同一列内のアレイ素子に共通であり得る、列書き込みラインSL(列駆動回路78に由来する)
・・同一行内のアレイ素子に共通であり得る、行選択ラインGL(行駆動回路76に由来する)
・・n型スイッチトランジスタ102
・・p型スイッチトランジスタ104
・・第1のインバータ106
・・第2のインバータ108
・以下を備える反転回路120
・・第1のアナログスイッチ114
・・第2のアナログスイッチ116
・・上記アレイ内の全ての素子に共通であり得る電圧供給V
・・上記アレイ内の全ての素子に共通であり得る電圧供給V
アレイ42内の加熱アレイ素子88は、図11において、入力AおよびBを接続する抵抗素子として示されているヒータ駆動電極38Dと、図6Cに例示され、本発明の第1の実施形態にて説明したアレイ駆動回路とを含んでいてもよい。
【0073】
図11によれば、上記回路は以下のように接続される。
【0074】
列書き込みラインSLは、スイッチトランジスタ102のソースに接続される。行選択ラインGLは、スイッチトランジスタ104のゲート、およびスイッチトランジスタ102のゲートに接続される。スイッチトランジスタ104のドレインは、スイッチトランジスタ102のドレイン、および第1のインバータ106の入力に接続される。第1のインバータ106の出力は、第2のインバータ108の入力、第1のアナログスイッチ114のp型トランジスタのゲート、および第2のアナログスイッチ116のn型トランジスタのゲートに接続される。第2のインバータ108の出力は、第1のアナログスイッチ114のn型トランジスタのゲート、第2のアナログスイッチ116のp型トランジスタのゲート、およびスイッチトランジスタ104のソースに接続される。電圧供給Vは、第1のアナログスイッチ114の入力に接続される。電圧Vは、第2のアナログスイッチ116の入力に接続される。第1のアナログスイッチ114および第2のアナログスイッチ116の出力は、それぞれ、EW駆動電極を形成する導電性電極38に接続される。
【0075】
アレイ素子回路84の動作は以下のように表現される。
【0076】
アレイ素子回路84は、上述した2つの機能ブロック、すなわち、メモリ機能118および反転回路120を含む。メモリ機能118は、先に述べたように、標準SRAM回路である。
【0077】
メモリ機能118に対し論理値“1”状態が書き込まれた場合、反転回路120は、第1のアナログスイッチ114がオンに切り替えられ、第2のアナログスイッチ116がオフに切り替えられるよう設定される。その結果、供給電圧Vが、EW駆動電極38を形成する導電性電極に印加される。メモリ機能118に対し論理値“0”状態が書き込まれた場合、反転回路120は、第1のアナログスイッチ114がオフに切り替えられ、第2のアナログスイッチ116がオンに切り替えられるよう設定される。このケースでは、供給電圧Vが、EW駆動電極38に印加される。供給電圧Vは、上記上部基板の電極28に対しても印加される。その結果、液滴4において維持されているエレクトロウェッティング電圧VEWは、下記のいずれかとなる。
・上記メモリに対し論理値“0”が書き込まれた場合、0。
・上記メモリに対し論理値“1”が書き込まれた場合、V−V
【0078】
図12Aは、本実施形態に係る供給電圧Vおよび供給電圧Vの波形の時間依存性を示す図である。Vは振幅Vおよび周期tを有する矩形波であり、VはVの論理反転値である。
【0079】
従って、上記メモリに論理値“1”が書き込まれた場合、エレクトロウェッティング電圧VEW(すなわち、V−V)は、rms振幅Vを有する矩形波となる。
【0080】
AM−EWOD駆動のこのAC方法は、いくつかの理由により有用である。
・以下を含む様々な利点を伴う、上記AM−EWODの高周波のACモードの動作が可能となる。
・・AC駆動スキームが、絶縁性の信頼度の向上を促進する。DC電界の作用下では、液滴4中のイオンは絶縁体層の誘電体を通過しやすいという欠陥があり、上記装置のピンホールを生じさせる。これは装置の故障を招き得る。高いAC周波数においては、移動性のイオンは、DC電界よりも振動にさらされやすいため、装置はこの故障方法の影響を受けにくい。
