説明

コリネバクテリウム属細菌に由来するプロモーター核酸、プロモーターを含む発現カセットおよびカセットを含むベクター、ベクターを含む宿主細胞およびそれを利用して遺伝子を発現させる方法

【課題】コリネ型細菌のための適切なプロモーターの提供。
【解決手段】コリネバクテリウム・アンモニアゲネスに由来する特定の配列からなる群から選択される一つ以上のポリヌクレオチドを含むプロモーター、それを含む発現カセットおよびカセットを含むベクター、ベクターを含む宿主細胞およびそれを利用して遺伝子を発現させる方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コリネバクテリウム属細菌に由来する新規のプロモーター核酸、それを含む発現カセットおよび発現カセットを含むベクター、ベクターを含む宿主細胞およびそれを利用して遺伝子を発現させる方法に関する。
【背景技術】
【0002】
コリネ型細菌は、L−リジン、L−スレオニンおよび各種の核酸を含んだ飼料、医用薬剤および食品などの分野で多様な用途を有する化学物質を生産する微生物である。遺伝工学的および代謝工学的技術を利用して、高力価コリネ型細菌株を開発できる。このような高力価コリネ型細菌株を得るためには、コリネ型細菌内で色々な代謝過程に関連した遺伝子の発現を可能にしなければならない。このためには、適切なプロモーターの開発が必須である。
【0003】
コリネ型細菌で遺伝子を発現させるためには、それ自体が元来含むプロモーターを使用することが一般的であった(Journal of Bacteriology, 181(19), 6188-6191, 1999(非特許文献1))。一方、コリネ型細菌での遺伝子発現のためのプロモーターの配列構造は、大腸菌や枯草菌のような他の産業用微生物とは異なり、公知でない。したがって、コリネ型細菌での遺伝子発現を可能とするプロモーターを作製するため、以下の方法が示唆されてきた。まず、クロラムフェニコールのような抗生剤耐性遺伝子のプロモーター部分を除去する。別に、コリネ型細菌から分離した染色体DNAを適切な制限酵素で切断して導入し、得られた断片を、プロモーター部分を除去した遺伝子に導入する。その後、得られた遺伝子を用いてコリネ型細菌を形質転換して形質転換株を作製し、形質転換株の抗生剤耐性を測定する(Gene, 102, 93-98, 1991;Microbiology, 142, 1297-1309, 1996(非特許文献2))。特に、核酸生産微生物としてよく知られたコリネバクテリウム・アンモニアゲネスで利用されるプロモーターについては、非常に少ない数しか開発されていない。例えば、tacプロモーターと比較して約10%向上した活性を有するプロモーターが、大腸菌で用いられる(Biotechnol. Lett. 25, 1311-1316, 2003(非特許文献3))。しかし、遺伝子の大量発現のために利用される場合、そのようなプロモーターは低い効率しか示さない。また、米国特許第5,593,781号(特許文献1)には、ブレビバクテリウム・フラブム株MJ−233(FERM BP−1497)から分離され、tacプロモーターより強力な活性を有するプロモーターDNAが開示されている。しかし、このプロモーターは、ブレビバクテリウム属から単離されたものであって、他の細菌で作用しない可能性がある。したがって、産業的に多く利用されるコリネバクテリウム・アンモニアゲネスに由来し、強力であり、かつ他の細菌でも活性を有するプロモーター配列が依然として要求されている。
【0004】
したがって、本発明者らは、コリネバクテリウム・アンモニアゲネスから強力なプロモーター配列を有する領域を探索し、本発明のプロモーターがコリネバクテリウム・アンモニアゲネスで発現可能であり、強力な活性を有することを確認した。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許第5,593,781号
【非特許文献】
【0006】
【非特許文献1】Journal of Bacteriology, 181(19), 6188-6191, 1999
【非特許文献2】Gene, 102, 93-98, 1991;Microbiology, 142, 1297-1309, 1996
【非特許文献3】Biotechnol. Lett. 25, 1311-1316, 2003
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、コリネバクテリウム属で強力なプロモーター活性を有するプロモーターを提供するところにある。
【0008】
本発明の他の目的は、前記プロモーターを含む発現カセットおよびベクターを提供するところにある。
【0009】
本発明のさらに他の目的は、本発明のベクターを含む宿主細胞を提供するところにある。
【0010】
本発明のさらに他の目的は、本発明の宿主細胞を利用して遺伝子を発現させる方法を提供するところにある。
【課題を解決するための手段】
【0011】
本発明は、配列番号1ないし7で構成される群から選択される一つ以上のポリヌクレオチドを含む単離されたプロモーターを提供する。
【0012】
本発明のプロモーターは、単離された核酸であって、プロモーター活性を有する。本発明において、“プロモーター”とは、RNAポリメラーゼが結合して遺伝子の転写を開始させるDNA領域をいう。“tacプロモーター”とは、大腸菌のトリプトファンオペロンプロモーターの−35領域から得られた配列と、大腸菌の乳糖オペロンプロモーターの−10領域から得られた配列とを融合して得られたプロモーターを意味する。tacプロモーターは、強力なプロモーター活性を有することが公知である。本発明のプロモーターのうち、配列番号1,4,5,6および7から選択される一つ以上の核酸を含むプロモーターは、コリネバクテリウム属バクテリア細胞でtacプロモーターに比べてさらに強力なプロモーター活性を有する。特に、配列番号1および4から選択される一つ以上の核酸を含むプロモーターは、コリネバクテリウム属バクテリア細胞でtacプロモーターに比べて10倍以上強力なプロモーター活性を有する。
【0013】
本発明のプロモーターは、コリネバクテリウム属バクテリア細胞だけでなく、エシェリキア属バクテリア細胞でもプロモーター活性を有する。特に、配列番号1を含むプロモーターは、エシェリキア属バクテリア細胞でもtacプロモーターに比べて2倍以上さらに強力なプロモーター活性を有する。
【0014】
本発明のプロモーターが機能できる細胞は、任意のコリネバクテリウム属バクテリア細胞であり得る。コリネバクテリウム属バクテリアの例としては、コリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)およびATCC 6871、ならびにコリネバクテリウム・グルタミカムATCC 13032およびATCC 13060などが挙げられるが、これらに限定されるものではない。また、本発明のプロモーターが機能できるエシェリキア属バクテリア細胞の例としては、大腸菌が挙げられる。
【0015】
本発明のプロモーター配列は、公知の突然変異誘発法、例えば定向進化法および部位特異的突然変異法などで当業者により容易に変形されうる。したがって、配列番号1ないし7から選択される一つ以上の核酸を含む単離されたプロモーター配列と、例えば70%以上、好ましくは80%以上、さらに好ましくは90%以上の相同性を有し、コリネバクテリウム属バクテリア細胞でプロモーターとして機能できる核酸は、本発明の範囲に含まれる。
【0016】
本発明は、また、コーディング配列と作動可能に連結された本発明の前記プロモーターを含む発現カセットを提供する。前記コーディング配列は、例えば遺伝子全体、またはその一定領域をコーディングする配列でありうる。本発明において、“作動可能に連結された”とは、プロモーター配列が前記コーディング配列の転写を開始および媒介するように、前記コーディング配列とプロモーターとが機能的に連結されていることを意味する。本発明のカセットは、前記配列と作動可能に連結された5´および3´調節配列をさらに含みうる。コーディング配列は、IMP、GMP、L−リジンおよびL−スレオニンのような代謝産物に関連している遺伝子でありうる。
【0017】
本発明は、また、本発明の発現カセットが含まれるベクターを提供する。本発明で使われるベクターは、限定されないが、当技術分野で公知の任意のベクターでありうる。使われるベクターの例には、pCR2.1−TOPOベクター(Invitrogen社、米国)およびpECCG117(KFCC−10673)が含まれる。本発明の発現カセットが含まれるベクターの例には、p117−cj1−gfp,p117−cj2−gfp,p117−cj3−gfp,p117−cj4−gfp,p117−cj5−gfp,p117−cj6−gfpおよびp117−cj7−gfpが含まれる。
【0018】
本発明は、また、本発明のベクターを含む宿主細胞を提供する。本発明に使われる宿主細胞は、望ましくは、コリネバクテリウム属またはエシェリキア属に属するバクテリア細胞であるが、それらの例に限定されるものではない。宿主細胞は、さらに望ましくは、コリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)または大腸菌である。
【0019】
本発明は、また、本発明の宿主細胞を培養して外来遺伝子を発現させる方法を提供する。宿主細胞の培養は、選択される宿主細胞によって公知の任意の培養培地および培養条件を使用して行われうる。
【発明の効果】
【0020】
本発明のプロモーターに作動可能に連結されている遺伝子は、大腸菌およびコリネバクテリウム・アンモニアゲネスで、効率的に発現する。本発明のプロモーターは、コリネバクテリウム属バクテリアを利用した菌株開発に有用に使われうる。
【0021】
本発明のプロモーターを含む発現カセット、および本発明の発現カセットを含むベクターは、外来遺伝子を大腸菌およびコリネバクテリウム・アンモニアゲネスで効率的に発現させるのに使われうる。
【0022】
本発明の宿主細胞によれば、外来遺伝子を効率的に発現できる。
【0023】
本発明の遺伝子の発現方法によれば、外来遺伝子を効果的に発現できる。
【図面の簡単な説明】
【0024】
【図1】コリネバクテリウム・アンモニアゲネス細胞抽出物試料を2次元電気泳動分析し、銀染色を行った後に現像した結果を示す図である。
【図2】スクリーニングベクターp117−gfpの作製過程を示す図である。
【図3】スクリーニングベクターp117−gfpからの本発明のプロモーター配列pcj1ないしpcj7を含む組み換えベクターの作製過程を示す図である。
【発明を実施するための形態】
【0025】
以下、本発明を実施例を通じてさらに詳細に説明する。しかし、それらの実施例は、本発明を例示的に説明するためのものであり、本発明の範囲がそれらの実施例に限定されるものではない。
【実施例】
【0026】
本発明の実施例では、コリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)を培養して培養段階によって細胞抽出物を調製する。細胞抽出物について2次元電気泳動を行って各培養時期で過剰発現される蛋白質を選択し、選択された蛋白質を切断してペプチド配列を分析する。得られたペプチド配列データを利用して過剰発現された蛋白質の遺伝子を同定する。その後、プロモーター領域を単離し、プロモーター領域を含むベクターを作製した。次いで、コリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)および大腸菌でプロモーター活性を測定した。
【0027】
実施例1:コリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)培養および培養時期による過剰発現蛋白質の選択
【0028】
(1)細胞の培養
原糖加水分解物(ブドウ糖50%+フルクトース50%の混合物)を含有する培地で、コリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)を培養した。培養中に細胞の濃度を測定した。初期定常期および定常期で培養物試料を採取した。遠心分離して上澄み液を除去した。得られた細胞を破砕緩衝液中で破砕して約100μlの細胞抽出物を得た。
【0029】
(2)2次元電気泳動分析
(1)で得た細胞抽出物について、細胞抽出物を含んで総体積が350μlになるように6M尿素、2Mチオ尿素、4%CHAPS、0.4%DTTで希釈した。その後、7μlのIPG緩衝液、3μlの1%ブロモフェノールブルー(BPB)を加えた。得られた溶液について、イモビラインpH勾配ドライストリップを用い再水和トレイ上に載せた。試料の気化および尿素の結晶化を防止するために2mlのカバー液を加え、約24時間室温で再水和させた。
【0030】
再水和されたストリップゲルについて、0ないし100Vで1時間、300Vで1時間、600Vで1時間、および約43ないし97kVhrになるように8000Vを所定の時間としつつ(pH 4〜7:43.4kVhr,pH4.5〜5.5,pH5.5〜6.7:97kVhr)、等電点フォーカシング装置(MultiphorII:Amersham Bioscience、米国)を利用して20℃で等電点フォーカシングを行った。
【0031】
等電点フォーカシングが完了すれば、各ストリップゲルをpH8.8の20mM Tris−HCl、6M尿素、2%SDS、20%グリセロール、2.5%アクリルアミドおよび5mM TBPを含む溶液で15分間平衡化させた。平衡化された各ストリップを2次元ゲル(9ないし16%濃度勾配)上に載せ、0.5%低沸点アガロースと0.001%BPBとを有するSDS溶液で封じ込め、100Vで約19時間電気泳動を行った。
【0032】
電気泳動後、ゲルを45%メタノールおよび5%酢酸溶液で固定した。蒸留水で1時間の間酢酸を洗浄した。0.02%チオ硫酸ナトリウムで2分間感化させ、蒸留水を利用して洗浄した。次いで、ゲルを0.1%硝酸銀と20分間反応させた後、蒸留水で洗浄した。2%(w/v)炭酸ナトリウムおよび0.04%(v/v)ホルムアルデヒドを含有する溶液で、反応産物を現像した。所望の強度のスポットが現れれば、1%酢酸で反応を停止させた。最後に、ゲルを蒸留水で洗浄し、密封されたプラスチックバック中に保存し4℃で保管した。
【0033】
クーマシー染色を行う場合には、ゲルを取り出した後、30%メタノールおよび10%酢酸溶液で1時間の間固定して蒸留水で簡単に洗浄した後、コロイド性のクーマシーブリリアントG−250で24時間の間染色し、10%メタノールおよび7%酢酸溶液で4時間の間脱染色した。
【0034】
(3)スポットから質量分析のためのペプチド試料の準備
スポットからのペプチドの分離は、公知の方法の変法を使用した(Shevchenko et al.Anal.Chem.,68(5),850−8,1996)。
【0035】
まず、蛋白質スポットを(2)の項で調製されたゲルから切断し、30mMフェリシアン化カリウムおよび100mMチオ硫酸ナトリウムの1:1混合液の120μl中で脱染色し、蒸留水で洗浄した後、120μlの50%アセトニトリル/25mM炭酸水素アンモニウム、pH7.8で10分間洗浄した。50μlの100%アセトニトリルと白色になるまで約5分間反応させた後、真空乾燥した。
【0036】
乾燥された各スポットに0.02μg/μlの2次元電気泳動級トリプシン10μlを加えて氷中で45分間反応させた。その後、50mM炭酸水素アンモニウム緩衝液、pH7.8を添加し、37℃で12ないし14時間反応させた。得られた産物について、10μlの0.5%TFA、50%アセトニトリル中で10分間3回超音波処理を行い、ペプチドを抽出した。
【0037】
(4)質量分析
前記のように抽出されたペプチドをHPLC−MS/MSにより分析した。HPLC−MS/MSは、1100シリーズHPLCシステム(Agilient社製、米国)、およびナノスプレーイオン化源が装着されたFinnigan LCQ DECA ion−trap mass spectrometery(ThermoQuest社製、米国)装置により行った。HPLCは、C18マイクロプローブ逆相カラムを使用し、0.1%ギ酸(溶媒A)と、90%(v/v)アセトニトリルおよび0.1%ギ酸の溶液(溶媒B)とを直線勾配(流速1μl/min)において提供し、ペプチドを単離した。
【0038】
ペプチドの検出は、ナノスプレーイオン化(Nano Spray Ionization)(NSI)を用いて3回行われた(スプレー電圧:1.8kV;毛細管温度:200℃;毛細管電圧:34V;管レンズオフセット:40V;電子増幅器:−60V)。測定はセントロイドモードで収集された。400ないし2000Daの全MSスキャンを得た後、しきい値を1×10カウントにセットし、最も強力なイオンを高解像度ズームスキャンで分離した。その後、衝突誘導解離(Collision−Induced Dissociation:CID)MS/MSを実施した。エンコードされないCIDスペクトルの配列を、TurboQuestソフトウェア(Thermo Finnigan社、米国)を使用して同定し、SEQUEST検索の結果は、交差相関および△Cn(デルタ標準化相関)で同定した。
【0039】
ペプチドのアミノ酸配列は、Q−starPulsar LC MS/MS(Applied Biosystems社、米国)を利用して確認および同定された。
【0040】
その結果、50個の蛋白質を確認し、それらのうち過剰発現される7種類の蛋白質を選択した。図1は、本実施例の試料を2次元電気泳動分析し、銀染色を行った後に現像した結果を示す図である。図1に示したように、CJ1ないしCJ7と示された7種類の過剰発現されたスポットが同定された。それらの7種類の蛋白質の機能は、表1に示した。それらの蛋白質の機能は、得られたペプチド配列を公知のNCBIジーンバンクデータベースのアミノ酸配列と比較して同定された。
【0041】
【表1】

【0042】
選択された7種類の過剰発現蛋白質から遺伝子配列が推定され、プロモーター部位を選択するために分析された。その結果、CJ1ないしCJ7で示された蛋白質に対応する遺伝子配列から分離された配列番号1ないし7のオリゴヌクレオチドがプロモーター活性を有すると推定された。
【0043】
実施例2:プロモーター配列を含有する組み換えベクターp117−cj1〜7−gfpの作製およびコリネバクテリウム・アンモニアゲネスでのプロモーター活性の確認
【0044】
(1)コリネバクテリウム・アンモニアゲネスCJHB100のゲノムからのプロモーター配列の増幅
Eikmannら(Gene,102,93−98,1991)の方法によって、1日間培養したコリネバクテリウム・アンモニアゲネスCJHB100 25mlから染色体DNA 500μgを分離した。分離された染色体を鋳型として使用した。CJ1ないしCJ7の各プロモーターを増幅するためのプライマーセット(それぞれ配列番号10および11、12および13、14および15、16および17、18および19、20および21、22および23)を利用してPCRを行った(94℃で30秒、55℃で30秒、72℃で30秒間の反応を30回)。その結果、各プロモーター配列(pcj1ないしpcj7)が増幅された。
【0045】
(2)スクリーニングベクターの作製
まず、pGFuvベクター(clontech社製、米国)を鋳型とし、配列番号8および9をプライマーとしてPCRを行った(94℃で30秒、55℃で30秒、72℃で1分間の反応を30回)。その結果、プロモーター部分を含まない緑色蛍光蛋白質(GFP)遺伝子が増幅された。次いで、得られたプロモーター部分を含まないGFP遺伝子を、pCR2.1−TOPOベクター(Invitrogen、米国)にクローニングした後、PstIとEcoRIで切断して、大腸菌およびコリネ型細菌で発現可能なシャトルベクターであるpECCG117(KFCC−10673/KFCC−10674)のPstIおよびEcoRI部位に導入した。それをプロモーター分離のためのスクリーニングベクター(p117−gfp)として使用した。図2は、スクリーニングベクターp117−gfpの作製過程を示す図である。
【0046】
(3)スクリーニングベクターへのプロモーター配列の導入、およびコリネバクテリウム・アンモニアゲネスCJHB100でのプロモーター活性の同定
(2)の項で得たスクリーニングベクターを制限酵素KpnI/EcoRVで切断し、同じ酵素で切断されたプロモーター配列(pcj1ないしpcj7)と連結して、コリネバクテリウム・アンモニアゲネスCJHB100から分離されたプロモーター活性を有すると推定されるpcj1ないしpcj7の各オリゴヌクレオチドがGFPと連結されている組み換えベクター(p117−cj1〜7−gfp)を作製した。図3は、スクリーニングベクターp117−gfpからの、本発明のプロモーター配列pcj1ないしpcj7を含む組み換えベクターの作製過程を示す図である。
【0047】
得られた組み換えベクターを、van der Restらの方法(Appl.Microbiol.Biotechnol.,52,541〜545,1999)で形質転換を可能にしたコリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)に導入した。形質転換された菌株をカナマイシン10μg/mlが含まれたCM培地(ペプトン1%、ブロス1%、塩化ナトリウム0.25%、酵母抽出物1%、アデニン100mg/ml、グアニン100mg/ml、寒天2%(pH7.2))に塗抹して32℃で3日間培養した。成長を示す生存菌株を選択した。次いで、選択された菌株に紫外線を照射して蛍光を発する菌株を選択した。
【0048】
蛍光を発する菌株の選択は、プロモーターpcj1ないしpcj7がコリネ型細菌でプロモーター活性を有しているということを示す。
【0049】
次いで、プロモーター活性を定量的に測定した。組み換えベクターp117−cj1〜7−gfpが導入されたコリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)を同じ方法で培養した。培養物を遠心分離して細菌のペレットを得た。次いで、細菌のペレットを蛋白質抽出緩衝液(PBS中のEDTA 1mM、グリセロール3%、トリトン−X−100 1%溶液、pH−7.5)に懸濁し、超音波処理して細胞を破砕した。細胞破砕物を遠心分離し、細胞抽出物が含まれている上澄み液を分離した。得られた細胞抽出物に対してブラッドフォード分析法により蛋白質量を測定した。次いで、上記と同量の細胞抽出物に対して、Laure Goryらの方法(FEMS Microbiology Letters 194,127−133,2001)を利用して488nmで励起光を照射し、511nmの放射光をLS−50B分光光度計(Perkin−Elmer)機器を利用して測定することによって、GFP遺伝子の発現の程度を測定した。
【0050】
その結果を下記表2に示した。表2に示したように、本発明のプロモーターは、GFP遺伝子を効率的に発現させた。特に、pcj1およびpcj4プロモーターは、他のプロモーターに比べて相対的に非常に強力な効率を示した。
【0051】
【表2】

【0052】
実施例3:tacプロモーターと本発明のプロモーターとのコリネバクテリウム・アンモニアゲネスでのプロモーター活性の比較
【0053】
本実施例では、本発明のプロモーターと従来一般的に使われるtacプロモーターとのプロモーター活性を、コリネバクテリウム・アンモニアゲネスで比較した。
【0054】
(1)tacプロモーターとGFP遺伝子とが融合された配列を含むベクターの作製
まず、pKK223−2ベクター(Pharmacia Biotech、米国)を鋳型とし、配列番号24および25をプライマーとして、実施例1と同じ条件でPCRを行ってtacプロモーター配列を増幅した。増幅産物をpCR2.1−TOPOベクター(Invitrogen製、米国)にクローニングした。次いで、得られたtacプロモーター配列を、制限酵素KpnIおよびEcoRVで切断し、同じ酵素で切断されたp117−gfpに連結して組み換え発現ベクター(p117−tac−gfp)を作製した。
【0055】
この組み換えベクターを用いて、コリネバクテリウム・アンモニアゲネスCJHB100を実施例1と同じ方法により形質転換し、GFP遺伝子の活性を測定した。tacプロモーターによるGFP遺伝子の活性を実施例2で選択したプロモーターでのGFP活性と比較した。その結果を表3に示した。
【0056】
【表3】

【0057】
表3に示したように、本発明のプロモーターがGFP遺伝子を効率的に発現させることを確認した。また、コリネバクテリウム・アンモニアゲネスでのtacプロモーターの活性と比較した結果、pcj1,pcj4,pcj5,pcj6およびpcj7プロモーターは、tacプロモーターよりも強力であることが示された。特に、pcj1およびpcj4プロモーターは、tacプロモーターに比べて10倍以上の活性を示した。
【0058】
実施例4:大腸菌で本発明のプロモーターのプロモーター活性の確認
【0059】
本発明のプロモーターがコリネ型細菌だけでなく、大腸菌でもプロモーター活性を有しているかどうかを確認した。実施例1および2で使用した組み換え発現ベクターを大腸菌に形質転換した。実施例1と同じ方法でGFP遺伝子の活性を測定することによって、本発明のプロモーターが大腸菌でGFP遺伝子の効率的な発現を可能とするかどうか調べた。対照ベクターとして、tacプロモーターを含む組み換えベクターp117−tac−gfpを使用した。表4は、大腸菌での本発明のプロモーターのプロモーター活性を示したものである。
【0060】
【表4】

【0061】
表4に示したように、本発明のプロモーターが大腸菌でもGFP遺伝子を効率的に発現させることを確認した。特に、pcj1プロモーターは、コリネ型細菌および大腸菌の双方で高い活性を示した。
【0062】
実施例5:IPTGが本発明のプロモーターの活性に及ぼす影響
【0063】
tacプロモーターは、大腸菌内でIPTG(Isopropylthio−β−D−Galactoside)により発現が誘導される代表的なプロモーターであることが周知である。すなわち、大腸菌において、IPTGの有無によってtacプロモーターから発現される遺伝子の発現量が変動する。
【0064】
本実施例では、IPTGが本発明のプロモーターからのGFP遺伝子の発現に及ぼす影響を調べた。このために、本発明のプロモーターのうち、活性が最も良好なpcj1プロモーターを含む組み換えベクター(p117−cj1−gfp)を、大腸菌とコリネバクテリウム・アンモニアゲネスCJHB100(KCCM−10330)とに実施例1および2と同じ方法で導入し、それによるGFPの発現量を測定した。対照として、tacプロモーターを含む組み換えベクターp117−tac−gfpを使用した。
【0065】
その結果を表5に示した。
【0066】
【表5】

【0067】
表5に示したように、本発明のプロモーターは、大腸菌およびコリネバクテリウムアンモニアゲネスでIPTGの有無に関係なく、tacプロモーターより効率的にGFP遺伝子を発現させる。
【0068】
以上のような実施例の結果から得られたプロモーターpCJ1,pCJ2,pCJ3,pCJ4,pCJ5,pCJ6およびpCJ7をpECCG117に挿入した。得られたベクターを大腸菌DH5αに形質転換した。得られた形質転換体を、ブダペスト条約による国際寄託機関である韓国微生物保存センター(KCCM)に2004年6月11日付で寄託した(各受託番号KCCM−10611,KCCM−10612,KCCM−10613,KCCM−10614,KCCM−10615,KCCM−10616およびKCCM−10617)。
【0069】








【特許請求の範囲】
【請求項1】
配列番号1ないし7からなる群から選択される一つ以上のポリヌクレオチドを含むプロモーター。
【請求項2】
コーディング配列と作動可能に連結された請求項1に記載のプロモーターを含む発現カセット。
【請求項3】
請求項2に記載の発現カセットを含むベクター。
【請求項4】
請求項3に記載のベクターを含む宿主細胞。
【請求項5】
コリネバクテリウム属またはエシェリキア属に属するバクテリア細胞である、請求項4に記載の宿主細胞。
【請求項6】
請求項4または5に記載の宿主細胞を培養する段階を含む、外来遺伝子を発現させる方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−19524(P2011−19524A)
【公開日】平成23年2月3日(2011.2.3)
【国際特許分類】
【出願番号】特願2010−200623(P2010−200623)
【出願日】平成22年9月8日(2010.9.8)
【分割の表示】特願2007−546568(P2007−546568)の分割
【原出願日】平成17年12月16日(2005.12.16)
【出願人】(508139664)シージェイ チェイルジェダン コーポレーション (12)
【Fターム(参考)】