説明

エタノールの製造方法

【課題】植物廃棄物をバイオマスエタノールの原料として、発酵微生物の必須栄養素及び要求微量元素の供給コストが低いエタノールの製造方法を提供する。
【解決手段】植物質多糖の糖化物と、細胞外へ原形質が解放される微細藻崩壊物とを用意し、微細藻崩壊物の存在下で糖化物を微生物を用いてエタノール発酵することによってエタノールを製造する。微生物の必須栄養素又は要求微量元素の供給源として、微細藻崩壊物から開放された原形質が利用される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エタノールの製造方法に関し、詳細には、木質や麦藁等の植物質廃材を用いて微生物による発酵によってバイオマスエタノールを生成するエタノールの製造方法に関する。
【背景技術】
【0002】
近年、石油資源の枯渇に対する解決策として、植物質を用いて微生物の発酵によってエタノールを製造するバイオマスエタノールが注目され、実際に製造が始められている。しかし、現在製造されているバイオマスエタノールの原料は、トウモロコシ等の澱粉・糖質を含む穀類であり、これは食料として有用な素材であるため、却って穀類の価格高騰を招くなど、実施を拡大する上で問題がある。
【0003】
このようなことから、植物性廃棄物を利用したバイオマスエタノールの生成が検討され、建材などの木質廃材や、麦藁、稲藁、コーンストーバー(トウモロコシの実を除いた茎や葉)などの植物質廃棄物を原料としてセルロースをエタノール発酵する技術の開発が進められている。
【0004】
バイオマスエタノールの生成には、エタノール発酵を行う酵母が活動・増殖するためにグルコースなどの単糖が必要であるので、酵素を添加して植物質のセルロースを分解して単糖を供給するが、その他にも酵母の活動を正常に維持するために必要な栄養源があり、通常の発酵食品の製造等においては酵母エキスやポリペプトンが使用される。
【0005】
しかし、酵母エキスやポリペプトンを酵母の栄養源として使用すると、生産コストが上昇するため、バイオマスエタノールの商用生産には適さない。このようなことから、代用物として様々な植物性廃棄物の利用が検討されている。例えば、下記特許文献1には、おから、茶粕、コーヒー粕等を添加することが提案されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第4401735号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1に提案されるおから等の食品廃棄物は、何れも水分を多く含み、腐敗し易いため、これらを利用するには、腐敗を防止するために、冷蔵等の保管環境や乾燥等の処理設備が必要となり、多量の水分による重量のために輸送コストも嵩む。又、上記の食品廃棄物が生じる食品加工工場は、大都市圏など消費地に近い場所に立地していることが多く、腐敗を防止するためには長距離輸送は好ましくないので、バイオマスエタノールの製造施設を都市近郊に設置する必要が生じる。しかし、バイオマスエタノールの製造施設は、その製造原料である植物質廃棄物が生じる森林や大規模農場等の近辺に設置することが好ましく、食品廃棄物を利用するための輸送や保管に関するコスト等の問題を解決することは困難である。更に、食品廃棄物は、食品に対する嗜好度合によって排出量が変動するので、季節や国民性の違いに左右され、時期によって安定した原料は難しく、海外においては入手が不可能な場合もある。
【0008】
本発明の課題は、上述の問題を解決し、発酵微生物の活動を正常に維持するために必要な栄養等の供給に要するコストが低く、植物質廃棄物のセルロースからバイオマスエタノールを安定して生産可能なエタノールの製造方法を提供することである。
【0009】