・・DC駆動スキームで動作するEWOD装置は、動作期間全体を通じたパフォーマンスの低下、すなわち、長期に亘り液滴の動きが緩慢になる現象を生じることが観測されている。この効果は、未だ完全には理解されていないが、上記絶縁体および/または疎水層の両極性に起因すると考えられている。AC駆動スキームで動作させることで、上記絶縁体および疎水層はDC電場の影響を受けないため、この効果を避けることができる。
・・AC駆動スキームは、理由は理解されていないが、液滴の運搬、溶解等の動作のためのダイナミクスの向上を促進することができる。
・上述のAC駆動の方法は、AM−EWODに関して特段の利点を有する。これは、上記TFTによって構成されるアナログスイッチ114および116によって切り替えられる最大電圧が、上記エレクトロウェッティング電圧に等しいもののみとなるためである。上記TFTに対する所定の最大定格電圧について、このことは、上部電極28が定電位に維持されるAC動作時よりも高いエレクトロウェッティング電圧を促進する。
【0081】
上記AC駆動方法が用いられるとき、第2のEW駆動電極38Dの入力AおよびBに印加される駆動電圧信号もまたAC信号であってもよい。その結果、第2のEW駆動電極38Dは、エレクトロウェッティングによる液滴制御の補助、および、上述したジュール加熱の実現という二重機能を実行するよう構成される。
【0082】
上記第1の実施形態について説明した方法と類似の方法によって、入力AおよびBに供給される電圧信号は、多数の手段のうちいずれによって実現されてもよい。図12Bは、第2のEW駆動電極38Dの入力AおよびBに駆動信号を供給するために用いられ得る構成を示す図である。
【0083】
上記回路は、アナログスイッチ140および第2のEW駆動電極38Dからなる。入力信号P2は、アナログスイッチ140の入力に接続される。アナログスイッチ140の出力は、第2のEW駆動電極38Dの端子Aに接続される。第2のEW駆動電極38Dの端子Bは、入力信号P3に接続される。入力信号P1は、アナログスイッチ140のn型トランジスタのゲートに接続される。入力信号P1Bは、入力信号P1の相補的な論理値であり、アナログスイッチ140のp型トランジスタのゲートに接続される。この回路の動作は、以下のとおりである。入力信号P1が高論理レベル(およびP1Bが低論理レベル)にあるとき、アナログスイッチ140はオンに切り替えられる。続いて、入力信号P2およびP3に対し異極性の入力信号を印加することで、ジュール加熱が実行される。P2=高論理値、P3=低論理値のとき、EW駆動電極38Dを電流が流れる方向は、P2からP3へ向かうものとなる。P2=低論理値、P3=高論理値のとき、電流が流れる方向は、P3からP2へ向かうものとなる。また、P1が低論理レベルにあるとき、アナログスイッチ140はオフに切り替えられ、EW駆動電極38Dには電流は流れない。この場合、上記EW駆動電極の電位は、P3に印加される論理信号によって決定される。
【0084】
図13、14および15は、VおよびV、ならびに、加熱電極への接続AおよびBに供給される電圧のタイミングを、3つの動作設定について示す図である。これらの設定のそれぞれにおいて、電圧供給Vは上部電極28にも印加される。上記3つの設定は、以下の機能を有している。
設定1:(高レベルの)エレクトロウェッティング制御のために、加熱電極38Dおよび上部電極28間で高電圧が維持される。
設定2:ジュール加熱のために、加熱電極38Dの端子AおよびB間で電圧が維持される。
設定3:(低レベルの)エレクトロウェッティング制御のために、加熱電極38Dおよび上部電極28間で電圧ゼロが維持される。
【0085】
