説明

ジルコニウム合金部材へのフェライト皮膜形成方法

【課題】フェライト皮膜の形成に要する時間を短縮することができるジルコニウム合金部材へのフェライト皮膜形成方法を提供する。
【解決手段】両端部を封鎖したジルコニウム合金製の被覆管22を皮膜形成装置25の被覆管収納容器26内に収納する。被覆管22、及び被覆管収納容器26内に置かれた対極66及び参照極67は配線65で電位制御装置64に接続される。鉄(II)イオンを含む薬剤、ヒドラジン及び過酸化水素が、鉄(II)イオン注入装置28、pH調整剤注入装置33及び酸化剤注入装置38から循環配管27内に供給される。鉄(II)イオン及び過酸化水素を含み、pHが7.0で90℃の皮膜形成液が循環配管27を通して被覆管収納容器26内に供給される。電位制御装置64によって被覆管22に加えられる電位が例えば−0.4Vに制御される。被覆管22の外面にフェライト皮膜が形成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ジルコニウム合金部材へのフェライト皮膜形成方法、特に、原子力プラントに用いられる燃料棒に含まれた被覆管へのフェライト皮膜形成に適用するのに好適なジルコニウム合金部材へのフェライト皮膜形成方法に関する。
【背景技術】
【0002】
沸騰水型原子力プラント(BWRプラント)において、定期検査時における作業員の放射線被ばくをさらに低減することは、プラント健全性の観点から重要な課題である。定期検査時における作業員の放射線被ばくの放射線源は、主に、再循環系配管及び原子炉水浄化系配管の内面に付着して蓄積したコバルト60である。すなわち、炉水(冷却水)または給水に接する、BWRプラントの金属部材から非放射性コバルトが腐食により溶出する。この非放射性コバルトは、原子炉の炉心に設置された燃料集合体の燃料棒表面に存在するドライアウト面に、核沸騰に伴う濃縮効果でコバルト酸化物として析出し付着する。燃料棒表面に付着した非放射性コバルトは、燃料棒内に存在する核燃料の核分裂で発生する中性子の照射を受け、放射化されてコバルト60になる。コバルト60は、コバルト60を含むコバルト酸化物の燃料棒表面からの剥離またはそのコバルト酸化物の溶出によって炉水中に移行する。このコバルト60は、炉水が流れる配管(例えば、再循環系配管及び原子炉水浄化系配管)の内面に付着し蓄積される。コバルト60の蓄積速度は、炉水のコバルト60濃度及び配管内面の酸化皮膜成長速度に比例する。したがって、炉水のコバルト60濃度が低減すれば、配管内面へのコバルト60の蓄積を抑制でき、定期検査時の作業員の放射線被ばくを低減することができる。なお、炉水は、原子炉圧力容器内、及び給水配管及び主蒸気配管以外で原子炉圧力容器に接続された配管内を流れる冷却水である。
【0003】
特開平10−197672号公報は、炉水中のコバルト60の濃度を低減するために、燃料棒表面にコバルトを固定する方法を記載している。この方法は、予め燃料棒表面に三酸化二鉄(α−Fe)の層を形成し、燃料棒表面に付着したコバルト酸化物(CoO)をコバルト酸化物より溶解度の小さいコバルトフェライト(CoFe)に形態変化させるものである。コバルトフェライトは、燃料棒表面に付着したコバルトの溶解を抑制する。すなわち、コバルト60が燃料棒表面に固定されるので、炉水中のコバルト60の濃度が低減される。
【0004】
特開平5−264786号公報は、炉水中のコバルト60の濃度を低減する他の方法として、燃料棒表面へのコバルトの付着、蓄積を抑制する技術を記載している。コバルトの燃料棒表面への付着は、炉水中の鉄酸化物濃度に比例して増加する。特開平5−264786号公報は、その現象に着目して給水の鉄濃度を0.05ppb以下に抑制し、原子炉内でコバルトが燃料棒表面に付着することを抑制している。さらに、炉水に炭酸、窒素または一酸化二窒素を注入して炉水のpHを弱酸性に制御し、燃料棒表面に付着したコバルト酸化物の溶解を促進する。このような特開平5−264786号公報に記載された方法は、燃料棒表面におけるコバルトの滞在時間を減少させ、非放射性コバルトが中性子照射によりコバルト60に放射化されることを抑制する。したがって、炉水中のコバルト60の濃度が低減される。
【0005】
特開平6−148386号公報は、原子力プラントの腐食生成物抑制方法を記載している。この腐食生成物抑制方法は、燃料棒の表面、すなわち、燃料棒の被覆管外面と炉水中の鉄酸化物の表面電位を制御することによって鉄酸化物が被覆管外面に付着することを抑制している。このため、鉄酸化物に付随してコバルトが被覆管外面に付着することを抑制することができる。その腐食生成物抑制方法においても、コバルトが放射化されることを抑制でき、炉水中のコバルト60の濃度を低減できる。
【0006】
特開昭63−52092号公報は、原子力プラントの運転中に、炉心に装荷された燃料集合体の燃料棒の被覆管外面にニッケルフェライト及びコバルトフェライトを形成することを記載している。炉心に装荷する前において、被覆管の外面に鉄酸化物層(クラッド層)を形成し、この被覆管を用いて燃料棒及び燃料集合体を製造する。外面に鉄酸化物層を形成した被覆管を用いた燃料集合体を炉心内に装荷し、その後、原子力プラントの運転を開始する。原子力プラントの運転中において、炉水に含まれるニッケル及びコバルトが、被覆管の外面の鉄酸化物層と接触し、フェライト酸化物へとその化学形態を変化させる。このため、被覆管外面に安定なニッケルフェライト及びコバルトフェライトが形成され、放射性コバルトが被覆管から炉水に溶出することを抑制することができる。したがって、炉水中の放射性核種の濃度を低減できる。
【0007】
放射性核種の付着を抑制するために、原子力プラントのステンレス鋼製の配管(例えば、BWRプラントの再循環系配管)の内面にフェライト皮膜を形成することが、特開2006−38483号公報に記載されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平10−197672号公報
【特許文献2】特開平5−264786号公報
【特許文献3】特開平6−148386号公報
【特許文献4】特開昭63−52092号公報
【特許文献5】特開2006−38483号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
特開平10−197672号公報に記載された方法は、被覆管外面にコバルトをコバルトフェライトとして固定させるため、炉水中のコバルト60イオンの濃度を低減できる。しかしながら、その方法は、燃料棒表面のコバルトフェライトが冷却水の流れのせん断力により燃料棒表面から剥離して炉水中に移行する。このため、炉水中のコバルト60を含む酸化物濃度が増加する。また、燃料集合体の高燃焼度化により燃料集合体の炉心滞在期間が増加すると、燃料棒表面に付着した非放射性コバルトが放射化される量が増大し、炉水中のコバルト60イオンの濃度が増加する。
【0010】
特開平5−264786号公報は、炉水に炭酸、窒素または一酸化二窒素を注入して炉水のpHを弱酸性に制御している。しかしながら、炭酸などは、構造部材の応力腐食割れの感受性を高める可能性があるので、炉水に注入することは好ましくない。
【0011】