また、本発明の他の課題は、季節や国柄に制限されず、バイオマスエタノールの製造施設の立地条件に適した供給ルートで、発酵微生物の活動を正常に維持するために必要な栄養等を供給可能なエタノールの製造方法を提供することである。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、発酵微生物の活動を正常に維持するために必要な栄養等を、藻類を利用して供給可能であることを見出し、本発明を完成するに至った。
【0011】
本発明の一態様によれば、エタノールの製造方法は、植物質多糖の糖化物と、細胞外へ原形質が解放される微細藻崩壊物とを用意し、前記微細藻崩壊物の存在下で前記糖化物を微生物を用いてエタノール発酵することによって、前記微生物の必須栄養素又は要求微量元素の供給源として前記微細藻崩壊物から開放された原形質を利用可能であることを要旨とする。
【発明の効果】
【0012】
本発明によれば、発酵微生物の活動を正常に維持するために必要な栄養源を、季節や国柄、立地条件に制限されずに供給可能なエタノールの製造方法が提供され、バイオマスエタノールの製造施設の立地条件に応じて簡便に実施できるので、経済的に有利である。又、バイオマスとしての植物質廃棄物の利用が促進され、廃棄物処理問題の解消に有用である。
【発明を実施するための形態】
【0013】
植物質廃棄物を利用するバイオマスエタノールの生産においては、植物セルロースの加水分解による糖化物をエタノール発酵する。エタノール発酵の過程では、酵母が活動・増殖するために、グルコースなどの単糖だけでなく、リン、窒素、ビタミン類等の必須栄養素や、Co,Ni,Zn等の要求微量元素が必要であり、酵母はこれらを利用してタンパク質や核酸等の生合成を行う。また、酵母は、その種類によって、ビタミンや一部のアミノ酸を自力で合成できないため、それらを外部から加える必要がある。バイオマスエタノールを生産するために使用される酵母は、ビタミン又はアミノ酸等の合成能力が低いか、或いは、欠如しており、グルコース及び無機塩類(リン、窒素、カルシウム、マグネシウム等)のみの培地ではエタノール生産速度が著しく低下し、酵母の活動を正常に維持するためには、コストのかかる酵母エキスやポリペプトン等を添加して有機成分を供給する必要がある。特に、植物質廃棄物のセルロースをバイオマスとして利用する場合には、上述の有機成分やビタミン類及び無機塩類の供給が重要である。
【0014】
本発明では、発酵微生物の必須栄養素や要求微量元素となる上述の有機成分や無機塩類等の供給源として、微細藻類の細胞内容物である原形質(特に細胞質)を利用し、微細藻の原形質に含まれる各種有機成分、ミネラル等を微生物が取り込み易い状態で発酵系に供給する。つまり、本発明におけるエタノールの製造方法は、植物質廃棄物を利用して調製される植物多糖類の糖化物と、原形質が細胞外へ容易に解放される微細藻崩壊物とを用意し、微細藻崩壊物の存在下で微生物によって糖化物をエタノール発酵する。以下に、本発明のエタノールの製造方法について詳細に説明する。
【0015】
藻類において、一部の海藻は食材として利用されるが、微細藻類の利用は比較的限られている。例えば、クロレラ、ナンノクロロプシス、ドナリエラ、ボツリオコッカス、スピルリナ、シゾキトリウム、オーランチオキトリウム、キートセロス・カルシトランス、キートセロス・グラシリス、パブロバ・ルテリ、イソクリシス・ガルバナ等の微細藻類は、現状では、栄養補助食品原料、水生生物の食餌等に利用されるのみであるが、原形質中に生物の成育に有用な成分が豊富に含まれ、発酵微生物の必須栄養素や要求微量元素の供給源として有望であるので、バイオマスとして有用であり、且つ、微細藻類の利用を進めるに当たって食品原料等の価格高騰を招くことがない。また、微細藻類には、海水で生育する種類と淡水で生育する種類とがあり、バイオマスエタノールの生産設備の立地環境に応じて適宜種類を選択して海水又は淡水を利用して微細藻を得ることができるので、沿岸域、平野部及び山間の何れの立地においても利用可能であり、バイオマスエタノールの製造設備の立地を制限しない。