上記第1の実施形態の上記PWM駆動に類似した、加熱素子38Dの駆動方法は、放出された時間平均のヒータ電力の制御方法として実施されてもよい。その一例に考えられるものとして、図16は、図12Bに示す駆動回路を用い、外的手段によって供給され得る入力P1、P2およびP3の上記タイミング信号を含む実施例についてのタイミングチャートを示す図である。AおよびBで表される、第2のEW駆動電極38Dへの接続に供給される電圧は、或るときには設定2が採用され、加熱電極38Dにおいて熱が放出されるよう設定される。他のときには、設定3が採用され、上記加熱電極において熱は放出されない。(別の例として、加熱なしの条件については設定3の代わりに設定1が採用されてもよい。)放出される加熱電力の時間依存性は、図16の下部に示されている。
【0086】
本実施形態の利点は、上記第1の実施形態に記載の加熱素子機能性の全てが、AC駆動スキームを利用したエレクトロウェッティングによる液滴制御の利点と組み合わせられることである。
【0087】
当業者であれば、本実施形態に関して述べてメモリ機能118を、別の例として、例えば、上記第1の実施形態にて述べたように、DRAMメモリ素子によって実施する方法は明らかに理解できるであろう。
【0088】
さらに、当業者であれば、上記第1の実施形態に関して述べた様々な配置および加熱領域の構成を、上記第2の実施形態に記載のAC駆動スキームを用いて実施および操作する方法は明らかに理解できるであろう。
【0089】
本発明の第3の実施形態は、上記第1の実施形態において、標準アレイ素子84のアレイ素子駆動回路は先に述べた構成を有し、別のアレイ素子駆動回路が、図17に示すように、加熱アレイ素子88’について実装されている構成である。
【0090】
上記加熱アレイ素子駆動回路は、以下の要素を含んでいる。
・同一列内のアレイ素子に共通であり得る、列書き込みラインSL(列駆動回路78に由来する)
・同一行内のアレイ素子に共通であり得る、行選択ラインGL(行駆動回路76に由来する)
・n型スイッチトランジスタ83
・キャパシタ86
・キャパシタ128
・n型スイッチトランジスタ122
・n型スイッチトランジスタ124
・n型スイッチトランジスタ126
・加熱動作を制御するために用いられる、ヒータ許可ラインHEN
・ヒータ供給電圧入力ラインVA
・ヒータ供給電圧入力ラインVB
上記回路は以下のように接続される。
【0091】
行選択ラインGLは、トランジスタ83のゲート、およびトランジスタ122のゲートに接続される。列書き込みラインSLは、トランジスタ83のソースに接続される。トランジスタ83のドレインは、トランジスタ122のドレイン、およびEW駆動電極38に接続される。キャパシタ86は、EW駆動電極38とアース線との間に接続される。トランジスタ122のソースは、トランジスタ126のソース、および第2のEW駆動電極38Dの入力Aに接続される。トランジスタ124のドレインは、第2のEW駆動電極38Dの入力Bに接続されている。キャパシタ128は、第2のEW駆動電極38Dの入力Bとアース線との間に接続されている。ヒータ許可ラインHENは、トランジスタ126のゲート、およびトランジスタ124のゲートに接続されている。トランジスタ126のソースは、第2のEW駆動電極38Dのヒータ供給電圧入力ラインVAに接続されており、トランジスタ124のドレインは、ヒータ供給電圧入力ラインVAに接続されている。同様に、トランジスタ126のドレインは、第2のEW駆動電極38Dの入力Bに接続されており、トランジスタ124のソースは、ヒータ供給電圧入力ラインVBに接続されている。
【0092】
上記回路の動作は以下のように表現される。
【0093】
上記アレイ素子駆動回路は2つの機能を実行する。
・EW駆動電極38および第2のEW駆動電極38Dの両者に対し、エレクトロウェッティング制御電圧を書き込む。
・EW駆動電極38に対し書き込まれた電圧を維持しながら、第2のEW駆動電極38Dにおいてジュール加熱を実行する。
【0094】