特開平6−148386号公報に記載された腐食性生物抑制方法は、鉄酸化物と被覆管外面の表面電位を同符号にすることによって、被覆管外面への鉄酸化物の付着を抑制することができる。しかしながら、被覆管外面に鉄酸化物が付着していなくても、コバルトは被覆管外面に付着する。更に、コバルト酸化物の表面電位は炉水中では鉄酸化物及び被覆管外面の表面電位と逆符号になるので、コバルト酸化物が被覆管外面に付着することを抑制できない。
【0012】
また、特開昭63−52092号公報に記載された放射線被ばく低減方法は、炉心に装荷される前に形成された、被覆管外面に形成された酸化物層に、原子力プラントの運転開始後に炉水に含まれているニッケル及びコバルトが接触することによって被覆管外面にニッケルフェライト及びコバルトフェライトを形成している。これらのフェライト形成により被覆管外面部分に取り込まれたニッケル及びコバルトは、中性子照射を受けて放射化され、放射性コバルトになる。ニッケルフェライト及びコバルトフェライトは安定で放射性コバルトの溶出が抑制されるが、その溶出が完全に防止されるわけではないので、微量の放射性コバルトが炉水に溶出される。燃焼度がさらに増大された燃料集合体を炉心に装荷した場合には、この燃料集合体の炉心滞在期間が長くなる。燃焼度がさらに増大された燃料集合体の各被覆管の外面に特開昭63−52092号公報に記載された方法でニッケルフェライト及びコバルトフェライトを形成した場合には、炉心滞在期間が長くなる分、被覆管の外面から炉水に溶出する放射性コバルトの量も多くなる。また、被覆管の外面で生成される放射性コバルトの量も増大する。
【0013】
発明者らは、上記の各先行特許文献に記載されたジルコニウム合金製の被覆管の外面へのコバルト付着抑制技術による問題点を解消するために、特開2006−38483号公報に記載されたフェライト皮膜の形成方法を被覆管に適用することを考えたが、以下に示す新たな問題が生じることを発見した。すなわち、特開2006−38483号公報に記載されたフェライト皮膜の形成方法をジルコニウム合金製の被覆管に適用したとき、被覆管の外面へのフェライト皮膜の形成に長時間を要することが分かった。フェライト皮膜の形成に長時間を要することは、燃料棒の製造時間、特に、燃料集合体一体あたりの製造時間を延ばすことになる。
【0014】
本発明の目的は、フェライト皮膜の形成に要する時間を短縮することができるジルコニウム合金部材へのフェライト皮膜形成方法を提供することにある。
【課題を解決するための手段】
【0015】
上記した目的を達成する本発明の特徴は、プジルコニウム合金部材の表面に、鉄(II)イオン、前記鉄(II)イオンを鉄(III)イオンに酸化する酸化剤、及びpH調整剤を含む皮膜形成液を接触させ、皮膜形成液と接触しているジルコニウム合金部材の電位を−0.5V〜0Vの範囲内に制御することにある。
【0016】
皮膜形成液と接触しているジルコニウム合金部材の電位を−0.5V〜0Vの範囲内に制御するので、被覆管の表面へのフェライト皮膜の形成に要する時間を短縮することができる。
【発明の効果】
【0017】
本発明によれば、ジルコニウム合金部材へのフェライト皮膜の形成に要する時間を短縮することができる。
【図面の簡単な説明】
【0018】
【図1】実施例1において形成されたフェライト皮膜を外面に有する被覆管を有する燃料集合体が適用される沸騰水型原子力プラントの構成図である。
【図2】本発明の好適な一実施例である実施例1のジルコニウム合金部材へのフェライト皮膜形成方法に用いられる皮膜形成装置の構成図である。
【図3】鉄の存在形態における自然浸漬電位とpHの関係を示す説明図である。
【図4】異なるフェライト皮膜形成方法における形成されたフェライト皮膜の量の違いを示す説明図である。
【図5】フェライト皮膜形成時において被覆管に流れた電流の測定した結果を示す説明図である。
【図6】本発明の他の実施例である実施例2のジルコニウム合金部材へのフェライト皮膜形成方法に用いられる皮膜形成装置の構成図である。
【図7】本発明の他の実施例である実施例3のジルコニウム合金部材へのフェライト皮膜形成方法に用いられる皮膜形成装置の構成図である。
【発明を実施するための形態】
【0019】
核燃料物質を密封した燃料棒に用いられるジルコニウム合金製の被覆管の外面へのフェライト皮膜の形成には、特開2006−38483号公報に記載されているように、鉄(II)イオン、酸化剤及びpH調整剤を含む皮膜形成液を用いる。この皮膜形成液を被覆管の外面に接触させることによって、被覆管の外面にフェライト皮膜であるマグネタイト皮膜が形成される。燃料集合体に含まれる燃料棒の被覆管の外面に形成されているマグネタイト皮膜に含まれたFeと燃料集合体内に供給される冷却水に含まれているコバルト酸化物(CoO)との静電的な反発力を利用することによって、その被覆管の外面へのコバルト酸化物(CoO)の付着を抑制することができる。このため、冷却水に含まれる放射性コバルトの濃度を低減できる。
【0020】
発明者らは、鉄(II)イオン、酸化剤及びpH調整剤を含む皮膜形成液を用いたジルコニウム合金製の被覆管の外面へのフェライト皮膜の形成について検討を行ったところ、このフェライト皮膜の形成に長時間を要するという新たな問題点が生じることを見出した。上記の検討には、実験結果も反映した。
【0021】
発明者らは、ジルコニウム合金(例えば、ジルカロイ2)製の被覆管の試験片に、鉄(II)イオン、酸化剤及びpH調整剤を含む90℃の皮膜形成液を接触させ、その試験片の表面にマグネタイト皮膜を形成する実験を行った。この実験結果を検討することによって、発明者らは、その皮膜形成液に浸漬させたジルコニウム合金の試験片の皮膜形成液中での自然浸漬電位が問題であるとの結論に達した。
【0022】
特開2006−38483号公報に記載された鉄(II)イオン、酸化剤及びpH調整剤を含む皮膜形成液を用いてジルコニウム合金部材の表面にフェライト皮膜を形成する方法を、便宜的に、方法Aという。
【0023】
発明者らは、皮膜形成液に浸漬させた被覆管の試験片の自然浸漬電位を電位制御装置で測定した。測定したその試験片の自然浸漬電位は−0.7Vであった。そこで、この測定結果を、温度90℃の皮膜形成液中で形成される鉄の形態、皮膜形成溶液のpH及び自然浸漬電位の関係と比較した。この結果を図3に示す。図3に示す黒丸の位置が、皮膜形成液に浸漬させた被覆管の試験片における自然浸漬電位及び皮膜形成液のpHを示している。温度90℃及びpH7の皮膜形成液内において、Feは、自然浸漬電位−0.5Vではマグネタイトの状態が最も安定である。一方、被覆管の自然浸漬電位−0.7Vでは、金属Feが最も安定である。つまり、皮膜形成溶液内での被覆管の試験片の自然浸漬電位が、マグネタイトの形成電位よりも低いため、被覆管の試験片の表面へのマグネタイト皮膜の形成に時間がかかるのである。
【0024】
そこで、発明者らは、皮膜形成液に接触している被覆管の試験片の電位を安定なマグネタイトが形成される電位に調節することによって、その試験片へのフェライト皮膜の形成に要する時間を短縮できることを見出した。具体的には、被覆管の試験片を電位制御装置(ポテンショスタット)に接続し、その試験片を対極及び参照極と共に皮膜形成液に浸漬させ、試験片と対極の間に印加する電位を目標値である−0.5Vに維持する。これにより、被覆管の外面へのフェライト皮膜の形成に要する時間を短縮できる。
【0025】
発明者らは、ジルコニウム合金製の上記試験片を皮膜形成液に浸漬した状態で、この試験片に加える電位を変化させた。この結果、その電位を−0.5V〜0Vの範囲に制御することによって、試験片の皮膜形成液と接触する表面にフェライト皮膜を形成することができ、そのフェライト皮膜の形成に要する時間を短縮できることが分かった。さらに、試験片を浸漬した皮膜形成液のpHを変化させたところ、pHが6.5以上の範囲で上記試験片の表面にフェライト皮膜が形成できることを確認した。しかしながら、そのpHが6.5未満の範囲では、フェライト皮膜が試験片の表面に形成されなかった。さらに、皮膜形成液のpHは9.0以下にすることが望ましい。すなわち、ジルコニウム合金部材の表面がフェライト皮膜で覆われるまでは、皮膜形成液のpHを6.5以上で9.0以下の範囲内の値に調節することが望ましい。
【0026】
以上述べた結果に基づいて、ジルコニウム合金部材の表面にフェライト皮膜を形成するために、好ましくは、ジルコニウム合金部材に加える電位を−0.5V〜0Vの範囲に制御し、ジルコニウム合金部材の表面に接触する皮膜形成液のpHを6.5以上で9.0以下の範囲に調整するとよい。ただし、ジルコニウム合金部材の皮膜形成液と接触する表面の全面がフェライト皮膜で覆われた後では、皮膜形成液のpHを5.5以上で9.0以下の範囲に調整してもよい。ジルコニウム合金部材の皮膜形成液と接触する表面の全面がフェライト皮膜で覆われた後では、そのフェライト皮膜の厚みが設定厚みになるまで、ジルコニウム合金部材を覆っているフェライト皮膜の表面を皮膜形成液に接触させる。この過程においては、フェライト皮膜が、ジルコニウム合金部材の表面に直接ではなく、ジルコニウム合金部材の表面を覆っているフェライト皮膜の表面にさらに形成される。このため、ジルコニウム合金部材がフェライト皮膜で覆われた後では、皮膜形成液のpHを5.5以上で6.5未満の範囲に調整しても、ジルコニウム合金部材に加える電位が−0.5V〜0Vの範囲に制御されるのであれば、フェライト皮膜の厚みが増大し、その厚みが設定厚みに到達するまでに要する時間は短くなる。ジルコニウム合金部材の表面が覆われるまでフェライト皮膜を形成する場合には、皮膜形成液のpHは6.5以上に調節しなければならない。
【0027】
以上に述べた検討の結果、発明者らは、被覆管の外面にフェライト皮膜を形成する際には、電位制御装置を用いて皮膜形成液に接触する被覆管の電位を制御すればよいことを見出した。皮膜形成液と接触するジルコニウム合金部材の電位を制御して被覆管の外面にフェライト皮膜を形成する方法を、便宜的に、方法Bという。
【0028】
フェライト皮膜の形成時間を同じにしたとき、方法A及びBで被覆管の外面に形成されたフェライト皮膜の量(フェライト皮膜の厚み)を、図4に示す。方法Bは、方法Aよりも被覆管の外面に形成されたフフェライト皮膜の量(厚み)が多く(厚く)なる。方法Bにおけるフェライト皮膜量の増大は、皮膜形成液内で被覆管の電位を抑制することによって、被覆管外面へのフェライト皮膜の形成に要する時間が短縮されることを示している。
【0029】
被覆管の電位を制御する場合には、皮膜形成液内に浸漬された対極と被覆管の間で電子の授受を行う。被覆管と対極の間での電子の授受を行うによって(1)式及び(2)式の反応が促進され、被覆管へのフェライト皮膜の形成に要する時間を更に短縮できる。
【0030】
2Fe2+ + 2e → 2Fe3+ …(1)
2Fe3+ + Fe2+ +2HO → Fe + 4H …(2)
被覆管の電位を制御することによってこの被覆管の外面にフェライト皮膜を形成するときの被覆管と対極の間で皮膜形成液を通って流れる電流の変化を図5に示す。この電流は、時間の経過と共に減少した。すなわち、被覆管の外面に形成されるフェライト皮膜の厚みが増大すると共にその電流が減少する。図5に示した斜線の面積が、(1)式及び(2)式の化学反応を起こした電子数に一致する。つまり、図5に示す斜線部の面積に基づいて、(2)式の反応により被覆管の外面に形成されたマグネタイト(Fe)の量を求めることができる。方法Bによれば、被覆管の外面にフェライト皮膜を短時間に形成できるだけでなく、フェライト皮膜の形成量を制御することができる。このフェライト皮膜の形成量を制御は、フェライト皮膜形成時において測定された電流に基づいて得られる総電荷量を用いて行われる。
【実施例1】
【0031】
本発明の好適な一実施例である実施例1のジルコニウム合金部材へのフェライト皮膜形成方法を、図2を用いて説明する。
【0032】
本実施例を適用することによって製作された被覆管(外面にフェライト皮膜を形成)を有する燃料集合体が炉心に装荷されたBWRプラント1は、図1に示すように、原子炉2、タービン7、復水器8及び給水配管9を備えている。原子炉2は、原子炉圧力容器(以下、RPVという)3及びRPV3内に配置された炉心4を有する。複数の燃料集合体5が炉心4に装荷されている。燃料集合体5は、核燃料物質で構成された複数の燃料ペレットをジルコニウム合金製の被覆管内に充填している複数の燃料棒を有する。炉水(冷却水)と接する被覆管の外面には、フェライト皮膜が形成されている。複数のジェットポンプ(図示せず)がRPV3と炉心4の間に形成された環状のダウンカマ内に配置されている。RPV3に接続された主蒸気配管6はタービン7に接続される。給水配管9は、復水器8とRPV3を連絡している。中空糸フィルタ(復水フィルタ)10、復水脱塩器11、給水ポンプ12及び給水加熱器13が、この順に上流より給水配管9に設置される。中空糸フィルタ10の替りにろ過脱塩装置を用いてもよい。ろ過脱塩装置は、粉末イオン交換樹脂を給水が通過可能な支持部材にプリコートして構成されている。主蒸気配管6に接続される抽気蒸気配管14が給水加熱器13に接続されている。水素注入装置19が、復水脱塩器11と給水ポンプ12の間で給水配管9に接続される。
【0033】
BWRプラント1に設けられる再循環系は、再循環系配管15及び再循環系配管15に設けられた再循環ポンプ16を有している。再循環系配管15の一端は、RPV3に設けられたノズル(図示せず)に接続され、ダウンカマに連絡される。再循環系配管15の他端は、RPV3のダウンカマ内に配置されてジェットポンプのノズルに接続されるライザ管(図示せず)に接続される。炉水浄化系は、炉水浄化系配管17及び炉水浄化系配管17に設置された炉水浄化装置18を有する。炉水浄化系配管17は再循環系配管15と給水配管9に接続される。サンプリング配管20が、水素注入装置19の給水配管9への接続点と復水脱塩器11との間で、給水配管9に接続されている。サンプリング配管21が炉水浄化系配管17に接続される。
【0034】
BWRプラント1が運転されているとき、再循環ポンプ16の駆動によりRPV3内のダウンカマから再循環系配管15内に吸引された炉水は、再循環ポンプ16で昇圧され、ライザ管を通ってジェットポンプのノズルから噴出される。ノズルの周囲でダウンカマ内に存在する炉水が、その噴出流によってジェットポンプ内に吸い込まれ、ジェットポンプから吐出される。ジェットポンプから吐出された炉水は、炉心4内に導かれ、燃料集合体5内の各燃料棒の間を上昇する。この炉水は、各燃料棒内に存在する核燃料物質の核分裂によって発生する熱で加熱され、一部が蒸気になる。この蒸気は、RPV3内の気水分離器(図示せず)及び蒸気乾燥器(図示せず)で水分を除去されて主蒸気配管6を通ってタービン7に導かれ、タービン7を回転させる。タービン7に連結された発電機(図示せず)が回転して電力が発生する。タービン7から排出された蒸気は、復水器8で凝縮される。この凝縮によって発生した水は、給水として、給水ポンプ12で昇圧されて給水配管9を通りRPV3内のダウンカマに供給される。
【0035】
給水は、給水配管9内を流れる間に、中空糸フィルタ10、復水脱塩器11及び給水加熱器13を通過する。中空糸フィルタ10は、復水器8内で発生し、給水に含まれている腐食生成物(例えば、鉄酸化物である三酸化二鉄)を除去する。中空糸フィルタは除鉄性能が高いので、中空糸フィルタ10を通過した給水に含まれる鉄酸化物の濃度は、1×10−9mol/kg以下に抑制される。このため、給水と共にRPV3内に持ち込まれる鉄酸化物の濃度が低下する。復水脱塩器11は、復水器8において伝熱管内を流れて蒸気の凝縮に使用される海水が漏洩したとき、海水成分(ナトリウムイオン及び塩化物イオン)がRPV3内に入り込むのを防ぐためにその海水成分を除去する。抽気蒸気配管14は、主蒸気配管6内を流れる蒸気の一部を抽気する。給水加熱器13は、抽気蒸気配管14によって抽気された蒸気を用いて給水配管9内を流れる給水を加熱する。加熱された給水がRPV3内に供給される。
【0036】
RPV3内の炉水は、再循環系配管15を経て炉水浄化系配管17内に導かれる。この炉水に含まれた不純物(放射性核種を含む酸化物等)が炉水浄化装置17で除去され、給水配管9を介してRPV3に戻される。
【0037】
BWRプラントの運転中、水素注入装置19から水素が給水配管9内を流れる給水に注入される。注入された水素は給水と共にRPV3内に導かれる。この水素は、RPV3内で炉水中に存在する酸素及び過酸化水素と反応し、水を生成する。このため、炉水に含まれる酸素及び過酸化水素のそれぞれの量が減少される。結果として、RPV3、再循環系配管15及び炉水浄化系配管17内での鉄酸化物(例えば、三酸化二鉄)の生成が抑制される。
【0038】
外面にフェライト皮膜が形成された被覆管を用いた複数の燃料棒を有する燃料集合体5は、炉心4に装荷される前に製造される。この燃料集合体5の製造を、以下に説明する。燃料集合体5の製造に当たって、被覆管の外面にフェライト皮膜が形成される。このフェライト皮膜の形成に用いられる皮膜形成装置25の詳細な構成を、図2により説明する。皮膜形成装置25は、被覆管収納容器26、循環配管27、鉄(II)イオン注入装置28、pH調整剤注入装置33、酸化剤注入装置38、循環ポンプ43、加熱器44及び脱塩器47を備えている。弁48、循環ポンプ43、弁49、加熱器44、弁50,51、酸化剤注入装置38、pH調整剤注入装置33、鉄(II)イオン注入装置28及び弁52が、上流よりこの順に循環配管27に設けられている。循環配管27の両端が被覆管収納容器26に接続される。弁54、冷却器45及び弁55が、弁49、加熱器44及び弁50をバイパスして循環配管27に接続される配管53に設置される。弁51をバイパスする配管56が循環配管27に接続される。弁57、フィルタ46、脱塩器47及び弁58が配管56に設置される。弁60が設けられた排水管59が循環配管27に接続される。不活性ガス導入管61及びベント管62が被覆管収納容器26に接続される。
【0039】
鉄(II)イオン注入装置28が、薬液タンク29、注入ポンプ30及び注入配管31を有する。薬液タンク29は、注入ポンプ30及び弁32が設置された注入配管31によって循環配管27に接続される。薬液タンク29は、鉄をギ酸で溶解して調製した2価の鉄(II)イオンを含む薬剤が充填されている。この薬剤はギ酸を含んでいる。なお、鉄を溶解させる薬剤としては、ギ酸に限らず、鉄(II)イオンの対アニオンとなる有機酸又は炭酸を用いることができる。pH調整剤注入装置33が、薬液タンク34、注入ポンプ35及び注入配管36を有する。薬液タンク34は、注入ポンプ35及び弁37が設けられた注入配管36によって循環配管27に接続される。薬液タンク34はpH調整剤であるヒドラジンを充填する。酸化剤注入装置38が、薬液タンク39、注入ポンプ40及び注入配管41を有する。薬液タンク39は、注入ポンプ40及び弁42が設置された注入配管41によって循環配管27に接続される。薬液タンク39は、酸化剤である過酸化水素が充填されている。pH計63が、注入配管31と循環配管27の接続点よりも下流で循環配管27に設置されている。
【0040】
対極66及び参照極67が、被覆管収納容器26内に設置されている。対極66及び参照極67にそれぞれ接続された配線65が電位制御装置(ポテンショスタット)64に接続されている。中央制御装置68が電位制御装置64に接続される。
【0041】
皮膜形成装置25を用いた、ジルコニウム合金製の被覆管へのフェライト皮膜形成方法を、詳細に説明する。まず、被覆管収納容器26の蓋を開ける。対極66及び参照極67に接続された配線65が接続された、両端をゴムなどで封止したジルコニウム合金(例えば、ジルカロイ)製の1本の被覆管22を被覆管収納容器26内に入れる。このとき、対極66及び参照極67も被覆管収納容器26内に配置されている。被覆管22は核燃料物質を充填していない。被覆管22を被覆管収納容器26内に配置した後、蓋を被覆管収納容器26に取り付けて、被覆管収納容器26を密封する。弁48〜52,54,55,57,58を開く。弁32,37,42は閉じている。弁60を開けて排水管59から被覆管収納容器26内に水を供給する。水が被覆管収納容器26内に満たされ、被覆管22、対極66及び参照極67が水に浸漬される。循環配管27及び配管53,56内も水で満たされる。この水の供給時には、被覆管収納容器26及び循環配管27等の配管内の空気は、ベント管62から排出される。水の供給が終了したとき、弁60が閉じられる。窒素(またはアルゴン)が不活性ガス導入管61から被覆管収納容器26内に供給され、被覆管収納容器26内の水に含まれている酸素が除去される。
【0042】
被覆管収納容器26及び循環配管27に存在する水を加熱する。弁54,55,57,58を閉じて循環ポンプ43を駆動させる。被覆管収納容器26及び循環配管27に存在する水は、循環配管27を通して循環される。加熱器44を起動して循環する水を加熱し、その水の温度を90℃まで上昇させる。
【0043】
2価の鉄(II)イオンを含む薬剤、pH調整剤及び酸化剤が循環配管27内に注入される。循環配管27内に注入されたこれらの薬剤は、循環している水と混合され、皮膜形成水溶液(皮膜形成液)を生成する。皮膜形成水溶液は、被覆管収納容器26内に導かれ、被覆管収納容器26内に収納された被覆管22の外面に接触する。この時、電位制御装置64を用いて被覆管22の電位を約−0.5Vに調整する。この皮膜形成水溶液は、循環ポンプ43の運転により、被覆管収納容器26及び循環配管27によって形成される閉ループ内を循環する。
【0044】
それぞれの薬剤の注入を具体的に説明する。弁32を開いて注入ポンプ30を駆動し、鉄(II)イオン及びギ酸を含む薬液を、薬液タンク29から、循環配管27内を流れている水(または被覆管収納容器26から戻ってくる皮膜形成水溶液)に注入する。弁37を開いて注入ポンプ35を駆動することにより、pH調整剤(例えば、ヒドラジン)を、薬液タンク34から、循環配管27内を流れている水(または皮膜形成水溶液)に注入する。pH計63は、循環配管27内を流れる皮膜形成水溶液のpHを計測する。このpH計測値に基づいて、注入ポンプ35の回転速度(または弁37の開度)を調整し、皮膜形成水溶液のpHが被覆管22の外面にフェライト皮膜が形成されていない状態でpH6.5乃至9.0、例えば、7.0に調整される。pH調整剤としては、ヒドラジン及びエタノールアミン等の有機アルカリ溶液を用いることが望ましい。弁42を開いて注入ポンプ40を駆動し、酸化剤である過酸化水素を、薬液タンク39から循環配管27内を流れている水(または皮膜形成水溶液)に注入する。酸化剤としては、過酸化水素以外に、オゾンまたは酸素を溶解した薬剤を用いてもよい。
【0045】
以上の各薬剤の注入により生成された皮膜形成水溶液は、温度が90℃、pHが7.0である。BWRプラントの運転中に炉水中のコバルトイオンが被覆管22の外面に直接付着しないように、緻密なフェライト皮膜を被覆管22の外面に形成する必要がある。皮膜形成時において、被覆管22の外面にその緻密なフェライト皮膜を形成させる化学反応を促進させるため、皮膜形成水溶液の温度は、60℃以上にする必要がある。皮膜形成水溶液の温度が200℃を超えた場合には、被覆管22の外面に緻密なフェライト皮膜を形成することができなくなる。このため、緻密なフェライト皮膜を形成するため、皮膜形成水溶液の温度は200℃以下にする。皮膜形成水溶液の温度100℃を超えた場合には、皮膜形成水溶液の沸騰を抑制するため、加圧しなければならず、皮膜形成装置を耐圧構造にしなければならない。皮膜形成装置が大型化する。したがって、皮膜形成処理における皮膜形成水溶液の温度は、皮膜形成装置25を耐圧構造にしなくて済む100℃以下が好ましい。
【0046】
皮膜形成水溶液が被覆管収納容器26内に供給され、被覆管収納容器26内の被覆管22の電位が−0.5Vから0Vの範囲に含まれるある電位に制御される。この電位制御は、電位制御装置64を用いて以下のように行われる。被覆管22と参照電極67との間の電位(基準電位)が電位制御装置64によって測定され、電位制御装置64が、この基準電位を基に被覆管22と対極66との間の電位を−0.5Vから0Vの範囲に含まれるある電位(例えば、−0.4V)に制御する。このような電位の制御によって、フェライト皮膜、すなわち、マグネタイトを主成分とするフェライト皮膜(以下、マグネタイト皮膜という。)が、被覆管22の外面に形成される。本実施例では、被覆管22の外面の全面に亘ってマグネタイト皮膜が形成されても、皮膜形成液のpHは7.0に調節される。
【0047】
被覆管22の外面にマグネタイト皮膜を形成している間、電位制御装置64が被覆管22と対極66の間に流れる電流を常時測定する。測定された電流が電位制御装置64から中央制御装置68に入力される。中央制御装置68は、入力した電流の各測定値(図5において実線で示される電流値)を用いてその電流の変化を示す近似式を求める。中央制御装置68は、得られた近似式を用いて積分を行い、フェライト皮膜の形成開始時点からの総電流量(図5に示す斜線部の面積)に基づいて総電荷量を求める。中央制御装置68は、さらに、総電荷量に基づいて被覆管22の外面に形成されたマグネタイトの量を算出し、その外面に形成されたマグネタイト皮膜の厚みを求める。中央制御装置68は、上記の近似式をある周期で求め、マグネタイト皮膜の厚みも周期的に算出する。求められたマグネタイト皮膜の厚みが設定厚みになったとき、中央制御装置68は電位制御装置64を停止する。これにより、被覆管22の外面へのフェライト皮膜の形成が停止される。中央制御装置68は、電位制御装置64を停止する替りに、循環ポンプ43の駆動を停止してもよい。循環ポンプ43の停止によって、フェライト皮膜の形成が停止される。
【0048】
中央制御装置68は、被覆管22の外面に形成されたマグネタイト皮膜の厚みが設定厚みになったことを、総電荷量ではなく、循環配管27内への薬剤の注入を開始した後の経過時間に基づいて判定してもよい。
【0049】
中央制御装置68は、さらに、加熱器44による加熱を停止すると共に、注入ポンプ30,35,40の駆動を停止し、弁32,37,42を閉じる。加熱器44による加熱を停止した後、弁54,55を開いて弁49,50を閉じる。上記の閉ループ内を流れる皮膜形成水溶液が、配管53を通って流れ、冷却器45で冷却される。皮膜形成水溶液の温度が約20℃まで低下したとき、冷却器45による皮膜形成水溶液の冷却を停止する。そして、弁57,58を開いて弁51を閉じる。温度が低下した皮膜形成水溶液は、配管56内を流れ、フィルタ46及び脱塩器47に供給される。フィルタ46は皮膜形成水溶液に含まれる粒子等の固形分を除去する。皮膜形成水溶液に含まれるイオン成分は、脱塩器47で除去される。
【0050】
皮膜形成水溶液内の固形分及びイオン成分が除去された後、循環ポンプ43の駆動を停止する。弁49,50,51を開き、さらに、弁60を開いて、被覆管収納容器26、循環配管27及び配管53,56内の水を、排水管59を通して排出する。なお、被覆管収納容器26内に水を残す必要がある場合には、下方に位置する弁48は、排水時に閉じた状態にする。
【0051】
以上の操作により、マグネタイト皮膜を被覆管22の外面に形成することができる。その後、別の被覆管22を被覆管収納容器26内に収納して、前述の操作を繰り返すことによって、マグネタイト皮膜をそれらの被覆管22の外面に形成することができる。
【0052】
超音波発振装置を被覆管収納容器26内に設置し、フィルタ46及び脱塩器47に皮膜形成水溶液を供給しているときに被覆管収納容器26内の被覆管22の超音波洗浄を実施する。この超音波洗浄によって、被覆管22の外面にルーズに付着したフェライトを除去することができる。除去されたフェライトはフィルタ46等で除去される。
【0053】
皮膜形成装置25の系統内からの排水が終了した後、被覆管収納容器26の蓋が開けられ、外面にマグネタイト皮膜が形成された被覆管22が被覆管収納容器26から取り出される。これらの被覆管22を乾燥させた後、燃料集合体5が製造される。被覆管22の一端に下部端栓が溶接され、複数の燃料ペレットが開放されている他端より被覆管22内に充填される。さらに、コイルバネ等の必要な部品が被覆管22内に挿入される。上部端栓が被覆管22の他端に溶接され、被覆管22は複数のペレットを収納した状態で密封される。以上の工程で、燃料棒が完成する。
【0054】
複数の燃料棒の下端部が下部タイプレートに保持され、それらの燃料棒の上端部が上部タイプレートで保持される。これらの燃料棒は、軸方向の複数箇所で、複数の燃料スペーサによって相互の間隔が所定の間隔になるように保持されている。燃料スペーサで束ねられた複数の燃料棒の周囲を取り囲むチャンネルボックスが、上部タイプレートに取り付けられる。外面にマグネタイト皮膜が形成された複数の燃料棒を有する燃料集合体5が完成する。燃料集合体5の横断面の中央部には水ロッドが配置されている。より高燃焼度化された燃料集合体5は、濃縮度をより高めた核燃料物質で製造された燃料ペレットを燃料棒内に収納することによって実現可能である。
【0055】