【0016】
本発明においては、上記において例示したような微細藻類に限定されず、微生物の成育に有用な成分を含む微細藻類から適宜選択して利用でき、公知の培養方法に従って増殖させて使用することができる。例えば、クロレラの場合、有機物を含む水を培養液として、暗条件下で曝気しながら無菌的に培養し、必要に応じて塩化アンモニウム、リン酸カリウムなどの無機塩類を添加すると、好適に増殖する(参照:例えば特開平5−284962号公報等)。淡水で生育するクロレラは、光合成によらず、グルコースや酢酸などの有機物で増殖することから、このような微細藻の培養において、発酵液からエタノールを分離回収した後の蒸留残液を培養液として使用すると、残液に残留するグルコース等を有効利用できるので効率が良く、蒸留時の加熱によって滅菌状態にある点も好都合である。ナンノクロロプシスなどの海産性微細藻類は、海水を必要に応じてフィルターで濾過したり紫外線照射によって他の微生物を殺して、培養液として使用する。培養した微細藻は、藻類の細胞の寸法(概して約4μm以上)より小さい孔径のフィルターを用いて適宜濃縮して利用するとよい。或いは、湖沼、河川や港湾、ダム、発電施設近辺の水域等において自然繁殖した微細藻類を収集して利用しても良く、海水、河川水等を取り込んで微細藻をフィルター濾過により分離し、加熱、紫外線照射等の滅菌処理を施して利用することができる。
【0017】
培養又は収集によって得られる微細藻類の原形質中成分を発酵微生物が取り込むには、原形質を細胞外へ解放する必要があるので、微細藻の細胞破砕、つまり、細胞膜や細胞壁の物理的又は化学的な断裂、分解又は溶解を行って細胞の囲みを解き、原形質が細胞外へ流出し易い崩壊状態に加工した後に、この微細藻崩壊物を発酵系に投入する。これにより、発酵微生物である酵母等は、微細藻の原形質に含まれる必須栄養素等を取り込んで増殖・生育に利用しながら、植物多糖類の糖化物をエタノール発酵することができる。微細藻崩壊物は、原形質を開放可能な状態、つまり、原形質の細胞外への流出が容易な状態であれば良く、原形質が細胞外に完全に放出された状態に調製する必要はない。又、細胞膜等を細かく分断したり完全に分解する必要はなく、細胞膜等が少なくとも局所的に開裂又は開口を生じて、細胞外と細胞内とが連通すればよい。従って、微細藻崩壊物の調製は、例えば木質セルロースの糖化のような過酷な反応条件(例えば、180〜300℃程度での加熱)は必要とせず、アミノ酸や有機脂質等の有機物質の分解・変質を避けることができる。
【0018】
微細藻類の細胞膜及び細胞壁を構成する多糖は多様性に富み、セルロース及びヘミセルロースのみならず、マンナン、キシラン、寒天、アルギン酸等の様々な成分が含まれ、藻の種類によって構成が異なるので、藻細胞の強度も異なるが、公知の細胞破砕方法から適宜選択して細胞破砕を行うことができる。物理的破砕方法には、超音波法、凍結融解法、浸透圧ショック法、ビーズや固体粉末等を用いる磨砕法、ホモジナイザーを用いる方法、小孔からの強制押出による剪断力を利用するフレンチプレス法、ガス圧を加える方法などがあり、押圧力・応力歪み、振動、瞬間的な圧力変動、急激な細胞膨張等の物理エネルギーによって細胞壁及び細胞膜を破断する。乾燥状態で磨砕機等による応力歪みを加えると効率的に細胞壁等を破断することができる。細胞壁が薄い又は有さない微細藻は比較的壊れ易く、微細藻の分散液に常法に従って曝気攪拌を行うことによって容易に破砕できる。比較的強度を有する細胞の破砕には、超音波法、フレンチプレス法、ホモジナイザーによる方法、磨砕法などが適している。