EW駆動電極38および第2のEW駆動電極38Dに対し電圧を書き込むために、まず、トランジスタ124および126がオフに切り替えられるよう、低レベル電圧が入力HENに印加される。続いて、列書き込みラインSLが、書き込まれる電圧とともにロードされる。続いて、高レベル電圧パルスがゲートラインGLに印加され、これによって、トランジスタ83および122をオンに切り替えるとともに、EW駆動電極38および第2のEW駆動電極38DにSLの電圧が書き込まれる。続いて、書き込まれた電圧は、ゲートラインGLに対する電圧が低くなると、キャパシタ86および128においてそれぞれ保持される。
【0095】
ヒータ駆動電極38Dにおいてジュール加熱を実行するよう機能するために、ヒータ供給入力ラインVAに電圧が印加され、ヒータ供給入力ラインVBには異なる電圧が印加される。続いて、トランジスタ124および126がオンに切り替えられるよう、入力HENに対する電圧が高くなる。キャパシタ128が直ちに充電され/放電し、入力AおよびB間を電流が通過し、これにより第2のEW駆動電極38Dにおいてジュール加熱を生じる。上記電流の値は、VAおよびVB間の電圧差と、該電流の流路の抵抗とに依存する。上記回路は、上記ジュール加熱の大部分が第2のEW駆動電極38Dにおいて生じるよう、トランジスタ124および126のオン抵抗が、第2のEW駆動電極38Dの抵抗と比較して小さくなるように設計されてもよい。
【0096】
ここで、多数の加熱アレイ素子88’を含むアレイにおいて、ヒータ供給電圧入力ラインVAおよびVBへの接続は、アレイ42内の各加熱アレイ素子88’のすべてに及ぶものであってもよい。各加熱アレイ素子88’の第2のEW駆動電極38Dに書き込まれるエレクトロウェッティング電圧は、EW駆動電極38に対しエレクトロウェッティング電圧を書き込む場合と同一のアレイアドレッシング構造によって書き込まれるので、独立に制御されてもよい。
【0097】
上記アレイの各加熱アレイ素子88’のヒータ許可入力HENへの接続は、個別に提供されてもよいし、または、上記アレイ内の複数の加熱アレイ素子88’に共通であってもよい。個別の接続により、上記アレイにおける各加熱アレイ素子のHEN接続を制御するためにより多くの接続線が必要となるという欠点があるが、ヒータ駆動電極38Dにおける加熱が、異なる加熱アレイ素子について個別に制御されるという柔軟性がもたらされる。
【0098】
当業者であれば、放出されるヒータ電力がHENに供給される電圧パルスのデューティサイクルの関数となるよう、入力HENに対し時間的に変化する信号を印加することで、加熱電力をPWM手段によって制御する方法は明らかに理解できるであろう。
【0099】
さらに、当業者には、本実施形態に上記第1および第2の実施形態に記載の特徴を組み込む方法は明らかに理解されるであろう。
【0100】
本実施形態の利点は、第2のEW駆動電極38Dの電圧が、EW駆動電極38に対し電圧を書き込む場合に用いられるものと同一のアレイ書き込み機能性によって書き込まれることである。その結果、上記第1の実施形態の場合のように、異なるヒータ駆動電極38Dのそれぞれに対し個別の制御信号を供給せずとも、上記アレイ中の異なるヒータ駆動電極38Dに対し、異なる電圧を書き込むことができる。1つのアレイ内に多くの加熱アレイ素子88’を含み、これらの素子のそれぞれのヒータ駆動電極38Dの電圧を独立に制御することが求められる複雑な構成において、これは大きな利点である。
【0101】
本発明の第4の実施形態は、上述した任意の実施形態において、薄膜電極74がさらに、先行技術に記載の温度センサ素子130を含む構成である。図18は、本実施形態に係る装置の断面図である。図に示すように、温度センサ素子130は、ある例では、第2のEW駆動電極38Dの近傍、例えば、適用された加熱から迅速なフィードバック情報を得るために有利な位置に配置されてもよい。別の例では、上記装置内の異なる位置における温度特徴を決定するために、第2のEW駆動電極38Dから遠く離れた配置に上記温度センサを配置すること、または、上記第2のEW駆動電極からの距離が異なる位置に多数の温度センサ130を有することが、より好ましくてもよい。1つまたは複数の温度センサ素子130は、温度センサ素子130のアレイを形成するために、各標準アレイ素子84および/または加熱アレイ素子の位置に含まれていてもよく、上記装置における温度分布に関する空間的情報を与えてもよい。
