説明

エレクトロスピニング装置

【課題】繊維の生産効率を飛躍的に向上でき、しかも、得られるウェブの目付け分布を大幅に改善できるエレクトロスピニング装置、エレクトロスピニング方法、及びそれから得られるナノファイバーの集合体を提供する。
【解決手段】繊維を紡出する紡糸ヘッド2と紡出された繊維Fを捕集するコレクター4との間に大きな電位差を付与して強電界場を形成した雰囲気中に荷電した紡糸液Pを紡出して極細繊維からなる集合体をコレクター上に形成するためのエレクトロスピニング装置1において、紡糸液を拡幅して薄膜状に吐出する吐出孔と、吐出孔から吐出された紡糸液を薄膜状に流下させる紡糸液の貯留部22と、紡糸液の貯留部に対して垂直に延在した方向に紡糸液の貯留部と平行かつ対向して設けられたコレクターとを備え、紡糸液の貯留部を流下する紡糸液から極細繊維を紡出してコレクター上に捕集するエレクトロスピニング装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は極細繊維(特に、いわゆる「ナノファイバー」とよばれる超極細繊維)からなる繊維集合体をエレクトロスピニング(Electro spinning)によって製造するためのエレクトロスピニング装置に関する。
【背景技術】
【0002】
最近、極細繊維の集合体からなるウェブを得るエレクトロスピニングという紡糸技術が注目されている。この紡糸技術は、静電界場が形成された雰囲気中へ荷電した紡糸液を紡出して、これを繊維集合体として捕集することにより、繊維径がサブミクロン・オーダーもしくはミクロン・オーダーのウェッブを得る技術であり、近年においては、ナノメータ・オーダーの繊維径を持った繊維集合体を得ることができるようにもなってきた。
【0003】
ここで、エレクトロスピニングについて簡単に説明すると、非特許文献1などに記載されているように、エレクトロスピニングでは、高電圧を用いて紡糸を行う。このため、高電圧によって紡糸液の表面に電荷が誘発され蓄積される。この電荷はお互いに反発し合い、その反発力は紡糸液の表面張力に対抗する。そして、電場力が表面張力の臨界値を超えると、電荷の反発力が表面張力に打ち克って、荷電した紡糸液のジェットが噴射される。
【0004】
このようにして噴射された紡糸液からなるジェットは、その体積に比較して表面積が大きいため、溶媒が効率良く蒸発する。また、体積が減少することにより電荷密度がより高くなるため、荷電した紡糸液の反発力が増して、更に細いジェットへと分裂して行く。そして、このような過程を経ながら、数十nm〜数百nmの単繊維径(フィラメント径)を有する均一なフィラメント(いわゆる「ナノファイバー」)からなる繊維集合体がウェブとしてコレクター(捕集手段)上に最終的に捕集される。
【0005】
なお、このエレクトロスピニングは、米国特許第1975504号明細書(特許文献1)に現れたのが最初と言われている。また、このエレクトロスピニングは、従来、「静電場紡糸」、「静電紡糸」、あるいは「電荷誘導紡糸」などと様々な名称で呼ばれ、古くから行われてきた紡糸方法である。したがって、我が国においても、例えば、下記の特許文献2〜特許文献9等において、その様々な応用技術が提案されている。
【0006】
このように、エレクトロスピニングの歴史は古いが、得られるウェブの製造速度が遅いという大きな問題を有している。このため、工業的な規模でウェブを製造できない故に、近年まで工業的な規模の紡糸方法としては使用されてこなかった。
【0007】
しかしながら、このような原理を使用したエレクトロスピニングが、一躍注目を浴びるようになったのは、最近において高分子溶融物、高分子溶液などの様々な種類の高分子が適用可能であって、数nm(ナノメートル)の直径を有する繊維からなるウェブの製造も可能であることが報告されたことによる。
【0008】
例えば、エレクトロスピニングによって製造されたウェブは、その特性から人工血管や人工臓器等の素材として応用できることがわかり、医療・バイオテクノロジー等へ応用が精力的に研究され始められた。また、1990年代初頭にアメリカで、生物兵器用のガスフィルターを製造するための軍事研究として取り上げられ、また、ガスタービンや自動車用の特殊エアフィルターとして実用化もされている。
【0009】
以上に説明したように、エレクトロスピニングによるウェブの製造は、様々な分野で大きな可能性を秘めているが、その製造速度の遅さに起因する生産効率の悪さに関しては依然として大きな問題として残されている。ただし、この問題を解決するために、紡糸液から繊維を形成するためのノズルを紡糸ヘッドに多数設けて、これらのノズルから一斉に繊維を紡出することにより生産性を向上させようとする試みもなされてきた。
【0010】
しかしながら、エレクトロスピニングのような静電界場での紡糸技術において、ノズルを多数設けると、ノズル間で電界干渉を起こすという不具合が発生する。そこで、この欠点を克服するための試みとして、特許文献16及び特許文献17などに見られるように、紡糸ヘッドと紡出された繊維を捕集するコレクターとの間に平板電極を設けたり、走査電極や静電四極子レンズを設けたりすることが提案されている。また、多数配列したノズルの中間に電荷分配板を用いることにより、加工速度を向上させることも提案されている。確かに、これらの従来技術によれば、同じ電荷を帯びた繊維(フィラメント)同士が互いにその斥力によって反発し合って広がってしまうという事態を防止することはできる。
【0011】
しかしながら、多数のノズルが並設された中央部では、隣り合うノズルの電界が互いに干渉する影響が大きくなって、紡出する繊維の量が減少し、場合によっては繊維が全く紡出されないといった事態も生じる。また、これとは逆に、ノズルの設置個数が少ない端部では、隣接するノズルから受ける電界の影響が小さくなって、中央部とは逆に多量の繊維が紡出されてしまうという事態を招く。そうすると、当然のことながら、得られたウェブの幅方向における目付け分布に関して言うと、中央部で目付けが小さくなり、端部へ行くに従って目付けが大きくなるという製品品質上の問題を惹起する。
【0012】
ところが、従来技術では、ウェブの生産性を向上させるために、どうしてもより多くのノズルを設けなければならず、それ故に、装置サイズが極端に大きくなる。しかも、このような技術では、得られるウェブに関する前述の目付け斑の悪化もより顕著になる。したがって、従来のエレクトロスピニングでは、生産速度を向上させようとしたときに生じる目付け斑が解消されず、そのために、生産効率が良いウェブの生産方法の確立という目標は未だに満足するレベルにまで達していないのが現状である。
【0013】
【特許文献1】米国特許第1975504号明細書
【特許文献2】特公昭44−21817号公報
【特許文献3】特公昭53−28548号公報
【特許文献4】特公昭59−12781号公報
【特許文献5】特公昭62−18661号公報
【特許文献6】特公昭63−543号公報
【特許文献7】特開昭47−1943号公報
【特許文献8】特表昭56−501325号公報
【特許文献9】特開昭59−204957号公報
【特許文献10】米国特許第4044404号明細書
【特許文献11】米国特許第4323525号明細書
【特許文献12】米国特許第4552707号明細書
【特許文献13】米国特許第4842505号明細書
【特許文献14】米国特許第4904272号明細書
【特許文献15】米国特許第5866217号明細書
【特許文献16】特開2002−201559号公報
【特許文献17】特表2005−534828号公報
【非特許文献1】Fong et al., Polymer 1999,40,4585.
【発明の開示】
【発明が解決しようとする課題】
【0014】
以上に述べた従来のエレクトロスピニング技術に係る諸問題に鑑み、本発明が解決しようとする課題は、従来技術のように多数のノズルを立設して多数の繊維を紡出する生産効率の悪い技術に代えて、繊維の生産効率を飛躍的に向上でき、しかも、得られる繊維集合体の目付け分布を大幅に改善できるエレクトロスピニング装置を提供することにある。
【課題を解決するための手段】
【0015】
前記課題を達成するための本発明として、下記(1)〜(7)に係るエレクトロスピニング装置が提供される。
(1) 電荷を帯びた紡糸液を貯留する貯留部の底に開口する紡糸液供給孔を備えた紡糸ヘッドと、前記紡糸液を計量しながら連続的に前記供給孔へ供給する連続計量供給装置と、該貯留部へ供給された紡糸液によって形成された液面に対して垂直方向に延在する方向に設けられたコレクターと、前記紡糸ヘッドと前記コレクターとの間に高電位差を有する強静電界場を形成する直流高電圧電源とを備え、
前記貯留部に上端開口を設け、該開口に形成された液面から電荷を帯びた紡糸液を前記強静電界場中へ飛び出させてマイクロファイバーからなる繊維集合体を前記コレクター上に捕集するエレクトロスピニング装置。
(2) 前記貯留部の上端開口が面状開口であることを特徴とする、(1) に記載のエレクトロスピニング装置。
(3) 前記貯留部の上端開口が線状のスリット状開口であることを特徴とする、(1) に記載のエレクトロスピニング装置。
(4) 前記紡糸ヘッドが、前記上端開口から繊維化されなかった残余の紡糸液をオーバーフローさせる構造を備えることを特徴とする、(1)〜(3)の何れかに記載のエレクトロスピニング装置。
(5) 前記紡糸液の貯留部へ供給前の紡糸液に対して電荷を付与する高電圧電源を備えた、(1) 〜(4) の何れかに記載のエレクトロスピニング装置。
(6) エレクトロスピニングされた繊維集合体をその上に捕集するフィルム状の基材を巻き出す巻出装置と、前記基材上に捕集された繊維雌雄剛体を前記基材とともに巻き取る巻取装置とを備えた、(1)〜(5)の何れかに記載のエレクトロスピニング装置。
(7) 前記貯留部の下方に緩衝部材を設け、該緩衝部材から紡糸液を滲み出すように前記上端開口へ供給する、(1)〜(6)の何れかに記載のエレクトロスピニング装置。
【発明の効果】
【0016】
以上に述べた本発明によれば、紡糸ヘッドに設けられた貯留部へ紡糸液を供給して、強い静電界場中に液面を形成させ、この液面から一斉に繊維をコレクターに向って紡出することができる。しかも、従来技術のように、強い電界を形成する先細ノズルを多数併設することが無いため、ノズル群が有する強い電界間の相互干渉を抑制することができ、しかも、紡糸ヘッドの構造を単純化することができる。
【0017】
したがって、従来のエレクトロスピニング装置によるウェブ(繊維集合体)の製造と比較すると、本発明のエレクトロスピニング装置によって得られる不織布ウェブなどの形態を有するナノファイバーの集合体の生産効率を飛躍的に向上させることができる。
【0018】
しかも、本発明のエレクトロスピニング装置では、従来のようにノズル間の強い電界の相互干渉を抑制することができる。このために、得られるナノファイバーからなる集合体の目付け分布を大幅に改善できる。
【発明を実施するための最良の形態】
【0019】
本発明のエレクトロスピニングに使用可能な「高分子物質」には、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリエチレン、ポリプロピレン、ナイロン12、ナイロン−4,6などのナイロン系、アラミド、ポリベンズイミダゾール、ポリビニルアルコール、セルロース、酢酸セルロース、酢酸セルロースブチレート、ポリビニルピロリドン−酢酸ビニル、ポリ(ビス−(2−(2−メトキシ−エトキシエトキシ))ホスファゼン)、ポリプロピレンオキサイド、ポリエチレンイミド、ポリこはく酸エチレン、ポリアニリン、ポリエチレンサルファイド、ポリオキシメチレン−オリゴ−オキシエチレン、SBS共重合体、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリエチレンテレフタレート、ポリエチレンオキサイド、コラーゲン、ポリ乳酸、ポリグリコール酸、ポリD,L−乳酸−グリコール酸共重合体、ポリアリレート、ポリプロピレンフマラート、ポリカプロラクトンなどの生分解性高分子、ポリペプチド、タンパク質などのバイオポリマー、コールタールピッチ、石油ピッチなどのピッチ系などの溶融または適正溶媒に溶解可能な様々な高分子が適用可能である。それだけでなく、上記高分子にエマルジョンや有機、無機物の粉末状を混合して用いることも可能である。
【0020】
また、前記「高分子物質」を溶解する溶媒として「揮発性溶媒」を用いて「紡糸液」を製造するが、この「揮発性溶媒」は、揮発性が高い下記(a)群から選ばれた溶媒の少なくとも1種と、揮発性が揮発性が相対的に低い下記(b)群から選ばれた少なくとも1種の溶媒との混合溶媒を使用することが好ましい。
【0021】
ここで、揮発性の高い前記(a)群の溶媒としては、アセトン、クロロホルム、エタノール、イソプロパノール、メタノール、トルエン、テトラヒドロフラン、水、ベンゼン、ベンジルアルコール、1,4−ジオキサン、プロパノール、四塩化炭素、シクロヘキサン、シクロヘキサノン、塩化メチレン、フェノール、ピリジン、トリクロロエタン、酢酸を例示することができる。
【0022】
また、揮発性が相対的に低い前記(b)群の溶媒としては、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドン、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、アセトニトリル、N−メチルモルホリン−N−オキシド、ブチレンカーボネート、1,4−ブチロラクトン、ジエチルカーボネート、ジエチルエーテル、1,2−ジメトキシエタン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジオキソラン、エチルメチルカーボネート、メチルホルマート、3−メチルオキサゾリジン−2−オン、メチルプロピオネート、2−メチルテトラヒドロフラン、スルホランを例示することができる。
【0023】
本発明で使用される「高分子物質」を「溶媒」で溶解した紡糸液の粘度は、得られる繊維の繊維径に影響し、一般に、粘度が低ければ繊維径が細くなり、高ければ太くなる。したがって、紡糸液の粘度は、1cps〜10000cpsであることが好ましく、10cps〜1000cpsとすることがより好ましい。これよりも粘度が高いと、エレクトロスピニングによって効率的に繊維を得ることが困難となり、生産性が極めて低下すると共に、細い繊維が得られ難くなり、逆に、粘度が低すぎると、紡糸液の流量制御が困難となる。
【0024】
また、エレクトロスピニングは、電荷の反発力が紡糸液の表面張力に打ち勝って生じるので、紡糸液の表面張力は、得られる繊維の繊維径に影響し、一般に表面張力が低ければ繊維径が細くなり、高ければ太くなる。また、紡糸液の表面張力は、大きすぎるとエレクトロスピン現象が生じ難くなって繊維径が大きくなるばかりか、液球の飛散を生じるため、70ダイン以下が好ましい。同様により好ましくは60ダイン以下、最も好ましくは50ダイン以下である。
【0025】
本発明では、以上に述べた紡糸液を用いてエレクトロスピニングを行うのであるが、以下、本発明について図面を参照しながら詳細に説明する。
図1は、本発明のエレクトロスピニング装置の一つの実施形態例を模式的に示した概略の装置構成図である。
【0026】
この図1において、参照符号1はエレクトロスピニング装置であって、このエレクトロスピニング装置1は、紡糸ヘッド2、直流高圧電源3、コレクター4、紡糸液の貯留容器5、計量供給装置6、紡糸室7、排気装置8、吸気装置9、接地端子10、紡糸液の回収容器11、紡糸液の回収配管12、紡糸液の供給配管13、巻出装置15、巻取装置16などを含んで構成されている。なお、参照符号14は繊維集合体、参照符号Fは紡出された繊維、そして、参照符号Pは紡糸液をそれぞれ示す。
【0027】
その際、本発明においては、前記高圧電源3は、必要に応じて第1高圧電源31と第2高圧電源32とを備えていることが好ましい。何故ならば、エレクトロスピニングでは、既に説明したように、強い静電場中に、電荷を帯びた紡糸液Pを供給することによって、電荷を帯びた紡糸液Pから繊維をジェットとして飛び出させることによって、繊維集合体を形成させることを特徴とするからである。
【0028】
したがって、本発明においては、第1高圧電源31は、紡糸ヘッド2とコレクター4との間の紡糸領域に強い静電界場を形成するために使用し、第2高圧電源32は、紡糸液Pに予め所定の量の電荷を付与するために使用するようにすることも好ましい実施形態である。ただし、共用の高圧電源を用いたとしても、第1高圧電源31と第2高圧電源32とで、付与する電位差を同じにする必要は無く、付与する電位差を異ならせることができるのは言うまでもない。
【0029】
また、図1の排気装置8は、排気フード81、排気配管82、排気の流量調節装置83、気体吸引手段84、そして、溶媒除去装置85を含んで構成される。更に、吸気装置9は、フィルター91、吸気孔92などを含んで構成される。
【0030】
以上のように構成される、本発明に係るエレクトロスピニング装置1は、図示したように、紡糸液の貯留部22が形成された紡糸ヘッド2を有している。この貯留部22は、図1に例示したように、上方に向って末広状に開口する空間で形成されている。なお、この貯留部22には、計量供給装置6を介して、貯留部22の底部に設けられた供給孔24から紡糸液Pが計量されながら連続的に供給される。なお、このとき使用する計量供給装置6としては、ギアポンプ、シリンジポンプ、チューブポンプなどの計量機能を有する装置を例示することができる。
【0031】
したがって、貯留部22の上端部には、図1に例示したように、紡糸液Pによって形成された液面が存在することとなる。なお、この液面については、繊維化される紡糸液Pを除いて過剰供給された紡糸液Pが、紡糸ヘッド2の上端面からオーバーフローして流れ去るため、常に液面位置は一定に保たれることとなる。
【0032】
なお、図1には、貯留容器5及び計量供給装置6はそれぞれ1つずつ記載しているが、複数の貯留容器5及び計量供給装置6を使用することも可能である。例えば、複数の貯留容器5に各々別種の高分子物質を貯蔵して、移送途中の流路内で静止混練器などを使用して混合したり、また複数の紡糸ヘッド2を設けて、各紡糸ヘッド2毎に異なる高分子物質を供給して繊維集合体を製造することも可能である。
【0033】
このとき、前記紡糸ヘッド2には、直流高電圧電源3からの正電極が接続されており、これによって、正の直流高電位が紡糸液の貯留部22に印加されている。これに対して、紡糸ヘッド2に設けられた紡糸液Pの貯留部22から紡出された繊維Fを捕集する側のコレクター4は、接地端子10を介して接地(アース)されている。したがって、当然のことながら、このコレクター4の電位は、接地によって接地端子10と同じ電位、すなわち、0Vとなっている。
【0034】
このようにして、前記紡糸ヘッド2とコレクター4との間には、大きな電位差が生じるので、これによって強い静電界場を繊維Fの紡糸領域に形成することができる。なお、図1に例示した実施形態では、紡糸ヘッド2とコレクター4との間に大きな電位差を付与するために、コレクター4を接地する実施形態を示しているが、陽極性(+)を有する紡糸ヘッド2に対して、逆の陰極性(−)を有する電圧をコレクター4に印加するようにして、更に紡糸ヘッド2とコレクター4との間の電位差を拡大するようにしても良い。
【0035】
以上に説明した静電界場において、前記計量供給装置6によって連続的に計量されながら紡糸ヘッド2に供給された紡糸液Pは、予め第2高圧電源(図示せず)から紡糸液P中に設けられた電極(図示せず)、あるいは紡糸ヘッド2に高電位を付与する第1高圧電源よって印加された正電圧によって、当然のことながら、紡糸液Pには正電荷が付与されるか、あるいは誘発されて蓄積される。
【0036】
このようにして紡糸液Pに帯びた正電荷は、同種の電荷間に作用する斥力によってお互いに反発し合い、その反発力は紡糸液Pの表面張力に対抗するまでのレベルにまで達する。そして、その反発力が表面張力の臨界値を超えると、紡糸液Pの反発力が表面張力に打ち克って、荷電した紡糸液Pがジェットとなって貯留部22の液面から噴射される。
【0037】
このようにして紡糸液Pから噴射された最初のジェットは、初期段階においてその直径が大きくても、高分子物質を溶解する溶媒が急激に揮発するため、その径も急激に小さくなる。そうすると、噴射されたジェットはその体積に比較して表面積が幾何級数的に大きくなって、高分子物質を溶解している溶媒が極めて効率良く蒸発する。それとともに、ジェットの体積が急激に減少することにより、ジェット自身が帯びている電荷密度がより高くなる。
【0038】
そうすると、密度を増した電荷の作用によってジェット内の反発力が急激に増して、より細いジェットへと更に分裂を重ねて行く。そして、このようなジェットの再分裂過程を経ながら、ジェットを構成する高分子物質は、最終的に数十nm〜数百nmの単繊維径(フィラメント径)を有する均一なフィラメントF(いわゆる「ナノファイバー」)からなる繊維集合体を形成してコレクター4上に捕集される。
【0039】
本発明において、繊維集合体からなるウェブを製造するために使用する前述の「高分子物質」としては、5μS/cm〜500mS/cm(ここに記載の計量単位「S」は「ジーメンス」を表す)、好適には5μS/cm〜50mS/cmの導電率を有するものを用いることが好ましい。このような範囲の導電率を持つ高分子物質を用いることで、紡糸液Pの表面張力に打ち克って急激に紡出されて形成されたジェットの先端での電界集中を強め、より細くかつ良好な形状に分裂したナノファイバーFを得ることが可能であり、その上、製造速度も向上する。
【0040】
何故ならば、エレクトロスピニング技術では、繊維Fが形成される過程で、急激に紡出された高分子物質を含む紡糸液Pのジェットが分裂する際、このジェットの導電性が5μS/cm未満であると、ジェット先端の電位が下がる。そうすると、ジェットへの電界強度の集中が弱くなって、ナノファイバーFへの分裂がうまく生じない恐れがあるからである。
【0041】
他方、導電率が500mS/cmを超えると、エレクトロスピニング現象が不安定になり易い。しかも、導電率が大きくなると、前述のジェットの表面に生じた電荷の集中が、流体力学的に緩衝されるのではなく、その高い電気伝導の故に、電荷がジェット内に分散してしまう。そうすると、ジェットが分裂する現象が起き難くなって、目標とするナノファイバーFを得ることができない。
【0042】
このエレクトロスピニングにおいては、前述のように繊維Fが形成される過程で、繊維化する高分子物質を溶解している溶媒が紡糸液Pから急激に揮発する。このため、揮発した溶媒が周囲に拡散して作業環境を悪化させないように、紡糸ヘッド2とコレクター4との間の紡糸領域を取り囲む紡糸室7を設け、この紡糸室7内を空調する空調手段(図1の実施形態では、排気装置8と吸気装置9が相当する)を備えることが望ましい。また、このような空調は、紡糸室7内の溶媒濃度、温度、あるいは湿度などを一定に保ち、それ故に、常に安定した紡糸条件を維持するためにも、紡糸室7に付設することが望ましい。
【0043】
その際、この紡糸室7内に揮散した溶媒については、排気装置8を紡糸室7に付設して、この紡糸室7内の空気を吸引して除去することが好ましい。また、排出する溶媒を含んだ空気とのマテリアル・バランスを維持調整するために、例えば吸気孔、ブロアー、ファンなどからなる吸気装置9を設けたりすることが好ましい。なお、図1の実施形態では、このような吸気装置9として、フィルター91を付設した吸気孔92を例示している。
【0044】
このとき、前記吸気装置9を通じて紡糸室7へ吸気する空気の温度は、溶媒の揮発度や紡出する繊維群(フィラメント群)Fの集積度を考慮すると、5℃〜80℃の範囲内で調整することが好ましい。したがって、必要に応じて吸気装置9には、加熱器(図示せず)をが吸気配管の途中に設けられることがある。なお、溶媒を含んだ空気の排出風速は、紡出される紡糸液Pのジェットに悪影響が及ばないよう、紡糸領域内では、例えば、0.1m/s〜5m/sの範囲で調整することが望ましい。
【0045】
以上に説明したように、吸気装置9から紡糸室7内に吸入された空気は、紡糸ヘッド2の紡糸液の貯留部22から繊維化されて紡出される高分子物質を溶解する溶媒が揮発した溶媒含有空気となる。そして、この溶媒含有空気は、排気装置8によって紡糸室7の外へ排気される。なお、排気装置8は、例えば、ブロアー、ファン、真空吸引機、エジェクターなどからなる気体吸引手段84を排気配管82の途中に備えていることは言うまでもない。
【0046】
このようにして、排気装置8によって吸引された溶媒を含む空気は、コールドトラップ、あるいは溶媒吸着装置などからなる溶媒除去装置85を介して溶媒を回収あるいは分離除去した後、図示した矢印方向に、溶媒を含まない空気のみが放出される。このとき、排気装置8によって吸引する溶媒を含む空気量は、例えば排気装置8の排気配管82の途中にダンパーや流量調節弁などからなる流量調節装置83などを設けることによって、調整することが好ましい。
【0047】
以上に述べたようにして、本発明に係るナノファイバーFからなる繊維集合体が形成されるのであるが、このナノファイバーFからなる繊維集合体の形成に際しては、前記紡糸ヘッド2の特徴的な構造が大きな役割を果たす。つまり、本発明のエレクトロスピニング装置1は、この紡糸ヘッド2の構造に大きな特徴を有するものである。そこで、以下に図2を参照しながら、本発明の紡糸ヘッド2の特徴について、更に詳細に説明する。図2は、本発明に係る紡糸ヘッド2の3種類の実施形態例を模式的にそれぞれ示した正断面図である。
【0048】
従来のエレクトロスピニング装置では、電荷が付与された紡糸液Pが細孔群から静電場内にそれぞれ吐出されて繊維化されていたのであるが、本発明の紡糸ヘッド2には、このような細孔群から紡糸液Pを吐出させて繊維化するものではない。すなわち、前記図2より明らかなように、本発明で使用する紡糸ヘッド2は、前述の細孔群が穿設された従来の紡糸ヘッドに代えて、既に図1を使用して説明したように、上方へ向って末広状に開口する空間が形成された貯留部22を持つものの他に、図2(a)〜(c)の模式側断面図に示したような形状の空間が形成された貯留部22を持つ紡糸ヘッド2を使用することができる。
【0049】
ここで、図2(a)に例示した紡糸ヘッド2は、上方に向って先細状に形成された空間の上端に繊維集合体の幅方向(紙面と垂直方向)に対して細長に線状開口した液面Lを形成するスリット23が形成された貯留部22を持つものである。また、図2(b)は、上方に向ってワイングラス状に面状開口した液面Lがその上端に形成された貯留部22を持つものである。そして、図2(c)は、逆ワイングラス状に形成された空間の上端に繊維集合体の幅方向(紙面と垂直方向)に対して細長に線状開口した液面Lを形成するためのスリット23を有する貯留部22を持つものである。
【0050】
以上に説明したように様々な実施形態に構成される、本発明のエレクトロスピニング装置1の紡糸ヘッド2において、本発明者らは、強い静電界場が形成された紡糸雰囲気中に、従来技術のように細孔から正電荷を帯びた紡糸液Pを吐出させて繊維化させることができることを見出した。つまり、本発明者らは、前記紡糸液Pを図1及び図2に例示したような貯留部22やスリット23を形成した紡糸ヘッド2を使用して、この紡糸ヘッド2へ紡糸液Pを供給したのである。
【0051】
そうすると、驚くべきことに、正電荷を帯びた紡糸液Pの一部が液面Lが持つ表面張力に打ち克って、強いクーロン力の作用で紡糸雰囲気中に繊維Fとして紡出されることを見出したのである。しかも、紡糸液Pが形成する前記液面Lから繊維Fが紡出され始めると、これに引き続いて、この液面Lから極めて多数の繊維Fが次々に紡出されることを見出した。このような現象は従来技術では報告されておらず、従来技術では、本明細書の「背景技術」欄で説明したように、細孔が穿設された多数のノズル群の各先端からそれぞれ紡糸液Pを吐出させるという方法を採用していたが、このような方法では、先に説明したような数々の不利益が生じる。
【0052】
そこで、本発明では、従来のエレクトロスピニング技術において、静電界場へ紡糸液Pを吐出させるための手段として使用されている先細ノズルに代えて、前述のような紡糸液Pを貯えた貯留部22を利用する。すなわち、エレクトロスピニングに使用する本発明の紡糸ヘッド2には、細孔群から紡糸液Pを吐出して繊維Fを紡出するノズルは設けず、スリットが形成されて紡糸液Pが線状に供給する紡糸ヘッド2、あるいは紡糸液Pを面状に供給する紡糸ヘッド2を使用する。
【0053】
このような本発明の紡糸ヘッド2においては、強い静電場の下に、電荷を帯びた紡糸液Pを線状(スリット状)に供したり、面状に供給孔24を介して貯留部22へ供するだけで、紡糸液Pを細孔から押田さなくても、繊維化することができる。つまり、強い静電場中に、電荷を帯びた紡糸液Pに液面Lを形成させるだけで、マイクロファイバーを製造することができることを一大特徴とする。
【0054】
以上説明したように、本発明におけるエレクトロスピニングでは、紡糸液Pに液面Lを形成させるだけで、マイクロファイバーを形成することができるのであるのであるが、貯留部22の底部に形成された供給孔24から供給する紡糸液Pが流入する際に液面Lを乱さないようにすることが好ましい。そこで、この目的を達成するために、貯留部22の下部に金属細線などからなる不織布フィルター、金網フィルター、あるいは多孔質焼結金属などからなる緩衝部材25を設けて、滲み出すように静かに紡糸液Pを供給することもできる。
【0055】
その際、図2(a)及び(c)に例示したように、紡糸液Pをスリット状に供給してスリット状の液面Lを形成する場合のスリット幅Bについては、使用する紡糸液Pの粘度、吐出量と吐出圧力、電気伝導率などの紡糸液Pの性状、あるいは繊維Fの製造量と生産効率などの条件によって最適な範囲が決まる。したがって、これらの条件に適合させて最適な値を適宜選択使用すればよく、特に限定する必要はない。しかしながら、通常の条件下では、スリット幅Wは、0.01cm〜100cmである。
【0056】
なお、貯留部22から紡出されて繊維化された紡糸液Pに対して、繊維化されずに紡糸液Pの貯留部22をオーバーフローして流出する残余の紡糸液Pは、回収容器11へ流入する。そして、回収容器11へ流入した紡糸液Pは、回収配管12を介して紡糸液Pを貯留する貯留容器へと還流する。また、こうして還流した紡糸液Pは、供給配管13を経由して、計量供給装置6によって、再び紡糸ヘッド2へと供給される。
【0057】
その際、繊維化されなかった紡糸液Pについては、前述のように循環使用することが理想である。しかしながら、繊維化されなかった紡糸液Pを含む紡糸液Pの循環使用を繰り返すと、高分子物質を溶解している紡糸液P中の溶媒が蒸発して不足したりするなどの事態が生じる。そうすると、この影響によって、紡糸液Pの成分組成の比が変化してしまったりする。そのため、図1には記載を省略したが、一度紡糸ヘッド2に供給して、繊維化されずに回収した紡糸液Pについては、貯留容器6とは別の容器に回収することが好ましい。そして、回収した紡糸液Pの成分組成を再度調製して、貯留容器6に戻すことが好ましい。
【0058】
以上に詳細に説明したように、本発明の紡糸ヘッド2は、実質的に紡糸液の上端に形成した液面Lを利用して、この液面Lから多数の紡糸液Pからなるジェットを生成させて繊維化し、これをコレクター4上に集積して繊維集合体14を得ることを特徴とするものである。ただし、本発明においては、貯留部22の上端面に形成される液面Lからのみ紡糸液Pのジェットが生成されるだけでなく、オーバーフローする紡糸液Pからも繊維化するためのジェットを生成させることができることを付言しておく。
【0059】
以上に説明した本発明のエレクトロスピニング装置1に対して、従来のエレクトロスピニング装置では、紡糸液Pをノズルの内部に穿設された細孔(小孔)から吐出させている。このため、どうしても、多数のノズルを設置するためのスペースを確保する必要があると共に、ノズル間の間隔もある程度は確保しなければならない。また、ノズル形状をできるだけ小さくしようとしても、最適な紡糸条件とするためには、その構造上どうしてもノズル形状を大きくしなければならないという限界が生じていた。したがって、個々独立に併設された多数のノズル群間での電界の相互干渉が生じてしまい、これを解消することが極めて困難であった。
【0060】
しかしながら、本発明のエレクトロスピニング装置1では、従来のノズルに代えて、紡糸液Pが形成する液面Lを利用する。そのため、従来ノズルのようにノズル内に穿設した小孔から紡糸液Pを吐出する構造を採用しないために、紡糸ヘッド2の構造は極めてシンプルになる。しかも、小孔を穿設したノズル群を必要としないので、ノズル群によって相互に干渉する静電界場の影響を可能な限り小さく抑えることができる。
【0061】
また、本発明に係るエレクトロスピニング装置1は、紡糸ヘッド2から従来のノズル群を取り払うことができるので、ノズル間距離をゼロに極小化したものであるとも言える。このように、本発明に係るエレクトロスピニング装置1は、静電界場の相互干渉を強く抑制することができる。したがって、本発明の紡糸ヘッド2から紡出されてコレクター4に捕集されたナノファイバーからなる繊維集合体(ウェブ)は、従来の多数のノズルを併設した方法で得られた繊維集合体と比較しても、その幅方向における目付け分布斑が大きく改善されており、その生産性も格段に向上している。
【0062】
なお、本発明の紡糸ヘッド2の材質としては、紡糸液Pとの接触面において腐食などが発生せず、しかも、導電性が良い金属材料を用いることが、紡糸液Pに望ましい帯電量を付与する上で好ましい。ただし、紡糸ヘッド2の材質は、金属材料に限定されるものではなく、用いられる紡糸液Pの電気伝導度が高ければ、半絶縁体あるいは絶縁体を使用することも可能である。
【0063】
しかしながら、電気伝導度が高い紡糸液Pは、高い電気伝導の故に内部に電荷が蓄積しがたく、それ故に、電界の集中が緩和されてしまう。このため、一般に、高い電気伝導性を有する紡糸液Pを用いると、エレクトロスピニングすることが難くなり、この点を考慮すると、紡糸液Pの電気伝導度を調整可能な範囲を広げる意味で、適度な導電性を有するものが好ましい。例えば、このような適度な導電性を有する材料としては、ガラス、プラスチックなどの絶縁体に導電性物質をコーティングあるいはライニング加工して適度な導電性を付与したものを例示することができる。
【0064】
次に、以上に述べた紡糸ヘッド2の貯留部22が形成する液面Lから紡出された繊維Fを捕集する側のコレクター4について説明する。このコレクター4は、図1に例示したように、紡糸ヘッド2に設けられた紡糸液の貯留部22に形成される液面Lに対して垂直に延在した方向に紡糸液の貯留部22と平行かつ対向して設けられている。その際、紡糸ヘッド2(紡糸液の貯留部22)とコレクター4との間に形成する電圧差(電位差)は、好ましくは1kV〜500kV、より好ましくは2kV〜200kV、さらに好ましくは5kV〜100kVである。なお、エレクトロスピニングによって得られる繊維Fは、一般に印加電圧が高いほど得られる繊維径は細くなる。
【0065】
しかしながら、電圧差が500kVを越えると、電極間(紡糸ヘッド2の紡糸液の貯留部22とコレクター4間)でショート(短絡)が発生しやすくなるため好ましくない。また、あまりにも高電圧になると、漏電や放電現象が発生し易くなるにもかかわらず、これらを防止するための絶縁が困難となる。逆に、電圧が1kV未満になるとエレクトロスピニング現象が発生し難くなり、目的とする繊維径を有するナノファイバーFも得られないため好ましくない。
【0066】
本発明に係るエレクトロスピニング装置では、紡糸ヘッド2に形成した紡糸液の貯留部22とコレクター4との間の距離を変化させることによって、得られる繊維Fの単繊維径や繊維長、あるいは、捕集された繊維F同士が交絡して形成される網目構造の形態などを変化させることができる。すなわち、この距離が長いほど繊維径は小さくなり、短いほど、繊維径は大きくなる。
【0067】
更に、距離を大きくし、紡出されたジェットの広がりを大きくして、コレクター4上での繊維Fの捕集範囲を大きくしたり、溶媒の蒸発を促進することによって繊維Fの乾燥度を向上させることができる。逆に、距離を短くすると、繊維Fの捕集面積は減少するが、繊維Fが弱い乾燥状態で捕集されるので、捕集した繊維F同士の密着性を向上させることができる。
【0068】
以上に説明したように、本発明のエレクトロスピニングでは、貯留部22に形成する液面Lとコレクター4との間の距離Aは、その目的や製造する繊維集合体の形態などに応じて任意に調節可能である。しかしながら、捕集する繊維集合体の生産性、操業性、あるいは安全性などを考慮すると、その距離Aは、好ましくは1cm〜100cmの範囲であり、より好ましくは5cm〜30cmである。
【0069】
以上の説明においては、紡糸ヘッド2から紡出された繊維Fが直接コレクター4に捕集されるように説明してきた。しかしながら、通常、コレクター4の上には、図1に例示したように、導電性を有する金属性薄板のような基材Bを設けて、この基材Bの上に繊維Fを捕集されており、このようにすることが好ましい。
【0070】
ただし、図3(a)に例示したように、コレクター4上に捕集した繊維集合体14が、コレクター4の表面を滑りながら移動できるような場合には、捕集した繊維集合体14を所定の速度で巻取装置16の方向へ移動させながら繊維集合体14を巻き取ることもできる。なお、この巻取に際して、巻き取った繊維集合体14を互いに容易に分離可能とするために、一般に慣用されている周知の巻取方法として、離型紙と共に巻き取る方法を使用するようにしても良い。
【0071】
この点に関して、更に敷衍するならば、長尺物の不織布ウェブ(繊維集合体)を製造する場合においては、図3(b)に例示したように、巻出装置15からフィルム状の基材Bをコレクター4上に所定の速度で巻き出してコレクター4と接触させ、これによって基材Bを接地する。そうすると、基材Bの電位は0Vとなるから、基材Bを新たにコレクターとして使用することができる。
【0072】
そして、このようにして巻出装置15から巻き出した基材Bの上にナノファイバーFからなる繊維集合体を連続的に形成し、この基材Bを巻取装置16で巻き取ることによって、ナノファイバーの集合体からなる「長尺物の不織布ウェブ」を製造することができる。このとき、新たにコレクターとなる前記基材Bとしては、導電性の良い金属製の不織布や織物、薄いフィルム状の金属板などを用いることができる。
【図面の簡単な説明】
【0073】
【図1】本発明に係るエレクトロスピニング装置の一つの実施形態例を模式的に示した概略の装置構成図である。
【図2】本発明に係る紡糸ヘッドの実施形態例を模式的に示した概略の装置構成図である。
【図3】コレクター上に捕集した繊維集合体を巻き取る様子を例示した説明図である。
【符号の説明】
【0074】
1 :エレクトロスピニング装置
2 :紡糸ヘッド
3 :高圧電源
4 :コレクター
5 :貯留容器
6 :計量供給装置
7 :紡糸室
8 :排気装置
9 :吸気装置
10 :接地端子
11 :紡糸液の回収容器
12 :紡糸液の回収配管
13 :紡糸液の供給配管
14 :繊維集合体
15 :基材の巻出装置
16 :巻取装置
22 :貯留部
23 :スリット
81 :排気フード
82 :排気配管
83 :流量調節装置
84 :気体吸引手段
85 :溶媒除去装置
91 :フィルター
92 :吸気孔
B :基材
F :紡出された繊維
L :液面
P :紡糸液

【特許請求の範囲】
【請求項1】
電荷を帯びた紡糸液を貯留する貯留部の底に開口する紡糸液供給孔を備えた紡糸ヘッドと、前記紡糸液を計量しながら連続的に前記供給孔へ供給する連続計量供給装置と、該貯留部へ供給された紡糸液によって形成された液面に対して垂直方向に延在する方向に設けられたコレクターと、前記紡糸ヘッドと前記コレクターとの間に高電位差を有する強静電界場を形成する直流高電圧電源とを備え、
前記貯留部に上端開口を設け、該開口に形成された液面から電荷を帯びた紡糸液を前記強静電界場中へ飛び出させてマイクロファイバーからなる繊維集合体を前記コレクター上に捕集するエレクトロスピニング装置。
【請求項2】
前記貯留部の上端開口が面状開口であることを特徴とする、請求項1に記載のエレクトロスピニング装置。
【請求項3】
前記貯留部の上端開口が線状のスリット状開口であることを特徴とする、請求項1に記載のエレクトロスピニング装置。
【請求項4】
前記紡糸ヘッドが、前記上端開口から繊維化されなかった残余の紡糸液をオーバーフローさせる構造を備えることを特徴とする、請求項1〜3の何れかに記載のエレクトロスピニング装置。
【請求項5】
前記紡糸液の貯留部へ供給前の紡糸液に対して電荷を付与する高電圧電源を備えた、請求項1〜請求項4の何れかに記載のエレクトロスピニング装置。
【請求項6】
エレクトロスピニングされた繊維集合体をその上に捕集するフィルム状の基材を巻き出す巻出装置と、前記基材上に捕集された繊維雌雄剛体を前記基材とともに巻き取る巻取装置とを備えた、請求項1〜請求項5の何れかに記載のエレクトロスピニング装置。
【請求項7】
前記貯留部の下方に緩衝部材を設け、該緩衝部材から紡糸液を滲み出すように前記上端開口へ供給する、請求項1〜請求項6の何れかに記載のエレクトロスピニング装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2009−127150(P2009−127150A)
【公開日】平成21年6月11日(2009.6.11)
【国際特許分類】
【出願番号】特願2007−304698(P2007−304698)
【出願日】平成19年11月26日(2007.11.26)
【出願人】(303013268)帝人テクノプロダクツ株式会社 (504)
【Fターム(参考)】