このような破砕は、例えば、超音波汚泥減量化装置として市販される超音波振動体で細胞破砕を行う装置(株式会社西島製作所性製超音波汚泥減量化装置など)や、高速回転するディスク間の隙間に細胞分散液を供給してディスクに与えられる剪断力及び擦り潰しによって細胞壁を物理的に損傷させる装置(例えば、土木学会論文集、Vol.33、 No.4、351-359頁(2007)参照)、ビーズを充填したミル室に導入した細胞分散液をディスクやピンを備えた攪拌機を用いて高速攪拌することでビーズ間に生じる剪断摩擦力により細胞を破砕する装置(例えば、月刊地球環境、Vol.31、 No.11、134-135頁(2000)参照)、などを利用して好適に実施できる。化学的破砕方法には、酵素消化法、界面活性剤用いる方法、強酸又は強塩基を接触させて多糖を加水分解する方法などがある。あるいは、熱的に細胞壁を溶解又は分解することによって原形質を細胞外へ解放することが可能であり、具体的には、水性液中で100〜120℃程度の加熱、好ましくはオートクレーブを用いた加圧下での100〜120℃程度の加熱を5〜15分程度施して細胞膜等を構成する多糖の結合を開裂させて細胞膜等を軟弱化させることにより容易に破断して細胞が崩壊する。上記のような温度範囲での熱的な細胞破砕においては、原形質に含まれる酵素類の失活や、タンパク質等の高分子量有機化合物の加水分解による低分子量化は生じるが、アミノ酸等の低分子量化合物の分解は進行し難い。これは、酵母などの微生物が自己の酵素を用いて分解する必要がなく利用し易い成分の増加であるので、利点となる。加熱温度が200℃近辺になると、アミノ酸等の低分子量化合物もアンモニア、二酸化炭素等への分解が容易に進行するようになるので、過剰な熱を与えないことが肝要である。
【0019】
機械的に微細藻崩壊物を調製し易いものとしては、例えば、クロレラ・ブルガリス、ナンノクロロプシス、ドナリエラ、パブロバ・ルテリ等が挙げられ、クロレラ・ブルガリス、ナンノクロロプシス及びパブロバ・ルテリは細胞壁が壊れ易く、ドナリエラは細胞壁をもたない。通常、上述のような物理的又は化学的な破砕処理を微細藻に施すと、少なくとも一部の原形質は細胞外に溶出した懸濁状の微細藻崩壊物が得られる。原形質の流出は、例えば窒素分析やリン分析等によって確認できる。
【0020】
上記のような方法によって破砕処理すると、効率的に微細藻崩壊物を得ることができる。上述の破砕処理は、培養した微細藻が懸濁状態で含まれる水性液を、予め2質量%〜20質量%程度(乾燥質量換算)に濃縮した後に行うと効率的である。微細藻の濃縮は、例えば、遠心分離、凝集沈殿、ろ過、浮上分離等を利用して行うことができる。海水は、遠心分離を行ってもさほど濃縮されないので、海水で培養される微細藻も、遠心分離器等を用いて良好に濃縮できる。また、発酵系に対する海水塩分の影響に関し、1重量%程度の塩分濃度では発酵に悪影響は生じないが、この点を考慮して、発酵系の塩分濃度を過度に増加させないように微細藻培養液を濃縮して利用することが好ましい。
【0021】
微細藻類の原形質は、カルシウム、鉄、マグネシウム、亜鉛、銅、カリウム等の各種ミネラル分や、リジン、ロイシン、イソロイシン、フェニルアラニン、スレオニン、バリン、アルギニン、アラニン、アスパラギン酸、グルタミン酸、グリシン等のアミノ酸類を含むだけでなく、種類によって、カロテン、ビタミンB1,B2,B6,B12,D,E,K1、ナイアシン、葉酸等のビタミン類、タンパク質、脂質、脂肪酸などを含む。また、クロレラやナンノクロロプシスからは、パルミチン酸、リノール酸、エイコサペンタエン酸等の飽和又は不飽和脂肪酸が得られ、スピルリナからはタンパク質が得られ、ドナリエラはビタミンAに富んでいる。従って、微細藻崩壊物を発酵系に供給すると、発酵微生物の必須栄養素や要求微量元素等の供給源となり、木質廃材や稲藁等の植物性廃棄物をバイオマス原料として調製されるセルロース及びセミヘルロースの加水分解糖化物を糖資源とする場合に不足する栄養素や元素が供給され、エタノール発酵を好適に進めることができる。