【0102】
本実施形態の利点は、温度センサを含むことにより、フィードバックが促進される、すなわち、加熱を実施するために第2のEW駆動電極38Dに対し印加される信号が、計測された温度に応じて変更および制御されることである。
【0103】
ここで、本実施形態の特段の特徴は、第2のEW駆動電極38Dが、空間的に、温度センサと液滴との間に配置されており、これら全てが物理的に極めて近傍にあるという点である。特に、温度センサ素子130は、加熱素子が温度センサ130と液滴との間に位置するよう、下部基板72上に形成される。これにより特段の利点がもたらされる。第1に、上記センサ素子が、ジュール加熱により引き起こされる温度変化に迅速に反応できるよう、上記加熱素子および温度センサ素子間の熱抵抗が非常に小さくなる。第2に、液滴、加熱素子および温度センサが近傍にあることにより、上記液滴付近の温度が正確に計測される。
【0104】
本発明の上述の実施形態は、アクティブマトリクス(Active Matrix)EWOD(すなわち、上記アレイ素子駆動回路、ならびに、EW駆動電極38および38Dとして同一の基板72に統合されたEW駆動電極38および第2のEW駆動電極38Dに関するヒータ制御回路)に関するものであるが、当業者であれば、本発明がパッシブEWODにも同様に適用可能であることを明らかに理解できるであろう。すなわち、上記アレイ素子駆動回路および/またはヒータ制御回路の全てまたは一部は、外部に、または、電極アレイ基板72から分離した、例えば別個のプリント基板等において形成されてもよい。これにより、EW駆動電極38および38Dへの電気的接続は、外的に供給される。この場合は、上記EW駆動電極は、上述の、例えば図7、9または10のうち任意の図において示された構成を有していてもよく、ヒータ機能性を含むアレイ素子のEW駆動電極38および第2のEW駆動電極38Dに対する電気的接続は、外部の駆動電子回路から直接供給されてもよく、例えば、別個のプリント基板によって生成されてもよい。
【0105】
本発明を、特定の1つのまたは複数の実施形態を参照しながら図示すると共に説明したが、当業者は、本明細書および添付の図面を読解することによって、同等の代替例および変形例に想到可能であろう。特に、上述の素子(構成部品、アセンブリ、装置、構造など)によって実行される様々な機能に関して、このような素子を説明するために用いられる用語(「手段」への言及を含む)は、他に記載がない限り、開示される、本発明の典型的な1つまたは複数の実施形態における機能を実行する構成と、構造的に同等でなくても、当該特定の機能を実行する任意の素子(すなわち、機能的に同等の素子)に対応することが意図される。さらに、本発明の特定の特徴を、1つまたは複数の実施形態だけを参照して説明してきたが、このような特徴は、他の実施形態の1つまたは複数の他の特徴と、所望のように、および、所定のまたは特定の用途にとって都合がよいように、組み合わせてもよい。
【産業上の利用可能性】
【0106】
上記AM−EWOD装置は、ラボオンチップシステムの一部を形成し得る。このような装置は、化学、生化学、または生理学物質の加工、反応および検知に用いられ得る。本発明の用途として、医療診断検査、化学または生化学物質の合成、プロテオミクス、生命科学および法医科学研究のための器具等が挙げられる。
【符号の説明】
【0107】
4 液滴
6 接触角θ
16 疎水面
20 絶縁体層
26 疎水層
28 電極
32 スペーサ
34 非イオン液体
36 上部基板
38 駆動電極
42 電極アレイ
72 基板
74 薄膜電子回路
76 行駆動回路
78 列駆動回路
80 シリアルインターフェース
82 接続線
83 トランジスタ
84 標準アレイ素子
86 キャパシタ
88 加熱アレイ素子
90 VEWのEW駆動電極
92 0VのEW駆動電極
94 ヒータとしてのEW駆動電極
102 トランジスタ