以上のようにして製造された複数の燃料集合体5は、BWRプラント1の運転を停止した後の定期検査の期間において、RPV3の炉心4に装荷される。すなわち、RPV3の蓋(図示せず)が取り外され、RPV3内に設置されている蒸気乾燥器及び気水分離器等がRPV3内に取り出される。炉心4に装荷されている複数の燃料集合体5のうち寿命が来た複数の使用済の燃料集合体5が取り出され、RPV3外の燃料貯蔵プール(図示せず)に移送される。外面にマグネタイト皮膜が形成された複数の燃料棒を有する新しい複数の燃料集合体5が、炉心4に装荷される。このような燃料交換が終了し、定期検査が終了した後、取り出された機器がRPV3内に設置され、RPV3に蓋が取り付けられる。そして、BWRプラント1の運転が開始される。
【0056】
BWRプラント1の運転中において、給水は中空子フィルタ10を通過するので、給水配管9を通してRPV3内に供給される給水の鉄酸化物濃度は、1×10-9mol/kg以下に抑制される。このため、炉水に含まれる鉄酸化物(例えば、三酸化二鉄)の濃度が著しく低下する。炉水は、炉心4内で各燃料集合体5に設けられた各燃料棒の被覆管22の外面に沿って上昇する。各被覆管22の外面にマグネタイト皮膜が形成されているので、被覆管22の外面のマグネタイト皮膜の表面に炉水の沸騰により付着したコバルト酸化物は、マグネタイト皮膜に含まれる四酸化三鉄との間で生じる静電的反発力で剥離される。このため、コバルト酸化物が被覆管22に形成されたマグネタイト皮膜の表面、すなわち、被覆管22の外面に付着している期間が著しく短縮される。この結果、燃焼度がさらに増大された燃料集合体5を炉心4に装荷した場合でも、コバルト酸化物に含まれる非放射性コバルトの放射化が抑制され、炉水中の放射性コバルト(例えば、コバルト60)の濃度が低減される。原子炉に接続されて炉水が流れる配管等の内面への放射性コバルトの付着、蓄積が抑制され、その配管等の表面線量率が低下する。したがって、燃料集合体の燃焼度をさらに増大させた場合においても、原子力プラントの運転停止後において定期検査を実施する作業員の放射線被ばくをさらに低減することができる。
【0057】
本実施例により外面にフェライト皮膜を形成した被覆管を用いた燃料棒を含む燃料集合体を炉心に装荷したBWRプラント1は、特開平10−197672号公報、特開平5−264786号公報、特開平6−148386号公報及び特開昭63−52092号公報による問題点を改善することができ、上記したように、作業員の放射線被ばくをさらに低減することができる。
【0058】
本実施例は、pHが7.0である皮膜形成水溶液と接触する被覆管22の電位を−0.4に制御しているので、ジルコニウム合金である被覆管22の外面にマグネタイト皮膜を形成することができ、その形成に要する時間を短縮することができる。
【0059】
本実施例は、被覆管22と対極66の間に流れる電流を計測し、この計測された電流に基づいて被覆管22の外面に形成されたマグネタイト皮膜の厚みを求めることができ、得られたマグネタイト皮膜の厚みに基づいて被覆管22の外面に形成されるマグネタイト皮膜の厚みを制御することができる。
【0060】
被覆管22の外面にニッケルフェライト皮膜を形成する場合には、薬液タンク29に2価の鉄(II)イオン及び2価のニッケル(II)イオンを含む溶液を充填する。鉄(II)イオン、ニッケル(II)イオン、ヒドラジン及び過酸化水素を含む90℃の皮膜形成水溶液を被覆管収納容器26内に供給し、電位を制御することによって、被覆管収納容器26内の被覆管22の外面にニッケルフェライト皮膜が形成される。
【0061】
皮膜形成装置25を用いて、核燃料物質を被覆管22内に密封して構成された燃料棒の外面、すなわち、その被覆管22の外面にマグネタイト皮膜を形成することも可能である。燃料棒を収納した被覆管収納容器26内に皮膜形成水溶液を供給し、電位を制御することによって、被覆管22の外面にマグネタイト皮膜を形成できる。
【実施例2】
【0062】
本発明の他の実施例である実施例2のジルコニウム合金部材へのフェライト皮膜形成方法を、図6を用いて説明する。
【0063】
本実施例に用いられる皮膜形成装置25Aは、実施例1で用いられる皮膜形成装置25において被覆管収納容器26を被覆管収納容器26Aに、電位制御装置64を電位制御装置64Aに替えた構成を有する。皮膜形成装置25Aの他の構成は皮膜形成装置25と同じである。皮膜形成装置25Aの皮膜形成装置25と異なっている部分について、説明する。
【0064】
循環配管27の両端が接続された被覆管収納容器26Aは、複数の被覆管22を保持する被覆管保持具69を内部に設置している。被覆管保持具69は、被覆管22の上端部を保持する上部支持板70、被覆管22の下端部を保持する下部支持板71及び上部支持板70と下部支持板71を連結する連結部材72を有する。対極66が下部支持板71の中心で下部支持板71に取り付けられ、参照極67が上部支持板70の中心で上部支持板70に取り付けられる。複数の被覆管22が対極66及び参照極67を取り囲むように配置され、これらの被覆管22の両端部が上部支持板70及び下部支持板71に保持される。被覆管収納容器26A内において、各被覆管22は、対極66及び参照極67から等距離になるように配置されている。マルチ電位制御装置(マルチポテンショスタット)64Aが、それぞれの被覆管22に接続され、対極66及び参照極67にも接続されている。
【0065】
マルチ電位制御装置64Aに接続されて両端部が封鎖された複数の被覆管22が被覆管収納容器26A内の被覆管保持具69に取り付けられ、被覆管収納容器26Aの蓋が取り付けられて被覆管収納容器26Aが密封される。実施例1と同様に、循環配管27から被覆管収納容器26A内に、90℃でpHが7.0の皮膜形成液が供給される。マルチ電位制御装置64Aによって各被覆管22の電位が−0.4Vに制御されている。各被覆管22と対極66の間の距離が等距離になっているので、各被覆管22に等しい電位を掛けることができる。このような本実施例でも、実施例1と同様に被覆管22の外面にマグネタイト皮膜を形成することができる。
【0066】
本実施例は、実施例1で生じる各効果を得ることができる。本実施例は、複数の被覆管22を被覆管収納容器26A内に収納することができるので、実施例1に比べて一度に複数の被覆管22の外面にマグネタイト皮膜を形成することができる。
【実施例3】
【0067】
本発明の他の実施例である実施例3のジルコニウム合金部材へのフェライト皮膜形成方法を、図7を用いて説明する。
【0068】
実施例1及び2のそれぞれのフェライト皮膜形成方法が被覆管収納容器内に被覆管を出し入れしてバッチ式で被覆管22の外面にマグネタイト皮膜を形成するのに対し、本実施例で用いられる皮膜形成装置によれば、電位を制御することなく被覆管22の外面にマグネタイト皮膜を形成することができる。
【0069】
本実施例では図7に示す皮膜形成装置25Bが用いられる。皮膜形成装置25Bは、チャンバー75、移動装置79,80、貯蔵タンク81、複数の噴霧ノズル78及び回収タンク83を備えている。チャンバー75は被覆管22を通す開口部76,77を形成する。複数の噴霧ノズル78がチャンバー75内に設置される。皮膜形成液を充填する貯蔵タンク81に接続された複数の皮膜形成液供給管82は、別々の噴霧ノズル78に接続される。チャンバー75の底部に接続された皮膜形成液排出管84が、回収タンク83に接続される。ポンプ86を設けた戻り配管85が、貯蔵タンク81と回収タンク83を接続する。鉄(II)イオン注入装置28、pH調整剤注入装置33及び酸化剤注入装置38が貯蔵タンク81に接続される。鉄(II)イオン注入装置28、pH調整剤注入装置33及び酸化剤注入装置38は、実施例1で用いられるそれぞれの装置と同じ構成を有する。