微細藻崩壊物は、そのまま発酵液に投入して使用することができ、微細藻崩壊物の細胞壁や細胞膜は、発酵の障害とはならない。あるいは、微細藻崩壊物の懸濁液を圧搾又は攪拌して原形質の放出を促進したり、濾別、抽出等によって原形質成分を崩壊物から分離して使用しても良い。例えば、微細藻崩壊物を含む水性液を、藻類細胞の寸法(概して約4μm以上)より小さい孔径のフィルターを通過させることによって、原形質成分を含む水性液が得られる。作業効率の点からは、微細藻崩壊物はそのまま発酵液に投入して使用し、発酵時に酵母が過増殖して余剰酵母が発生した際に、余剰酵母と共に微細藻崩壊物の細胞壁や細胞膜の分離除去を行うとよい。分離除去は、遠心分離、凝集沈殿などによる固液分離を利用することができる。
【0022】
エタノール発酵の糖資源は、植物性廃棄物からセルロース及びセミヘルロースの加水分解糖化物を調製する周知の技術によって得られる。一般に行われているバイオマスの糖化技術には、水の存在下で高温及び高圧(例えば、温度200℃程度、圧力8MPa)に曝す方法、酵素を用いて加水分解する方法、酸又はアルカリを用いて加水分解する方法などがあり、何れを利用したものでもよく、木質の場合は適宜リグニンの除去を行って糖化すればよい。工業的には、硫酸、塩酸、硝酸等を用いた酸加水分解法が有用であり、硫酸を用いる方法が実用的である。例えば、硫酸を用いて加水分解する場合、1〜10質量%濃度の硫酸水溶液中で、バイオマス原料を100〜250℃に10〜100分間程度加熱することによって加水分解し、水酸化カルシウム、水酸化ナトリウム等を用いて中和処理した後に、この糖化物を含んだ液を発酵原料として使用することができる。
【0023】
エタノール発酵に利用する発酵微生物としては、公知の酵母を用いることができ、例えば、サッカロミセス・セルビシエ、シゾサッカロミセス・ポンベ、ブレタノミセス・クステルシィ、サルシナ・ベントリクリ、クリュイベロミセス・フラジリス、ザイモモナス・モビリス、クルイベロミセス・マルキシアヌス等が挙げられる。また、エタノールへの変換能を有する酵素遺伝子を遺伝子組換えにより導入した細菌を利用してもよい。尚、クロストリジウム・アセトブチリカム、クロストリジウム・ベイジェリンキ、クロストリジウム・オーランチブチリカム、クロストリジウム・テタノモーファム等の微生物を用いると、発酵によってブタノール等のアルコールやアセトンの製造が可能である。
【0024】
物理的細胞破砕によって調製した微細藻崩壊物を用いる場合、発酵系における微生物の栄養利用を促進可能な形態として、凝集性酵母(例えば、田中浩等、「高効率バイオエタノール生産リアクタの開発」、IHI技法、Vol.50、No.1(2010)、11-17頁参照)の利用がある。凝集性酵母は、細胞同士が付着しながら増殖して酵母及び微生物群の凝集体を形成するので、微生物間の距離が短く、近辺の微生物群の加水分解酵素による分解生成物を酵母が栄養源として利用し易い。物理的細胞破砕によって崩壊した微細藻の原形質に含まれるタンパク質等の水に難溶性の高分子化合物は、発酵微生物又は他の微生物が有する加水分解酵素によって分解・低分子化して利用可能となるので、凝集性酵母を用いると、近辺の微生物群の加水分解酵素によって分解されたアミノ酸等を酵母が栄養源として容易に利用できるので、発酵効率の向上に有利である。また、沈降性がよいので、発酵後の固液分離においても好都合である。
【0025】
発酵用原液として、バイオマス原料から得られる糖化物、及び、前述の微細藻崩壊物を水に添加した水性液を調製し、上記発酵微生物を接種して発酵することにより、バイオマスエタノールが生成する。原液は、糖化物(グルコース)濃度が1〜20質量%程度、好ましくは10質量%程度となるように調製し、微細藻崩壊物の添加量(乾燥物換算)は、発酵微生物の種類等に応じて適宜調節することが好ましいが、概して0.1〜1質量%程度、好ましくは0.2〜0.5質量%程度の濃度になるように原液を調整するとよい。微細藻崩壊物から原形質を分離・抽出して使用する場合には、上記割合に相当する量の微細藻崩壊物から細胞壁等を除去して得られる原形質を含む液を使用すればよい。
【0026】
原液の初期pHを2.5〜5.5程度、好ましくは3.0〜5.5程度に調整し、発酵微生物を1〜30g/L程度の割合で接種して、温度30〜37℃程度に2〜48時間程度保持することによって発酵が進行する。微細藻崩壊物を配合した原液は、栄養素等を追加補充する必要がなく、酵母エキスやポリペプトンを使用せずに良好に発酵を進めることができる。例えば、グルコース濃度が10質量%程度の原液を用いて、20〜25g-エタノール/(L・h)程度の速度でエタノールを生産することができる。
【0027】
得られた発酵液は、常法に従って、固形分散物を濾過等によって除去した後に濾液を蒸留することによってエタノールが回収される。エタノール回収後の蒸留残液には、グルコース等の残留糖分や有機物、無機塩類等が含まれ、また、蒸留時の加熱によって無菌的状態となっているので、微細藻の培養液として好適に利用できる。従って、淡水で生育するクロレラ等の微細藻を蒸留残液に接種して培養し、増殖した微細藻を新たな発酵用原液の栄養供給源として使用すればよい。或いは、蒸留残液を濃縮して、海産性微細藻の培養液又は発酵液に添加してもよい。また、発酵後に発酵液から固形分散物を除去せずにそのまま蒸留しても良く、この場合、蒸留残液には発酵微生物及び微細藻の細胞膜等が含まれるが、これらをフィルター濾過等によって分離して、糖化物原料である植物性バイオマスと共に糖化処理を行うと、容易に加水分解するので糖資源として使用可能である。微細藻崩壊物から原形質を分離・抽出して使用する場合や、発酵液から固形分産物を分離する場合においても、除去された微細藻の細胞壁等の固形物は、植物性バイオマスの糖化工程に導入すれば良い。
【実施例1】
【0028】
<クロレラを用いたエタノール発酵>
(木質廃材の糖化)
建築廃材の木質1kgを細かく裁断し、2質量%水酸化ナトリウム水溶液1000mlを加えて100℃に30分間保持し、リグニンを分解溶出させることによって除去し、クラフトパルプを調製した。細孔径0.1μmのガラス繊維濾紙と5Lの蒸留水を用いてパルプを洗浄した後、105℃で乾燥させた。このパルプに硫酸濃度1.5質量%の希硫酸1000mlを加えて、8MPaの加圧下で200℃に加熱して糖化した後、添加した硫酸よりやや多いモル量の炭酸カルシウムを添加して硫酸分を沈殿として除去して、以下のエタノール発酵の原料糖化物として用いた。
【0029】
(クロレラの培養及び崩壊物の調製1)
前記糖化物の一部を水道水に溶解して、グルコース濃度が1質量%の水溶液1Lとなるように調製し、0.2gのKNO、0.2gのCaCl、0.3gのMgSO、0.4gのクエン酸及び0.1gのクエン酸鉄を加えて培養液とし、クロレラ(クロレラ工業製、生クロレラ−V12)4g(乾燥質量換算)を接種して20℃で暗条件下で1日間培養した。この培養液を遠心分離器で10質量%程度(乾燥質量換算)に濃縮した後に、オートクレーブ中で120℃に10分間加熱した。得られた水性懸濁液を細孔径0.1μmのガラスフィルタでろ過してリン及び窒素の濃度を測定したところ、ろ液は、リン濃度が100mg-P/L以上、窒素濃度が500mg-N/L以上であり、加熱後の水性懸濁液は、原形質の溶出が明らかなクロレラ崩壊物の分散水性液であった。
【0030】
(エタノール発酵及びエタノールの回収)
糖化物(グルコース)濃度が10質量%、クロレラ崩壊物の濃度が0.5質量%程度になるように、前記糖化物及びクロレラ崩壊物分散液を秤量して蒸留水1Lに添加し、塩酸及び水酸化ナトリウムを用いてpHを5.0〜5.5程度に調整した。これを発酵用原液として、酵母(凝集性酵母Saccharomyces cerevisiae NCYC1119)を乾燥質量で5g接種して、約25℃で約48時間嫌気発酵した。
【0031】
得られた発酵液に含まれるエタノールを蒸留器を用いて精留・凝縮してエタノール35gを得た。
【0032】
(クロレラの培養及び崩壊物の調製2)
蒸留器から蒸留残液10gを回収し、蒸留水0.99Lを加えて培養液とし、クロレラ(クロレラ工業製、生クロレラ−V12)4g(乾燥質量換算)を接種して20℃で室内照明下、10日間培養した。この培養液を遠心分離器で20倍程度に濃縮し、約10質量%(乾燥質量換算)となったクロレラ分散液を、オートクレーブ中で120℃に10分間加熱してクロレラ崩壊物を得た。このクロレラ崩壊物を用いて、前述と同様にエタノール発酵及び蒸留を行ったところ、エタノール38gが得られた。
【実施例2】
【0033】
<ナンノクロロプシスを用いたエタノール発酵>
(ナンノクロロプシスの培養及び崩壊物の調製)
海水を採取し、孔径0.1μmのフィルターによる濾過及び紫外線照射によって海水中の生物除去・滅菌処理を行った。
【0034】
この海水1Lに、1gのKNO、0.2gのKHPO、0.2gのCaCl、0.3gのMgSO、0.4gのクエン酸及び0.1gのクエン酸鉄を加えて培養液とし、ナンノクロロプシス(クロレラ工業製、冷蔵ナンノ・ヤンマリンK−1)1g(乾燥質量換算)を接種して、室内照明下において約20℃で20日間培養した。この培養液を遠心分離器で10倍程度に濃縮し、約10質量%(乾燥質量換算)となったナンノクロロプシス分散液を、オートクレーブ中で120℃に10分間加熱した。この水性懸濁液を、細孔径0.1μmのガラスフィルタでろ過してリン及び窒素の濃度を測定したところ、ろ液は、リン濃度が100mg-P/L以上、窒素濃度が500mg-N/L以上であり、加熱による原形質の溶出が明らかであった。
【0035】
(エタノール発酵及びエタノールの回収)
糖化物(グルコース)濃度が10質量%、ナンノクロロプシス崩壊物(乾燥質量換算)の濃度が0.5質量%程度となるように、実施例1で調製した糖化物及び上述に従って調製したナンノクロロプシス崩壊物分散液を秤量して蒸留水1Lに添加し、塩酸及び水酸化ナトリウムを用いてpHを5.0〜5.5程度に調整した。これを発酵原液として、酵母(凝集性酵母Saccharomyces cerevisiae NCYC1119)を乾燥質量で5g接種して、約25℃で約48時間嫌気発酵した。
【0036】
得られた発酵液に含まれるエタノールを蒸留器を用いて精留・凝縮してエタノール35gを得た。
【0037】
(ナンノクロロプシスの培養及び崩壊物の調製2)
蒸留器から蒸留残液1000gを回収し、孔径0.1μmのフィルターで濾過し、フィルター上の残分50g(乾燥質量)と、濾液950gとに分離した。フィルター上の残渣分50gは、木質廃材に加えて、新たな糖化物の調製に使用した。
【0038】
濾液の水分を留去して濃縮し、生物除去・滅菌処理後の海水1Lを加えて培養液とし、ナンノクロロプシス(クロレラ工業製、冷蔵ナンノ・ヤンマリンK−1)1gを接種して室内照明下において40時間培養したところ、ナンノクロロプシスは約2g(乾燥質量換算)に増殖が可能であった。この培養液を遠心分離器で同様に濃縮して、オートクレーブ中で120℃に10分間加熱することによって、ナンノクロロプシス崩壊物を得た。このナンノクロロプシス崩壊物を用いて、前述と同様にエタノール発酵及びエタノール回収が可能であり、エタノール34gを得た。
【実施例3】
【0039】
<稲ワラのエタノール発酵>
粉砕した稲ワラを過熱水蒸気とともに200℃で3分間加熱して、ヘミセルロースを糖化した後、残渣を水洗してクラフトパルプを得た。このクラフトパルプが乾燥質量で10%となるように蒸留水を加え、セルラーゼを5質量%となるように添加して50℃に48時間保持して糖化物を得た。この糖化物を用いて、実施例1と同様に、クロレラ崩壊物を添加した発酵用原液を調製して酵母を接種し、発酵を行った。得られた発酵液の蒸留によってエタノールを39g得た。
【0040】
(比較例1)
ナンノクロロプシス崩壊物を使用しないこと以外は実施例2と同様にして発酵用原液を調製し、発酵及び蒸留を行ったところ、得られたエタノールは、20gであった。
【0041】
(比較例2)
クロレラ崩壊物を使用しないこと以外は実施例3と同様にして発酵用原液を調製し、発酵及び蒸留を行ったところ、得られたエタノールは、16gであった。
【産業上の利用可能性】
【0042】
本発明は、植物性廃棄物をバイオマスとしてバイオマスエタノールを生産する際に、食物価格の高騰の虞がない資源を利用して、発酵微生物に必要な栄養素や微量元素の供給を経済的且つ合理的に行うことができ、廃棄物処理及び資源の生産に寄与するので、有用性が高く、リサイクルの促進及び環境保護にも貢献可能である。

【特許請求の範囲】
【請求項1】
植物質多糖の糖化物と、細胞外へ原形質が解放される微細藻崩壊物とを用意し、前記微細藻崩壊物の存在下で前記糖化物を微生物を用いてエタノール発酵することによって、前記微生物の必須栄養素又は要求微量元素の供給源として前記微細藻崩壊物から開放された原形質を利用可能であることを特徴とするエタノールの製造方法。
【請求項2】
前記微細藻崩壊物は、クロレラ、ナンノクロロプシス、ボツリオコッカス及びドナリエラからなる群より選択される少なくとも1種の微細藻の崩壊物である請求項1記載のエタノールの製造方法。
【請求項3】
前記微細藻崩壊物は、水性液中で微細藻を加熱したものである請求項1又は2に記載のエタノールの製造方法。
【請求項4】
前記微細藻崩壊物は、微細藻の細胞膜を破砕したものである請求項1又は2に記載のエタノールの製造方法。
【請求項5】
前記植物質多糖は、セルロース又はヘミセルロースを含み、前記糖化物は、グルコースを含む単糖である請求項1〜4の何れかに記載のエタノールの製造方法。
【請求項6】
前記糖化物は、植物質多糖のアルカリ又は酸による加水分解物、あるいは、セルラーゼによる酵素分解物である請求項1〜5の何れかに記載のエタノールの製造方法。
【請求項7】
前記微生物は、細菌及び酵母からなる群より選択される少なくとも1種の発酵微生物を含み、前記微細藻崩壊物から開放される原形質は、前記発酵微生物の必須栄養素及び要求微量元素を含有する請求項1〜6の何れかに記載のエタノールの製造方法。
【請求項8】
前記微生物は、凝集性酵母を含む請求項1〜7の何れかに記載のエタノールの製造方法。
【請求項9】
前記エタノール発酵は、糖化物濃度が1〜20質量%、微細藻崩壊物の含有量(乾燥物換算)が0.1〜1質量%の水性液を調製する工程と、前記水性液のpHを2.5〜5.5に調整する工程と、前記水性液に前記微生物を接種する工程と、前記接種後の水性液を温度30〜37℃程度に2〜48時間保持する工程とを有する請求項1〜8の何れかに記載のエタノールの製造方法。
【請求項10】
前記エタノール発酵の生成物からエタノールを分離した後の残留物を利用して微細藻を培養する請求項1〜9の何れかに記載のエタノールの製造方法。

【公開番号】特開2013−39085(P2013−39085A)
【公開日】平成25年2月28日(2013.2.28)
【国際特許分類】
【出願番号】特願2011−178985(P2011−178985)
【出願日】平成23年8月18日(2011.8.18)
【出願人】(000000099)株式会社IHI (5,014)
【Fターム(参考)】