104 トランジスタ
106 インバータ
108 インバータ
110 ヒータ制御回路
114 アナログスイッチ
116 アナログスイッチ
118 メモリ機能
120 反転回路
122 トランジスタ
124 トランジスタ
126 トランジスタ
128 キャパシタ
130 温度センサ
132 アナログスイッチ
134 アナログスイッチ
136 アナログスイッチ
138 インバータ
140 アナログスイッチ

【特許請求の範囲】
【請求項1】
誘電体エレクトロウェッティング(EWOD:electrowetting on dielectric)装置であって、
アレイ上の1つまたは複数の液滴を操作するよう構成された複数のアレイ素子を備え、上記アレイ素子のそれぞれは、対応するアレイ素子駆動回路を含み、
各アレイ素子駆動回路は、
当該二者間に1つまたは複数の液滴を配置可能であり、上部基板電極は上部基板上に形成され、第1の駆動電極は下部基板上に形成される、上部基板電極および第1の駆動電極と、
上記複数のアレイ素子間で上記1つまたは複数の液滴を移動させるために、上記第1の駆動電極に対し駆動電圧を選択的に与えるよう構成された回路と、を含み、
上記複数のアレイ素子の少なくとも1つは、
上記下部基板上にさらに形成され、上記1つまたは複数の液滴が、上記少なくとも1つのアレイ素子の上記上部基板電極および上記第1の駆動電極に挟まれたとき、上記1つまたは複数の液滴を加熱するよう構成された加熱素子と、
上記加熱素子を制御するよう構成された回路と、を備えることを特徴とする装置。
【請求項2】
上記加熱素子は第2の駆動電極を含み、上記加熱素子を制御するよう構成された上記回路は、上記第2の駆動電極を、上記第2の駆動電極によって上記1つまたは複数の液滴に対し印加されるエレクトロウェッティング力を制御するために上記第2の駆動電極に駆動電圧が与えられる第1の動作モードと、上記第2の駆動電極に対し与えられる電圧によって、上記第2の駆動電極に、上記1つまたは複数の液滴を加熱するための熱エネルギーを放出させる第2の動作モードとの間で切り替えることを特徴とする請求項1に記載の装置。
【請求項3】
上記第1の動作モードにおいて、上記加熱素子を制御するよう構成された上記回路は、上記第2の駆動電極を、上記第1の駆動電極と同じ電位に維持することを特徴とする請求項2に記載の装置。
【請求項4】
上記第2の動作モードにおいて、上記加熱素子を制御するよう構成された上記回路は、抵抗熱エネルギーを発生させるために、上記第2の駆動電極内で電位差を生じさせることを特徴とする請求項3に記載の装置。
【請求項5】
上記電位差は、上記第2の動作モードにおける加熱率を制御するために、パルス幅を変調させることを特徴とする請求項4に記載の装置。
【請求項6】
上記電位差の値は、上記第2の動作モードにおける加熱率を制御するために変更されることを特徴とする請求項4に記載の装置。
【請求項7】
上記第1の駆動電極に対し与えられる駆動電圧は、AC駆動スキームに従うことを特徴とする請求項2から6のいずれか1項に記載の装置。
【請求項8】
上記複数のアレイ素子の上記少なくとも1つにおいて、上記第1の駆動電極は、上記第2の駆動電極の周囲を囲むように形成されることを特徴とする請求項2から7のいずれか1項に記載の装置。
【請求項9】
上記第2の駆動電極は、上記第1の駆動電極のコーナーとの距離を最大化するために傾けられることを特徴とする請求項2から8のいずれか1項に記載の装置。
【請求項10】
上記複数のアレイ素子の上記少なくとも1つは、複合的アレイ素子を含むことを特徴とする請求項1から9のいずれか1項に記載の装置。
【請求項11】
上記複合的アレイ素子は近接するアレイ素子を含むことを特徴とする請求項10に記載の装置。
【請求項12】
上記近接するアレイ素子の周囲を囲む第3の駆動電極をさらに含むことを特徴とする請求項11に記載の装置。
【請求項13】
上記複合的アレイ素子内の上記加熱素子を制御するよう構成された上記回路は、上記複合的アレイ素子間で共有されることを特徴とする請求項10から12のいずれか1項に記載の装置。