【0070】
皮膜形成装置25Bを用いた本実施例の被覆管へのフェライト皮膜形成方法を以下に説明する。
【0071】
ジルコニウム合金(例えば、ジルカロイ2)製の被覆管22が、開口部76及び77を通り、チャンバー75内を貫通している。被覆管22は、移動装置79及び80を移動させることによってチャンバー75内を水平方向に移動する。
【0072】
被覆管22がチャンバー75内を貫通して移動装置79及び80に取り付けられた後、鉄(II)イオン注入装置28の薬液タンク29内の鉄(II)イオンを含む薬剤、pH調整剤注入装置33の薬液タンク34内のpH調整剤(例えば、ヒドラジン)、及び酸化剤注入装置38の薬液タンク39内の酸化剤(例えば、過酸化水素)が、貯蔵タンク81内の純水に注入される。鉄(II)イオンを含む薬剤、ヒドラジン、過酸化水素及び純水が混合され、貯蔵タンク81内で、鉄(II)イオンを及び過酸化水素を含み、pHが7.0の皮膜形成液が形成される。チャンバー75内に挿入された被覆管22は、皮膜形成液が被覆管22内に入らないように、両端部が封鎖されている。
【0073】
この皮膜形成液を貯蔵タンク81に設けたヒータによって90℃に加熱する。加熱されたpH7.0の皮膜形成液が、貯蔵タンク81から皮膜形成液供給管82を通って各噴霧ノズル78に導かれ、チャンバー75内において各噴霧ノズル78から被覆管22の外面に向って噴霧される。皮膜形成液のpHは6.5〜9.0の範囲内に調節されている。噴霧された皮膜形成液は、被覆管22の外面を伝って流れ、やがて被覆管22からチャンバー75の底部に向って落下する。この底部に落下した皮膜形成液は、皮膜形成液排出管84内を通って回収タンク83内に回収される。回収タンク83内の皮膜形成液は、回収タンク83に設けられたヒータによって加熱される。加熱された回収タンク83内の皮膜形成液は、ポンプ86の駆動により戻り配管85を通して充填タンク81内に戻される。充填タンク81内の90℃の皮膜形成液は、各噴霧ノズル78から被覆管22に向って噴霧される。
【0074】
各噴霧ノズル78から噴霧された90℃でpH7.0の皮膜形成液が、被覆管22の外面に接触することによって、実施例1と同様に、被覆管22の外面にマグネタイト皮膜が形成される。マグネタイト皮膜は、被覆管22の、皮膜形成液が接触した部分に形成される。各噴霧ノズル78から噴霧された皮膜形成液によって濡れている部分と濡れていない部分が、被覆管22の軸方向において被覆管22の外面に生じるように、各噴霧ノズル78が被覆管22の軸方向に配置されている。
【0075】
各噴霧ノズル78からの皮膜形成液の噴霧が所定時間経過した後、被覆管22を移動装置79及び80のうちの一方の移動により、被覆管22の軸方向で矢印87の方向へ移動される。このとき、被覆管22は、皮膜形成液によって濡れていない部分が、噴霧ノズル78から噴霧された皮膜形成液によって濡れる位置に到達するように移動される。移動前に皮膜形成液が当たっていた部分は、移動後において噴霧された皮膜形成液に当たらなくなる。被覆管22の、移動後において皮膜形成液に当たらなくなった部分では、皮膜形成液がチャンバー75内の90℃の雰囲気によって乾燥される。被覆管22の外面では、皮膜形成液との接触、及び皮膜形成液の乾燥(皮膜形成液に非接触)が、各噴霧ノズル78から皮膜形成液が噴霧されているときに被覆管22を軸方向に移動させることによって繰り返される。噴霧された皮膜形成液が被覆管22の外面に接触することによって、被覆管22の外面にマグネタイト皮膜が形成される。被覆管22の軸方向で矢印87の方向へ移動されて、被覆管22の一端から他端までの被覆管22の全長に亘ってその外面が噴霧された皮膜形成液に接触される。被覆管22の開口部76側の端部がチャンバー75内で噴霧された皮膜形成液に所定時間接触した後、被覆管22は、移動装置79,80によって矢印87とは逆方向に移動される。これによって、被覆管22の全長に、再度、皮膜形成液が噴霧される。チャンバー75内で皮膜形成液が噴霧されている間、少なくとも鉄(II)イオンを含む薬剤及び過酸化水素が、鉄(II)イオン注入装置28及び酸化剤注入装置38から貯蔵タンク81内に供給される。
【0076】
被覆管22の全長が皮膜形成液を噴霧しているチャンバー75内で、一往復、移動されたとき、この被覆管22の外面へのマグネタイト皮膜の形成作業が終了し、被覆管22がチャンバー75から取り出される。その後、マグネタイト皮膜が形成されていない別の被覆管22がチャンバー75内に挿入され、この被覆管22に対しても上記したように皮膜形成液が噴霧されて外面にマグネタイト皮膜が形成される。
【0077】
皮膜形成液をチャンバー75内に噴霧している間、不活性ガスが不活性ガス供給管(図示せず)を通してチャンバー75内にパージされる。これは、チャンバー75内を不活性ガス雰囲気にし、外部の空気(特に、酸素)が被覆管22の外面にマグネタイト皮膜を形成している間にチャンバー75内に流入することを防ぐためである。
【0078】
チャンバー75内には一度に複数本の被覆管22を挿入してこれらの被覆管22に皮膜形成液を噴霧してもよい。
【0079】
本実施例によれば、被覆管22の外面にマグネタイト皮膜を形成することができる。被覆管2の外面で皮膜形成液との接触及び乾燥を繰り返すので、被覆管22の外面へのマグネタイト皮膜の形成を短時間に行うことができる。
【0080】
図7に示す皮膜形成装置25Bにおいて酸化剤注入装置38を取り除き、不活性ガス供給管をチャンバー75に接続しなくてもよい。このような皮膜形成装置を用いることによって、噴霧ノズル78から皮膜形成液を噴霧しているチャンバー75内に外部から空気を取り込むことができる。噴霧ノズル78から噴霧された、pHが7.0で90℃の鉄(II)イオンを含む皮膜形成液が被覆管22の外面に付着しているときに、チャンバー75内に入り込んだ空気に含まれている酸素によって、被覆管22の外面に吸着された鉄(II)イオンが酸化されてマグネタイトになる。このようにして、被覆管22の外面にマグネタイト皮膜が形成される。この場合でも、被覆管22の外面で皮膜形成液の接触及び皮膜形成液の乾燥が繰り替えされる。
【0081】
前述した各実施例において、被覆管の替りに燃料棒を用いることによっても、燃料棒に含まれているジルコニウム合金製の被覆管の外面にフェライト皮膜を短時間に形成することができる。
【0082】
前述した各実施例のジルコニウム合金部材へのフェライト皮膜の形成方法は、加圧水型原子力発電プラント(PWRプラント)に用いられる燃料棒の被覆管の外面にフェライト皮膜を形成する場合にも、適用することができる。さらに、上記の各実施例は、BWRプラントの燃料集合体に用いられる、ジルコニウム合金製のチャンネルボックスの表面にフェライト皮膜を形成する際にも、適用することがきる。
【産業上の利用可能性】
【0083】
本発明は、原子力プラントに用いられるジルコニウム合金部材に適用することができる。
【符号の説明】
【0084】
1…沸騰水型原子力プラント、2…原子炉、3…原子炉圧力容器、4…炉心、5…燃料集合体、22…被覆管、25,25A,25B…皮膜形成装置、26…被覆管収納容器、27…循環配管、28…鉄(II)イオン注入装置、33…pH調整剤注入装置、38…酸化剤注入装置、29,34,39…薬液タンク、66…対極、67…参照極、64,64A…電位制御装置、69…被覆管保持具、75…チャンバー、79,80…移動装置、78…噴霧ノズル、81…貯蔵タンク、82…回収タンク。

【特許請求の範囲】
【請求項1】
ジルコニウム合金部材の表面に、鉄(II)イオン、前記鉄(II)イオンを鉄(III)イオンに酸化する酸化剤、及びpH調整剤を含む皮膜形成液を接触させ、前記皮膜形成液と接触している前記ジルコニウム合金部材に加える電位を−0.5V〜0Vの範囲内に制御して前記ジルコニウム合金部材の前記表面にフェライト皮膜を形成することを特徴とするジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項2】
前記電位が制御される前記ジルコニウム合金部材に接触する前記皮膜形成液のpHを6.5〜9.0の範囲内に調節する請求項1に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項3】
前記ジルコニウム合金部材に前記電位を加えているとき、前記ジルコニウム合金部材に流れる電流を測定し、測定された前記電流に基づいて、前記ジルコニウム合金部材の前記表面に形成された前記フェライト皮膜の厚みを求める請求項1または2に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項4】
前記求められた前記フェライト皮膜の厚みが設定厚みになったとき、前記ジルコニウム合金部材の表面への前記フェライト皮膜の形成を停止する請求項3に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項5】
前記ジルコニウム合金部材に加える前記電位の制御が電位制御装置を用いて行われる請求項1または2に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項6】
加熱された前記皮膜形成液を前記ジルコニウム合金部材の前記表面に接触させる請求項1、2及び5のいずれか1項に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項7】
前記皮膜形成液の温度が60℃〜100℃の範囲に調節されている請求項6に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項8】
前記フェライト皮膜が前記表面に形成された前記ジルコニウム合金部材に超音波を当てる請求項1または2に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項9】
ジルコニウム合金部材を収納容器内に収納し、鉄(II)イオン、前記鉄(II)イオンを鉄(III)イオンに酸化する酸化剤、及びpH調整剤を含む皮膜形成液を、前記収納容器に接続された配管を通して前記収納容器内に供給して前記ジルコニウム合金部材の表面に接触させ、前記皮膜形成液と接触している前記ジルコニウム合金部材に加える電位を−0.5V〜0Vの範囲内に制御して前記ジルコニウム合金部材の前記表面にフェライト皮膜を形成することを特徴とするジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項10】
前記収納容器内に供給される前記皮膜形成液のpHを6.5〜9.0の範囲内に調節する請求項9に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項11】
前記ジルコニウム合金部材に加える電位の制御が、前記収納容器内に配置された対極及び前記ジルコニウム合金部材に接続された電位制御装置によって行われる請求項9または10に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項12】
前記対極との間の距離が実質的に等しくなるように、複数の前記ジルコニウム合金部材が前記収納容器内に収納されている請求項11に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項13】
前記収納容器に両端が接続された前記配管内を通して前記皮膜形成液を循環させ、前記鉄(II)イオンを含む薬剤を前記配管に設けられた鉄(II)イオン注入装置から前記配管内に供給し、前記pH調整剤を前記配管に設けられたpH調整剤注入装置から前記配管内に供給し、前記酸化剤を前記配管に設けられた酸化剤注入装置から前記配管内に供給する請求項9ないし12のいずれか1項に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項14】
チャンバー内にジルコニウム合金部材を配置し、鉄(II)イオン、前記鉄(II)イオンを鉄(III)イオンに酸化する酸化剤、及びpH調整剤を含む皮膜形成液を、前記チャンバー内の前記ジルコニウム合金部材の表面に付着させ、
前記ジルコニウム合金部材の前記表面の、前記皮膜形成液が付着した部分を乾燥させ、
前記ジルコニウム合金部材の表面への前記皮膜形成液の付着、及び前記皮膜形成液が付着した前記ジルコニウム合金部材の前記表面の乾燥を繰り返すことにより前記ジルコニウム合金部材の表面にフェライト皮膜を形成することを特徴とするジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項15】
前記チャンバー内が不活性雰囲気になっている請求項14に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項16】
チャンバー内にジルコニウム合金部材を配置し、鉄(II)イオン及びpH調整剤を含む皮膜形成液を、前記チャンバー内の前記ジルコニウム合金部材の表面に付着させ、前記チャンバー内に酸化剤を供給し、前記ジルコニウム合金部材の前記表面の、前記皮膜形成液が付着した部分を乾燥させ、前記ジルコニウム合金部材の表面への前記皮膜形成液の付着、及び前記表面の、前記皮膜形成液が付着した部分の乾燥を繰り返すことにより前記ジルコニウム合金部材の表面にフェライト皮膜を形成することを特徴とするジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項17】
前記チャンバー内に間隔を置いて配列された複数の噴霧ノズルに前記皮膜形成液を供給し、
これらの噴霧ノズルから前記チャンバー内の前記ジルコニウム合金部材の前記表面に向かって噴霧してこの皮膜形成液を前記表面に間隔を置いて付着させ、
前記ジルコニウム合金部材を前記噴霧ノズルの配列方向に移動させて前記ジルコニウム合金部材の前記表面の、前記皮膜形成液が付着した部分を乾燥させると共に、前記皮膜形成液が付着した部分の相互間に存在する前記皮膜形成液が付着しなかった部分に前記噴霧ノズルから噴霧された前記皮膜形成液を付着させる請求項14または16に記載のジルコニウム合金部材へのフェライト皮膜形成方法。
【請求項18】
前記皮膜形成液のpHが6.5〜9.0の範囲内に調節されている請求項14ないし17のいずれか1項に記載のジルコニウム合金部材へのフェライト皮膜形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate