説明

ガスの温度及び成分濃度計測装置

【課題】測定対象のガスの温度及び成分濃度を多点同時に計測することを可能にするガスの温度及び成分濃度計測装置を提供する。
【解決手段】複数の計測点Sに向かってレーザー光R1を照射するレーザー光照射手段10と、レーザー光R1を照射することによって計測点Sで発生する光R2を受光する受光手段11と、受光手段11で受光した光R2を分光する分光手段4と、分光手段4で分光した光の特性を検出する検出手段12とを備える。また、受光手段11は、複数の計測点Sに対応して設けられた複数の光ファイバ25と、複数の計測点Sで発生した光R2を、対応する光ファイバ25の端面25aに集光する集光手段20とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えばガスタービン等の燃焼機内のガスの温度及び成分濃度を非接触で計測するための計測装置に関する。
【背景技術】
【0002】
従来、固体の温度や組成(成分)を計測する方法の一つとして、ラマン散乱法が多用されている。このラマン散乱法では、測定対象の固体にレーザー光を照射し、レーザー光の照射とともに発生するラマン散乱光を受光してスペクトル解析を行うことで、固体の温度や組成を計測する。すなわち、ラマン散乱光には、測定する分子の数密度に比例し、各分子に固有な波長に遷移した光が含まれるため、このラマン散乱光のスペクトル解析を行うことにより、各分子(成分)を定性、定量することができ、また、ラマン散乱光スペクトル波形から温度を求めることができる。
【0003】
一方、航空エンジン等の製品開発を行う際には、流体場や燃焼場のガスの温度や組成の計測を行って燃料成分や排ガス特性を評価することが重要である。これに対し、プローブや熱電対等の温度センサを用いて直接的にガスタービン等の燃焼器内のガスの温度や成分濃度を計測するようにした場合には、プローブを挿入することで流れ場(計測場)が変化してしまったり、高温によって熱電対が溶解するなどの不都合が生じてしまう。このため、ラマン散乱法を用い、非接触でガスタービン等の燃焼器内のガスの温度や成分濃度を計測することが提案、実用化されている(例えば、特許文献1参照)。
【0004】
また、ラマン散乱法を用いる計測装置Aは、例えば、図7に示すように、レーザーヘッド(レーザー発振器)1と、レーザーヘッド1から照射したレーザー光R1を受けるビームストッパ2と、レーザーヘッド1から照射したレーザー光R1上に焦点位置(計測点S)を合わせて配設された受光レンズ3と、分光器4と、受光レンズ3で集光したラマン散乱光R2を分光器4に導光する光ファイバ5と、分光器4で分光した光を検出するカメラ6と、カメラ6から受光信号を受けてスペクトル解析を行う信号処理器(PC)7とを備えて構成されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平6−294740号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、上記従来のラマン散乱法を用いた計測装置Aにおいては、レーザーヘッド1から照射したレーザー光R1上の一点が計測点Sとなり、この一つの計測点Sで発生するラマン散乱光R2を受光してガスGの温度や成分濃度を計測するようにしている。
【0007】
そして、この計測装置Aをガスタービン等の燃焼器内のガスGの温度や成分濃度の計測に使用した場合、レーザー光R1上の一点Sで発生したラマン散乱光R2からガスGの温度や成分濃度を求めることになるため、一様ではなく時々刻々と変化する燃焼器内のガスGの性状を正確に評価することができない。
【0008】
また、計測点Sをレーザー光R1上で移動させてトラバースすることにより、ガスGの温度や成分濃度を多点で計測することも考えられるが、このようにした場合であっても、多点計測したデータは同時刻のものではない。また、各計測点Sでの非定常データ(時系列のデータ)を取ることはできない。
【0009】
さらに、単純に計測装置Aを複数用意することによって多点同時計測を行うことができるが、この種の計測装置Aの高価なカメラ6、レーザーヘッド1、受光レンズ3等一式を複数用意することは、コストが著しく増大するため、非現実的である。
【課題を解決するための手段】
【0010】
本発明のガスの温度及び成分濃度計測装置は、複数の計測点に向かってレーザー光を照射するレーザー光照射手段と、レーザー光を照射することによって計測点で発生する光を受光する受光手段と、前記受光手段で受光した光を分光する分光手段と、前記分光手段で分光した光の特性を検出する検出手段とを備え、前記受光手段が、複数の計測点に対応して設けられた複数の光ファイバと、複数の計測点で発生した光を、対応する前記光ファイバの端面に集光する集光手段とを備えていることを特徴とする。
【0011】
この発明においては、レーザー光照射手段から複数の計測点にレーザー光が照射され、複数の計測点でそれぞれ発生した光を集光手段によって各計測点に対応した光ファイバの端面に集光させ、複数の計測点でそれぞれ発生した光を分光器で分光して検出手段で検出することができる。そして、検出手段で検出した複数の計測点の受光信号から、測定対象のガスの温度及び成分濃度を求めることが可能になる。
【0012】
また、本発明のガスの温度及び成分濃度計測装置においては、前記レーザー光照射手段が複数本のレーザー光を照射するように構成されていることが望ましい。
【0013】
この発明においては、レーザー光照射手段から複数本のレーザー光をそれぞれ計測点に向けて照射するため、各レーザー光で光を発生させ、確実に複数の計測点の多点同時にガスの温度及び成分濃度を計測することが可能になる。
【0014】
さらに、本発明のガスの温度及び成分濃度計測装置においては、複数本のレーザー光のそれぞれの強度を計測するレーザー強度計測手段を備えていることがより望ましい。
【0015】
この発明においては、レーザー光照射手段から出射した複数のレーザー光の強度をレーザー強度計測手段で計測し、検出手段で受光信号を処理する際に、レーザー強度計測手段で計測したデータに基づいて複数のレーザー光の強度の差異を補正することで、精度良くガスの温度及び成分濃度を求めることが可能になる。
【0016】
また、本発明のガスの温度及び成分濃度計測装置においては、前記集光手段が一対の平凸レンズを備えてなり、前記一対の平凸レンズが間隔をあけ、且つ互いの間を通過する光が平行光になるように配設されていることがさらに望ましい。
【0017】
この発明においては、集光手段が一対の平凸レンズを備え、一方の平凸レンズによって各計測点で発生した光を受光して平行光にすることができ、この平行光が一対の平凸レンズの間を通過する。また、他方の平凸レンズで平行光を受光するとともに光ファイバの端面に向けて集光することができる。そして、このように一対の平凸レンズの間を通過する光を平行光にした場合には、一対の平凸レンズの間に特定波長の光をカットするカットフィルタを挿入設置することができる。これにより、例えばレーザー光の波長をカットするカットフィルタを挿入設置することで、各計測点でのガスの温度および成分濃度の計測精度を高めることが可能になる。
【0018】
さらに、本発明のガスの温度及び成分濃度計測装置においては、計測点確認用レーザー光を受光側から照射して計測点を特定するための計測点確認用レーザー光照射手段を備えていることがより望ましい。
【0019】
この発明においては、計測点確認用レーザー光照射手段から受光手段に計測点確認用レーザー光を照射すると、受光手段によって計測点確認用レーザー光が一点に集光される。これにより、計測点確認用レーザー光の集光位置に向けてレーザー光照射手段からレーザー光を照射することによって、確実にレーザー光が計測点を通るようにレーザー照射位置を位置合わせすることができ、複数の計測点の設定を容易に行うことが可能になる。
【発明の効果】
【0020】
本発明のガスの温度及び成分濃度計測装置によれば、複数の計測点でそれぞれ発生した光を受光し、複数の計測点の受光信号から測定対象のガスの温度及び成分濃度を求めることができるため、ガスの温度及び成分濃度を多点同時に計測することが可能になる。これにより、ガスタービン等の燃焼器内のガスの温度や成分濃度の計測に適用した場合であっても、精度良くガスの温度や成分濃度を計測することができ、正確にガスの性状を評価することが可能になる。
【0021】
また、単純に計測装置を複数用意して多点同時計測を行うのではなく、複数の計測点でそれぞれ発生した光を複数の光ファイバのそれぞれの端面に集光させて多点同時計測を可能にしている。これにより、コストを抑えてガスの温度及び成分濃度を多点同時計測することが可能である。
【図面の簡単な説明】
【0022】
【図1】本発明の一実施形態に係るガスの温度及び成分濃度計測装置を示す図である。
【図2】図1のX1−X1線矢視図であり、本発明の一実施形態に係るガスの温度及び成分濃度計測装置の光ファイバを示す図である。
【図3】本発明の一実施形態に係るガスの温度及び成分濃度計測装置のレーザースプリッタを示す図である。
【図4】本発明の一実施形態に係るガスの温度及び成分濃度計測装置のシャッタディレイ装置による制御方法を示す図である。
【図5】本発明の一実施形態に係るガスの温度及び成分濃度計測装置の計測点確認用レーザー光照射手段から計測点確認用レーザー光を照射した状態を示す図である。
【図6】本発明の一実施形態に係るガスの温度及び成分濃度計測装置の変形例を示す図である。
【図7】従来の計測装置を示す図である。
【発明を実施するための形態】
【0023】
以下、図1から図5を参照し、本発明の一実施形態に係るガスの温度及び成分濃度計測装置について説明する。
【0024】
本実施形態の計測装置(ガスの温度及び成分濃度計測装置)Bは、図1に示すように、レーザー光照射手段10と、受光手段11と、分光手段(分光器)4と、検出手段12と、レーザー強度計測手段(パワーメータ、信号補正装置)13と、シャッタディレイ装置14と、計測点確認用レーザー光照射手段15とを備えて構成されている。
【0025】
レーザー光照射手段10は、複数の計測点Sに向かってレーザー光R1を照射する装置であり、本実施形態では、レーザーヘッド(レーザー発振器)1とレーザースプリッタ16とを備えて構成されている。
【0026】
レーザーヘッド1は、例えばアルゴンイオンレーザー、エキシマレーザー、YAG(イットリウムアルミニウムガーネット)レーザー等の一本のレーザー光R1を出射するように構成されている。また、このレーザーヘッドR1は、出射したレーザー光R1に対し、結晶や色素等で所望の波長以外の波長の光を除去する波長処理機能を備え、例えば532nmの波長のレーザー光R1が必要な場合に、この所望の波長以外の光を波長処理機能で除去できるように構成されている。
【0027】
レーザースプリッタ16は、例えば図3(a)に示すように、レーザーヘッド1から出射して波長処理されたレーザー光R1を必要本数に分離するように、レーザー光R1の必要本数に応じた数のハーフミラー17や全反射ミラー18を適宜配置して構成されている。これにより、本実施形態の計測装置Bでは、レーザーヘッド1から照射した一本のレーザー光R1がレーザースプリッタ16によって必要な本数に分離され、このレーザースプリッタ16から複数のレーザー光R1がそれぞれ計測点Sに向けて出射される。
【0028】
なお、レーザースプリッタ16は、例えば図3(b)に示すように、分離した各レーザー光R1を計測点Sで集光(収束)させるシリンドリカルレンズ19を備えて構成してもよい。この場合には、計測点Sで発生する光強度を増大させることが可能になる。
【0029】
受光手段11は、図1及び図2に示すように、レーザー光照射手段10から照射した複数のレーザー光R1上の計測点Sで発生する光(本実施形態ではラマン散乱光R2)を受光して分光手段4に導光するためのものであり、集光手段20と、集光手段20を所定位置で保持するホルダ21と、一端をホルダ21に接続し、他端を分光手段4に接続して配設されたファイバケーブル22とを備えて構成されている。
【0030】
本実施形態の集光手段20は、一対の平凸レンズ23、24であり、これら一対の平凸レンズ23、24は、複数のレーザー光R1上にある複数の計測点Sで発生したラマン散乱光(光)R2を受光し、ファイバケーブル22の光ファイバ25の端面(一端面)25aに集光させるように配設されている。
【0031】
また、本実施形態のファイバケーブル22は、複数の光ファイバ25を備えたバンドルファイバであり、一対の平凸レンズ23、24は、複数の計測点Sでそれぞれ発生したラマン散乱光R2を、対応する光ファイバ25の端面25aに集光させるように配設されている。さらに、一対の平凸レンズ23、24は、所定の間隔をあけて、且つ互いの間を通過する光R2が平行光になるように配設されている。
【0032】
また、受光手段11は、図1に示すように、集光手段20が支持部材(アーム)26に取り付けて支持されている。さらに、集光手段20は、レーザー光照射手段10から照射するレーザー光R1の照射方向に沿って進退自在に支持されている。そして、本実施形態では、レーザー光R1が横方向に照射され、集光手段20が横方向に延びるアーム26に進退自在に支持されている。
【0033】
分光手段4は、プリズム、回折格子などを備え、各光ファイバ5で導光したラマン散乱光R2を複数の特定波長に分光する。
【0034】
検出手段12は、分光手段4で分光した光の特性を検出するためのものであり、本実施形態では、分光手段4で分光した光が感光部に照射されてこの光を検出するカメラ6と、カメラ6から送られた受光信号を処理して、ラマン散乱光R2のスペクトル解析を行うことで、各計測点SにおけるガスGの温度及び成分濃度を求める信号処理器7とを備えている。
【0035】
レーザー強度計測手段13は、レーザースプリッタ16から出射する複数のレーザー光R1の数に応じて複数設けられ、レーザースプリッタ16から出射した各レーザー光R1がそれぞれ照射されるように配設されている。そして、各レーザー強度計測手段13は、レーザー光R1の強度を計測し、強度信号を信号処理器7に送る。
【0036】
シャッタディレイ装置14は、レーザーヘッド1とカメラ6に接続して設けられている。そして、図4(a)に示すように、レーザーヘッド1からパルスで照射するレーザー光(パルスレーザー)R1と同期するように、且つレーザー照射の遅れを考慮して最大の受光信号強度が得られるようにディレイ時間を設定して、カメラ6のシャッタの開閉を制御する。これにより、レーザー光R1を照射したときに各計測点Sで発生するラマン散乱光R2の受光信号(計測信号)とノイズの比(S/N比)が大きくなり、高精度でラマン散乱光R2のスペクトル解析が行える。すなわち、ガスGの温度及び成分濃度の計測精度が向上する。
【0037】
また、本実施形態のシャッタディレイ装置14は、図4(b)に示すように、レーザー光R1が照射されていないときの信号(バックグラウンド信号)を得るために、レーザー光R1の照射とシャッタの開閉のタイミングをずらす(完全に離調する)ことも可能とされている。これにより、バックグラウンド信号を取得し、このバックグラウンド信号を受光信号から差し引くことで、さらに高精度でラマン散乱光R2のスペクトル解析が行えることになる。
【0038】
計測点確認用レーザー光照射手段15は、計測点確認用レーザー光R3を受光側から照射することによって計測点Sを特定するためのものである。すなわち、この計測点確認用レーザー光照射手段15は、図1及び図5に示すように、分光手段4に接続したバンドルファイバ22の各光ファイバ5の他端面25bにレーザー光R3を照射する。これにより、照射したレーザー光R3が各光ファイバ25の一端面25aから集光手段20に入射し、集光手段20によって一点に集光(収束)する。
【0039】
そして、上記構成からなる本実施形態のガスの温度及び成分濃度計測装置Bを用いてガスGの温度及び成分濃度を計測する際には、はじめに、レーザー光照射手段10から測定対象のガスG中にレーザー光R1が照射されるように計測装置Bを所定位置に設置する。
【0040】
次に、計測点確認用レーザー光照射手段15から確認用レーザー光R3を照射するとともに、レーザー光照射手段10のレーザーヘッド1からレーザー光R1を照射する。このとき、確認用レーザー光R3は、各光ファイバ25の端面25aから一対の平凸レンズ23、24に入射する。そして、複数の光ファイバ25をそれぞれ通過した複数条の確認用レーザー光R3がそれぞれ異なる点で集光(収束)する。
【0041】
一方、レーザーヘッド1から照射したレーザー光R1は、レーザースプリッタ16によって必要な本数に分離されて出射する。そして、このようにレーザースプリッタ16から出射した複数のレーザー光R1がそれぞれ、複数条の確認用レーザー光R3の集光点(計測点S)を通るようにレーザー照射位置の位置合わせを行うことで、複数の計測点Sが設定される。
【0042】
複数の計測点Sの設置を終えた段階で、ガスGの温度及び成分濃度の計測を開始する。まず、レーザー光照射手段10から複数のレーザー光R1をそれぞれ計測点Sに向けて照射すると、各計測点Sで発生したラマン散乱光R2が、集光手段20(一対の平凸レンズ23、24)によって、対応する光ファイバ25の端面25aに集光する。また、各計測点Sで発生したラマン散乱光R2は、対応する光ファイバ25によって導光され、分光手段4で複数の特定波長に分光される。
【0043】
そして、分光手段4で分光した光がカメラ6の感光部6aに照射されて検出手段12で検出され、カメラ6から受光信号が信号処理器7に送られて処理されることでラマン散乱光R2のスペクトル解析が行われる。これにより、計測場に影響を及ぼすことなく、複数の計測点Sにおける同時刻のガスGの温度及び成分濃度が求められる。
【0044】
一方、このとき、レーザースプリッタ16から出射した複数のレーザー光R1の強度信号がレーザー強度計測手段13から信号処理器7に送られ、受光信号を処理する際、このデータに基づいて複数のレーザー光R1の強度の差異を補正する。
【0045】
さらに、シャッタディレイ装置14によって、図4(a)に示すように、パルスで照射するレーザー光R1と同期させ、最大の受光信号強度が得られるようにカメラ6のシャッタの開閉を制御する。これにより、受光信号とノイズの比(S/N比)が大きくなり、より高精度でガスGの温度及び成分濃度が算出されることになる。また、シャッタディレイ装置14によって、図4(b)に示すように、レーザー光R1の照射とシャッタの開閉のタイミングがずれるように制御し、レーザー光R1が照射されていないときの信号(バックグラウンド信号)を取得して信号処理器7に送る。そして、このバックグラウンド信号を受光信号から差し引く処理を行うことで、さらに高精度でガスGの温度及び成分濃度が算出されることになる。
【0046】
ここで、測定対象のガスGの計測を行う前に、大気中の窒素のような基準ガスの温度及び成分濃度を計測し、計測装置Bの校正を行うことが望ましい。すなわち、温度や成分濃度が既知の基準ガス中にレーザー光照射手段10から複数のレーザー光R1を照射し、セッティング状態における補正値を信号処理器7で算出し、この補正値で受光信号を補正する。例えば、ガラスなどで受光信号が変化する分を補正する。これにより、さらに高精度でガスGの温度及び成分濃度が算出される。
【0047】
したがって、本実施形態のガスの温度及び成分濃度計測装置Bにおいては、レーザー光照射手段10から複数の計測点Sにレーザー光R1が照射され、複数の計測点Sでそれぞれ発生した光R2を集光手段20によって各計測点Sに対応した光ファイバ25の端面25aに集光させ、複数の計測点Sでそれぞれ発生した光R1を分光手段4で分光して検出手段12で検出することができる。そして、検出手段12で検出した複数の計測点Sの受光信号から、測定対象のガスGの温度及び成分濃度を求めることが可能になる。
【0048】
よって、本実施形態のガスの温度及び成分濃度計測装置Bによれば、複数の計測点Sでそれぞれ発生した光R2を受光し、複数の計測点Sの受光信号から測定対象のガスGの温度及び成分濃度を求めることができるため、ガスGの温度及び成分濃度を多点同時に計測することが可能になる。これにより、ガスタービン等の燃焼器内のガスGの温度や成分濃度の計測に適用した場合であっても、精度良くガスGの温度や成分濃度を計測することができ、正確にガスGの性状を評価することが可能になる。
【0049】
また、単純に計測装置を複数用意して多点同時計測を行うのではなく、複数の計測点Sでそれぞれ発生した光R2を複数の光ファイバ25のそれぞれの端面25aに集光させて多点同時計測を可能にしている。これにより、コストを抑えてガスGの温度及び成分濃度を多点同時計測することが可能である。
【0050】
また、本実施形態のガスの温度及び成分濃度計測装置Bにおいては、レーザー光照射手段10から複数本のレーザー光R1をそれぞれ計測点Sに向けて照射するため、各レーザー光R1で光R2を発生させ、確実に複数の計測点Sの多点同時にガスGの温度及び成分濃度を計測することが可能になる。
【0051】
さらに、レーザー光照射手段10から出射した複数のレーザー光R1の強度をレーザー強度計測手段13で計測し、検出手段12で受光信号を処理する際に、レーザー強度計測手段13で計測したデータに基づいて複数のレーザー光R1の強度の差異を補正することで、精度良くガスGの温度及び成分濃度を求めることが可能になる。
【0052】
さらに、本実施形態のガスの温度及び成分濃度計測装置Bにおいては、集光手段20が一対の平凸レンズ23、24を備え、一対の平凸レンズ23、24が間隔をあけ、且つ互いの間を通過する光が平行光になるように配設されている。すなわち、集光手段20が一対の平凸レンズ23、24を備え、一方の平凸レンズ23によって各計測点Sで発生した光R2を受光して平行光にすることができ、この平行光が一対の平凸レンズ23、24の間を通過する。また、他方の平凸レンズ24で平行光を受光するとともに光ファイバ25の端面25aに向けて集光することができる。
【0053】
そして、このように一対の平凸レンズ23、24の間を通過する光R2を平行光にした場合には、一対の平凸レンズ23、24の間に特定波長の光をカットするカットフィルタを挿入設置することができる。これにより、例えばレーザー光R1の波長をカットするカットフィルタを挿入設置することで、各計測点SでのガスGの温度及び成分濃度の計測精度をさらに高めることが可能になる。なお、カットフィルタを分光手段4、光ファイバ25の他端面25b側に設けて、特定波長の光をカットするようにしても同様の効果を得ることが可能である。
【0054】
さらに、計測点確認用レーザー光照射手段15から受光手段11に計測点確認用レーザー光R3を照射すると、受光手段11によって計測点確認用レーザー光R3が一点に集光される。これにより、計測点確認用レーザー光R3の集光位置に向けてレーザー光照射手段10からレーザー光R1を照射することによって、確実にレーザー光R1が計測点Sを通るようにレーザー照射位置を位置合わせすることができ、複数の計測点Sの設定を容易に行うことが可能になる。
【0055】
以上、本発明に係るガスの温度及び成分濃度計測装置の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
【0056】
例えば、本実施形態では、レーザー光照射手段10からレーザー光R1を照射するとともに計測点Sで発生したラマン散乱光R2を受光することで、ガスGの温度及び成分濃度を計測するものとして説明を行ったが、例えばレーザー光R1を照射するとともに計測点Sで発生する蛍光R2を受光して、ガスGの温度及び成分濃度を計測するようにしてもよく、本発明に係る計測点Sで発生する光R2は、必ずしもラマン散乱光でなくてもよい。
【0057】
また、本実施形態では、レーザー光照射手段10から複数本のレーザー光R1を照射し、各レーザー光R1上に計測点Sを設け、複数の計測点Sのそれぞれで発生したラマン散乱光R2を受光してガスGの温度及び成分濃度を二次元で多点同時計測するものとした。これに対し、レーザー光照射手段10から1本のレーザー光R1を照射し、この1本のレーザー光R1上に設けた複数の計測点Sのそれぞれで発生したラマン散乱光R2を受光して、ガスGの温度及び成分濃度を一次元で多点同時計測するように構成してもよい。
【0058】
また、複数の計測点Sのそれぞれで発生した光R2を受光する受光手段11の集光手段20が一対の平凸レンズ23、24であるものとしたが、一つの凸レンズを集光手段20として用いてもよい。さらに、複数の計測点Sのそれぞれで発生した光R2を導光する複数の光ファイバ25は、各計測点Sの数、設定位置、集光手段20の構成などに応じて、その数や配置(配列)が決まるものであり、本実施形態のように限定されるものではない。
【0059】
さらに、支持部材26に支持された集光手段20を進退させ、計測点Sをレーザー光R1上で移動させながら、ガスGの温度及び成分濃度をトラバース計測するようにしてもよい。また、本実施形態では、レーザー光R1を横方向に照射し、このレーザー光R1の照射方向に沿って集光手段20が進退自在に支持部材26に支持されているものとした。これに対し、図6に示すように、ミラー27で反射させるなどしてレーザー光R1を上下方向に照射するようにしてもよい。また、この場合には、集光手段20を上下方向に照射されるレーザー光R1に沿って進退させるように計測装置Bを構成すればよい。
【符号の説明】
【0060】
1 レーザーヘッド(レーザー発振器)
2 ビームストッパ
3 受光レンズ
4 分光器(分光手段)
5 光ファイバ
6 カメラ
7 信号処理器
10 レーザー光照射手段
11 受光手段
12 検出手段
13 レーザー強度計測手段
14 シャッタディレイ装置
15 計測点確認用レーザー光照射手段
16 レーザースプリッタ
17 ハーフミラー
18 全反射ミラー
19 シリンドリカルレンズ
20 集光手段
21 ホルダ
22 ファイバケーブル
23 平凸レンズ
24 平凸レンズ
25 光ファイバ
25a 一端面(端面)
25b 他端面
26 支持部材(アーム)
27 ミラー
A 従来の計測装置
B ガスの温度及び成分濃度計測装置
G ガス
R1 レーザー光
R2 ラマン散乱光(計測点で発生した光)
R3 計測点確認用レーザー光
S 計測点

【特許請求の範囲】
【請求項1】
複数の計測点に向かってレーザー光を照射するレーザー光照射手段と、
レーザー光を照射することによって計測点で発生する光を受光する受光手段と、
前記受光手段で受光した光を分光する分光手段と、
前記分光手段で分光した光の特性を検出する検出手段とを備え、
前記受光手段が、複数の計測点に対応して設けられた複数の光ファイバと、複数の計測点で発生した光を、対応する前記光ファイバの端面に集光する集光手段とを備えていることを特徴とするガスの温度及び成分濃度計測装置。
【請求項2】
請求項1記載のガスの温度及び成分濃度計測装置において、
前記レーザー光照射手段が複数本のレーザー光を照射するように構成されていることを特徴とするガスの温度及び成分濃度計測装置。
【請求項3】
請求項2記載のガスの温度及び成分濃度計測装置において、
複数本のレーザー光のそれぞれの強度を計測するレーザー強度計測手段を備えていることを特徴とするガスの温度及び成分濃度計測装置。
【請求項4】
請求項1から請求項3のいずれかに記載のガスの温度及び成分濃度計測装置において、
前記集光手段が一対の平凸レンズを備えてなり、
前記一対の平凸レンズが間隔をあけ、且つ互いの間を通過する光が平行光になるように配設されていることを特徴とするガスの温度及び成分濃度計測装置。
【請求項5】
請求項1から請求項4のいずれかに記載のガスの温度及び成分濃度計測装置において、
計測点確認用レーザー光を受光側から照射して計測点を特定するための計測点確認用レーザー光照射手段を備えていることを特徴とするガスの温度及び成分濃度計測装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−145365(P2012−145365A)
【公開日】平成24年8月2日(2012.8.2)
【国際特許分類】
【出願番号】特願2011−2085(P2011−2085)
【出願日】平成23年1月7日(2011.1.7)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】