【請求項14】
上記複合的アレイ素子のそれぞれは、自身が含む上記加熱素子を制御するよう構成された個別の回路を含むことを特徴とする請求項10から12のいずれか1項に記載の装置。
【請求項15】
上記加熱素子を制御するよう構成された上記回路は、上記第1の駆動電極に対する駆動電圧を選択的に与えるよう構成された上記回路と同じ書き込み機能性によって、制御電圧を受け取るよう構成されることを特徴とする請求項1から14のいずれか1項に記載の装置。
【請求項16】
上記複数のアレイ素子の上記少なくとも1つはさらに、温度センサを含むことを特徴とする請求項1から15のいずれか1項に記載の装置。
【請求項17】
上記温度センサは、上記加熱素子が上記温度センサと上記1つまたは複数の液滴との間に配置されるように、上記下部基板上に形成されることを特徴とする請求項16に記載の装置。
【請求項18】
駆動電圧を選択的に与えるよう構成された上記回路と、上記加熱素子を制御するよう構成された上記回路とのうち少なくとも1つの全てまたは一部は、上記下部基板上に形成されることを特徴とする請求項1から17のいずれか1項に記載の装置。
【請求項19】
駆動電圧を選択的に与えるよう構成された上記回路と、上記加熱素子を制御するよう構成された上記回路とのうち少なくとも1つの全てまたは一部は、上記下部基板から離れて形成されることを特徴とする請求項1から17のいずれか1項に記載の装置。
【請求項20】
誘電体エレクトロウェッティング(EWOD:electrowetting on dielectric)装置の駆動方法であって、
上記EWOD装置は、
アレイ上の1つまたは複数の液滴を操作するよう構成された複数のアレイ素子を備え、上記アレイ素子のそれぞれは、対応するアレイ素子駆動回路を含み、
各アレイ素子駆動回路は、
当該二者間に1つまたは複数の液滴を配置可能であり、上部基板電極は上部基板上に形成され、第1の駆動電極は下部基板上に形成されることを特徴とする上部基板電極および第1の駆動電極と、
上記複数のアレイ素子間で上記1つまたは複数の液滴を移動させるために、上記第1の駆動電極に対し駆動電圧を選択的に与えるよう構成された回路と、を含み、
上記複数のアレイ素子の少なくとも1つは、
上記下部基板上にさらに形成され、上記1つまたは複数の液滴が、上記少なくとも1つのアレイ素子の上記上部基板電極および上記第1の駆動電極に挟まれたとき、上記1つまたは複数の液滴を加熱するよう構成され、第2の駆動電極を備える加熱素子と、
上記第2の駆動電極に対し駆動電圧を与えるよう構成された回路と、を含み、
上記方法は、
上記第2の駆動電極を、上記第2の駆動電極によって上記1つまたは複数の液滴に対し印加されるエレクトロウェッティング力を制御するために上記第2の駆動電極に駆動電圧が与えられる第1の動作モードと、上記第2の駆動電極に対し与えられる電圧によって、上記第2の駆動電極に、上記1つまたは複数の液滴を加熱するための熱エネルギーを放出させる第2の動作モードとの間で切り替える工程を含むことを特徴とする方法。
【請求項21】
上記第1の動作モード中、上記第2の駆動電極を、上記第1の駆動電極と同じ電位に維持する工程を含むことを特徴とする請求項20に記載の方法。
【請求項22】
上記第2の動作モード中、抵抗熱エネルギーを発生させるために、上記第2の駆動電極内で電位差を生じさせる工程を含むことを特徴とする請求項21に記載の方法。
【請求項23】
上記第2の動作モードにおける加熱率を制御するために、上記電位差のパルス幅を変調する工程を含むことを特徴とする請求項22に記載の方法。
【請求項24】
上記第2の動作モードにおける加熱率を制御するために、上記電位差の値を変更する工程を含むことを特徴とする請求項22に記載の方法。
【請求項25】
上記第1の駆動電極に対し与えられる駆動電圧は、AC駆動スキームに従うことを特徴とする請求項20から24のいずれか1項に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate