説明

タービンエンジンの制御および動作に関するシステム

【課題】ガスタービンの燃料の予熱に関し、適当な温度の燃料が燃焼器に安定して送出されるように燃料の温度を制御することが求められている。
【解決手段】燃料管路50から燃料を受け取る燃焼器30と、燃料を加熱するために熱源71との間で熱を伝達するように配置された燃料管路50の一部分を含む熱交換部分52と、燃料の発熱量を試験するように配置され、発熱量試験の結果を約1分以内に提供するように構成された高速発熱量計74と、熱交換部分52をバイパスする燃料管路60を含む冷レッグバイパス76であって、上流フォーク62および燃料混合接合部64で燃料管路50に接続された冷レッグバイパス76と、熱交換部分52を通して導かれている燃料および冷レッグバイパス76を通して導かれている燃料を制御する弁78、79とを備え、燃料混合接合部64と燃焼器30との間の燃料管路50の長さが20メートル未満である燃焼タービンエンジン。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は一般に、ガスタービンエンジンの効率および/または動作を向上させる方法、システムおよび/または装置に関する。本明細書で使用されるとき、ガスタービンエンジンは、別段特に明示されない限り、航空エンジン、発電エンジン、その他を含む、全てのタイプのガスまたは燃焼タービンエンジンあるいはガスまたは燃焼ロータリエンジンを含むことが意図されている。より具体的には、限定はされないが、本出願は、燃焼タービンエンジン内における燃料送出方法および燃料送出システムに関係する方法、システムおよび/または装置に関する。
【背景技術】
【0002】
ガスタービンエンジンは一般に、圧縮機、燃焼器およびタービンを含む。圧縮機およびタービンは一般に、軸方向に段として重ねられたブレードの列を含む。各段は、円周方向に間隔を置いて配置された固定された静翼の列と、中心軸または中心シャフトを軸に回転する動翼の列とを含む。動作時、一般に、圧縮機動翼が、シャフトを軸に回転し、静翼と協働して、空気流を圧縮する。次いで、供給圧縮空気を燃焼器内で使用して、供給燃料を燃焼させる。次いで、この燃焼の結果生じた熱ガス流、すなわち作動流体が、エンジンのタービンセクションを通って膨張する。タービンを通過するこの作動流体流が動翼を回転させる。動翼は中心シャフトに接続されており、その結果、動翼が回転するとシャフトも回転する。このようにして、燃料に含まれるエネルギーが、回転するシャフトの機械エネルギーに変換され、この機械エネルギーを使用して、例えば、圧縮機の動翼を回転させ、その結果、燃焼に必要な圧縮空気が生成され、発電機のコイルを回転させ、その結果、電力を生成することができる。
【0003】
当技術分野では、燃焼タービンエンジンからの排出ガスを利用して、燃料を予熱することが知られている。いくつかの理由から、高温で送出される燃料は、効率的なエンジン動作を促進することがある。燃料特性の変化に基づいて、時々、燃料の温度を変化させる必要がある。しかしながら、従来の燃料送出システムは、燃料が燃焼器に送出されるときの燃料温度の制御を困難にし、または燃料温度の制御を遅延させるある種の限界を有する。これにより、許容できない温度で燃料が送出されることがある。
【0004】
より具体的には、燃焼タービンエンジンは一般に、発熱量(heating value)に関係するある種の特性を有する燃料を使用して動作するように設計される。総発熱量(gross calorific value)、総エネルギー(gross energy)またはウォッベ指数レーティング(Wobbe Index rating)とも呼ばれることがある燃料の発熱量は一般に、燃料が燃焼したときに放出される熱量またはエネルギー量を表す。しかしながら、燃焼タービンエンジン用途では、ノズルに送出される燃料の温度を考慮した場合に、所与の圧力比で燃料ノズルを通って燃焼している燃料が放出するエネルギー量を、より正確に表現することができる。燃料の温度を考慮した、または燃料の温度を補償した燃料特性は一般に、修正ウォッベ指数レーティング(Modified Wobbe Index rating)ないしMWIレーティングと呼ばれる。これに応じて、本出願ではこの用語を使用するが、この用語の用法が本出願を限定することは意図されていない。本明細書で使用するとき、修正ウォッベ指数レーティングないしMWIレーティングは、ノズルに送出される燃料の温度を考慮し、またはノズルに送出される燃料の温度を補償した、所与の圧力比で燃料ノズルを通って燃焼している燃料が放出するエネルギー量を表現する燃料の尺度を広く指すことが意図されている。したがって、燃焼タービンエンジンは一般に、特定の修正ウォッベ指数レーティングを有する燃料、またはある許容修正ウォッベ指数レーティング範囲に含まれる燃料で動作するように設計される。そのように設計されている場合、燃焼器に送出されている燃料の温度を変化させ、または制御する(それによって燃料の修正ウォッベ指数レーティングを変化させ、または制御する)ことができるようにすることは、そのエンジンが、効率的な動作を促進し、燃焼器損傷の危険を低減させる許容される燃料を使用していることを保証する有用な方法である。
【0005】
しかしながら、従来のシステムの上記の限界を考慮すると、後により詳細に論じるように、燃料の状態が変動しやすいため、許容または目標修正ウォッベ指数レーティング外の燃料が燃焼器に送出されることがある。言い換えると、従来のシステムではしばしば、許容または目標修正ウォッベ指数レーティングを提供する温度範囲外の燃料が燃焼器に送出される。その結果、燃焼器が損傷したり、エンジン性能が非効率になったりすることがある。さらに、タービンエンジン「ランバック(runback)」状況に陥ることもあり、ランバック状況の間は一般に、燃料がエンジン仕様を満たしていないために起こる可能性があるエンジン損傷を防ぐために、エンジンのオペレーティングシステムが、エンジン出力を自動的に低減させ、または遮断する。当然ながら、エンジン出力の急落は、ピーク需要中など都合の悪い時期に起こることもあり、そのこと自体がかなりの問題になることもある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第5845481号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
一般に、従来の設計のタービンエンジン燃料送出システムのこれらのタイプの性能上の短所には、いくつかの理由がある。これらの理由の1つは、後により詳細に説明する、燃料温度を操作する際に生じる熱遅れ(thermal lag)である。別の1つの理由は、燃焼器に送出する燃料の適当な温度を適時に決定することを不可能にする、供給燃料の発熱量などの変動しやすい燃料特性の適時検出に関連する。その結果、燃焼タービンエンジン内における燃料の送出に関係した改良された装置、方法および/またはシステム、具体的には、燃料の発熱量およびそのエンジンに対する目標修正ウォッベ指数レーティングを考慮した適当な温度の燃料が燃焼器に安定して送出されるように燃料の温度を制御する、改良された装置、方法および/またはシステムが求められている。
【課題を解決するための手段】
【0008】
したがって、本出願は、燃焼タービンエンジン用の燃料送出システムにおいて、燃料源および燃焼タービンエンジンの燃焼器に接続された燃料管路であって、燃料を燃焼器に送出する前に燃料を加熱するために熱源との間で熱を伝達するように配置された熱交換部分を有する燃料管路と、燃料の発熱量を測定するように配置された高速発熱量計と、燃料管路の熱交換部分をバイパスする代替燃料管路を含む冷レッグバイパスであって、熱交換部分の上流に配置された上流フォークおよび熱交換部分の下流に配置された燃料混合接合部において、燃料管路に接続された冷レッグバイパスと、熱交換部分を通して導かれている燃料の量および冷レッグバイパスを通して導かれている燃料の量を制御する手段とを備えることができ、冷レッグバイパスを通して導かれる燃料の量および熱交換部分を通して導かれる燃料の量を制御する前記手段による変更によって、燃焼器の入口の上流でその入口の直ぐ近くに配置された燃料弁を含む燃焼器ガス制御弁における燃料温度が、比較的に短時間のうちに変化するように、燃料混合接合部が、燃焼器ガス制御弁の十分に近くに配置されており、燃焼器ガス制御弁に到達する前に、燃料が、実質的に均一な温度に十分に混合されるように、燃料混合接合部が、燃焼器ガス制御弁から十分に離れた位置に配置されている燃料送出システムを記載する。
【0009】
本出願はさらに、燃焼のために空気を圧縮する圧縮機と、圧縮機に接続され、圧縮機から圧縮空気を受け取り、燃料源に接続された燃料管路から燃料を受け取る燃焼器であって、燃料が、燃焼器内で燃焼し、燃焼ガスを発生させる、燃焼器と、燃焼器に接続されたタービンであって、タービンを駆動する燃焼ガスを受け取るように構成されたタービンと、燃料を燃焼器に送出する前に燃料を加熱するために熱源との間で熱を伝達するように配置された燃料管路の一部分を含む燃料管路の熱交換部分と、燃料の発熱量を試験するように配置された高速発熱量計であって、試験工程を開始してから約1分以内に発熱量試験の結果を提供するように構成された高速発熱量計と、燃料管路の熱交換部分をバイパスする代替燃料管路を含む冷レッグバイパスであって、熱交換部分の上流に配置された上流フォークおよび熱交換部分の下流に配置された燃料混合接合部において、燃料管路に接続された冷レッグバイパスと、熱交換部分を通して導かれている燃料の量および冷レッグバイパスを通して導かれている燃料の量を制御する手段とを備えることができ、燃料混合接合部と燃焼器の入口との間の燃料管路の長さが約20メートル未満となるように、燃料混合接合部が配置された燃焼タービンエンジンを記載する。
【0010】
本出願のこれらの特徴およびその他の特徴は、好ましい実施形態の以下の詳細な説明を、図面および添付の特許請求の範囲とともに検討することにより、明らかになるであろう。
【0011】
本発明のこれらの特徴およびその他の特徴は、添付図面とともに本発明の例示的な実施形態の以下のより詳細な説明を注意深く検討することによって、より完全に理解されるであろう。
【図面の簡単な説明】
【0012】
【図1】本出願のある種の実施形態を使用することができる、例示的なタービンエンジンの概略図である。
【図2】図1のガスタービンエンジンの圧縮機セクションの断面図である。
【図3】図1のガスタービンエンジンのタービンセクションの断面図である。
【図4】従来の設計に基づく燃焼タービンシステムの燃料送出システムの概略図である。
【図5】本出願の例示的な実施形態に基づく燃焼タービンエンジンの燃料送出システムの概略図である。
【図6】本出願の代替実施形態に基づく燃焼タービンエンジンの燃料送出システムの概略図である。
【図7】本出願の代替実施形態に基づく燃焼タービンエンジンの燃料送出システムの概略図である。
【図8】本出願の代替実施形態に基づく燃焼タービンエンジンの燃料送出システムの概略図である。
【図9】本出願の代替実施形態に基づく燃焼タービンエンジンの燃料送出システムの概略図である。
【図10】本出願の代替実施形態に基づく燃焼タービンエンジンの燃料送出システムの概略図である。
【図11】本出願の例示的な実施形態の動作を示す流れ図である。
【発明を実施するための形態】
【0013】
次に図面を参照する。図1は、本発明を使用することができる例示的な環境を説明するために使用する、ガスタービンエンジン10の概略図を示す。本発明がこのタイプの使用法だけに限定されないことを、当業者は理解するであろう。前述のとおり、本発明は、他のタイプのガスタービンエンジンで使用することもできる。ガスタービンエンジンは一般に、圧縮空気流中で燃料を燃焼させることによって発生させた加圧された熱ガス流からエネルギーを取り出すことによって動作する。図1に示すとおり、ガスタービンエンジン10は、軸流圧縮機11を有するように構成することができ、軸流圧縮機11は、共通のシャフトまたはロータによって、下流のタービンセクションまたはタービン12と、圧縮機11とタービン12との間に配置された燃焼器13とに機械的に結合される。
【0014】
図2は、図1のガスタービンエンジン内で使用することができる例示的な多段式軸流圧縮機11を示す図である。示されているように、圧縮機11は複数の段を含むことができる。各段は、圧縮機動翼14の列と、その後に続く圧縮機静翼15の列とを含むことができる。したがって、第1の段は、中心シャフトを軸に回転する圧縮機動翼14の列と、その後に続く動作中動かない圧縮機静翼15の列とを含むことができる。圧縮機静翼15は一般に、円周方向に互いに間隔を置いて配置され、回転軸を中心にして固定される。圧縮機動翼14は、円周方向に間隔を置いて配置され、シャフトに取り付けられる。動作中にシャフトが回転すると、圧縮機動翼14はシャフトを軸に回転する。当業者なら理解するとおり、圧縮機動翼14は、シャフトを軸に回転したときに、圧縮機11を通って流れる空気または流体に運動エネルギーを与えるように構成される。圧縮機11は、図2に示した段以外にも段を有することができる。追加の段は、円周方向に間隔を置いて配置された複数の圧縮機動翼14と、その後に続く円周方向に間隔を置いて配置された複数の圧縮機静翼15とを含むことができる。
【0015】
図3は、図1のガスタービンエンジン内で使用することができる例示的なタービンセクションまたはタービン12の部分図を示す。タービン12も複数の段を含むことができる。3つの例示的な段を示したが、タービン12内には、4つ以上または2つ以下の段が存在することができる。第1の段は、動作中にシャフトを軸に回転する複数のタービン動翼16と、動作中動かない複数のノズル又はタービン静翼17とを含む。タービン静翼17は一般に、円周方向に互いに間隔を置いて配置され、回転軸を中心にして固定される。タービン動翼16は、シャフト(図示せず)を軸に回転するタービン翼車(図示せず)上に取り付けることができる。タービン12の第2の段も示されている。この第2の段も同様に、円周方向に間隔を置いて配置された複数のタービン静翼17と、その後に続く円周方向に間隔を置いて配置された複数のタービン動翼16とを含み、これらのタービン動翼16もやはり、回転するタービン翼車上に取り付けられている。第3の段も示されており、同様に、複数のタービン静翼17と、複数のタービン動翼16とを含む。タービン静翼17およびタービン動翼16は、タービン12の熱ガス経路内に位置することが理解される。この熱ガス経路を通る熱ガス流の方向が矢印によって指示されている。当業者なら理解するとおり、タービン12は、図3に示した段以外にも段を有することができる。追加の段はそれぞれ、タービン静翼17の列と、その後に続くタービン動翼16の列とを含むことができる。
【0016】
使用時、軸流圧縮機11内の圧縮機動翼14を回転させて、空気流を圧縮することができる。燃焼器13内では、この圧縮空気を燃料と混合し、点火したときに、エネルギーを放出させることができる。次いで、作動流体と呼ぶことがあるその結果発生した燃焼器13からの熱ガス流を、タービン動翼16を横切って導き、作動流体流は、タービン動翼16をシャフトを軸に回転させる。それにより、作動流体流のエネルギーが、回転する動翼の機械エネルギーに変換され、動翼とシャフトとは接続されているため、回転するシャフトの機械エネルギーに変換される。次いで、このシャフトの機械エネルギーを使用して、圧縮機動翼14の回転を駆動し、必要な圧縮空気が生成され、さらに例えば発電機が発電するようにすることができる。
【0017】
先に進む前に、本出願の発明を明確に伝えるため、タービンエンジンのある種の機械構成要素または部分を指し、それらを記述する用語を選択する必要がある場合があることに留意されたい。可能な限り、一般的な工業用語が、その受け入れられた意味と同じ意味で使用される。しかしながら、このような用語には幅広い意味が与えられ、このような用語は、本明細書において意図されている意味および添付の特許請求の範囲が不合理に限定されるような狭い意味に解釈されないことが意図されている。ある種の構成要素をしばしばいくつかの異なる名称で呼ぶことがあることを当業者は理解するであろう。さらに、本明細書において単一の部分と記載されたものが、いくつかの構成部分を含み、別の文脈では、いくつかの構成部分からなると記述されることがあり、または、本明細書において複数の構成部分を含むと記載されたものが、単一の部分として形成され、場合によっては、単一の部分として記述されることがある。そのため、本明細書に記載された発明の範囲を理解する際には、記載された用語および説明に注意を払うだけでなく、本明細書に記載された構成要素の構造、構成、機能および/または使用法にも注意を払うべきである。
【0018】
さらに、本発明書では、タービンエンジン用途に共通するいくつかの説明的な用語が使用されることがある。これらの用語の定義を以下に示す。用語「下流」および「上流」は、タービンまたはコンドー(condo)を通る作動流体流に対する方向を指示する用語である。そのため、用語「下流」は、作動流体流の方向を意味し、用語「上流」は、タービンを通る作動流体流とは反対の方向を意味する。これらの用語に関して、用語「アフト(aft)」および/または「後縁」は、説明している構成要素の下流方向、下流端および/または下流端の方向を指す。また、用語「フォワード(forward)」または「前縁」は、説明している構成要素の上流方向、上流端および/または上流端の方向を指す。用語「半径方向」は、軸に垂直な移動または位置を指す。しばしば、一軸に関して異なる半径方向位置にある複数の部分を記述する必要があることがある。この場合、第1の構成要素の方が、第2の構成要素よりもその軸に近い場合、本明細書では、第1の構成要素は、第2の構成要素の「インボード(inboard)」または「半径方向内側に」にあると記述することができる。反対に、第1の構成要素の方が、第2の構成要素よりもその軸から遠い場合、本明細書では、第1の構成要素は、第2の構成要素の「アウトボード(outboard)」または「半径方向外側」にあると記述することができる。用語「軸方向」は、軸に平行な移動または位置を指す。また、用語「円周方向」は、軸の周りの移動または位置を指す。
【0019】
再び図面を参照すると、図4は、従来の設計に基づく燃焼タービンシステムの一例である燃焼タービンシステム20を示す。燃焼タービンシステム20は、ロータシャフト24によって圧縮機26およびタービン28に接続された発電機22を含むことができる。これらの構成要素の接続および構成は、従来の技術に従って実施することができる。圧縮機26とタービン28の間に、従来の燃焼器30を配置することができる。
【0020】
圧縮機26に、空気取入れ管路32を接続することができる。空気取入れ管路32は圧縮機26への入口を提供する。次いで、第1の導管が、圧縮機26を燃焼器30に接続することができ、圧縮機26によって圧縮された空気を、燃焼器30内へ導くことができる。前述のとおり、燃焼器30は一般に、熱圧縮動力ガスを発生させる知られている方式で、供給圧縮空気を燃料と一緒に燃焼させる。この動力ガスは、燃焼器30から第2の導管によって誘導され、タービン28に導かれる。この供給燃焼ガスはタービン28を駆動する。動力ガスによって駆動されたタービン28は、ロータシャフト24を回し、シャフトまたはロータシャフト24を回転させ、そのエネルギーを使用して、圧縮機26および発電機22を駆動し、それによって発電することができる。
【0021】
タービン28からの排出ガスは一般に、第3の導管によって排出ガススタック40に誘導され、そこから大気中へ排出される。スタック40内の排出ガスの温度は800°Fを超えることがある。燃焼器30に燃料を送出するため、燃料源(図示せず)から燃焼器30へ、燃料管路50が延びることができる。燃料管路50は、スタック40内に配置された熱交換部分52を有することができる。熱交換部分52では、燃料管路50を、スタック40を通って移動している熱排出ガスとの間で熱を伝達するように配置することができる。燃料管路50は、燃焼タービンシステムの通例どおり、メタンなどの液体燃料または気体燃料を運ぶことができる。実際には、燃料成分の熱分解を防ぐため、液体燃料の加熱は、約200°Fの低温に制限することができる。しかしながら、天然ガスは、ある種の要因に応じて、1000°Fまで加熱することができる。
【0022】
燃焼タービンシステム20はさらに、バイパス燃料管路60を含むことができる。バイパス燃料管路60は、熱交換部分52の上流の点である上流フォーク(fork)62、および熱交換部分52の下流の別の点である燃料混合接合部64で、燃料管路50に接続することができ、それにより、燃料管路50の熱交換部分52を示されているようにバイパスする燃料管路を生み出す。上流フォーク62は、示されているように、上流燃料バイパス制御弁63(このケースでは従来の三方弁)を含むことができる。この構成とすれば、上流燃料バイパス制御弁63は、熱交換器52をバイパスする燃料の量を調節することができ、これを実行することにより、上流燃料バイパス制御弁63を使用して、燃焼器30に流入する供給燃料の温度を制御することができる。このようにすることによって、すなわち、熱交換器52をバイパスする供給燃料の量を操作し、次いで、加熱された燃料流(加熱燃料流)と加熱されていない燃料流(非加熱燃料流)とを下流で結合することによって、従来のタービンシステム20は、燃焼器30に送出されるときの燃料の温度を、少なくとも部分的に制御することができる。
【0023】
しかしながら、後により詳細に論じるとおり、動作時に、従来のシステムは、燃料の温度を比較的に適時にまたは迅速に変化させることを実質的に不可能にする温度遅れを有する。これは、主として、図4に示したシステムなどの従来のシステムが、燃料混合接合部64と燃焼器30との間に比較的に長距離の燃料管路50を含むためである。燃料管路のこの部分は一般に、本明細書では燃焼器ガス制御弁65と呼ぶ、燃焼器30の直ぐ上流の弁で終わる。図4に示すように、この距離を距離「L1」と呼ぶ。L1は、燃料混合接合部64と燃焼器ガス制御弁65/燃焼器30の入口との間の導管の長さを示す。従来のシステムでは、距離L1が、少なくとも20m超、一般に50m超である。燃料混合接合部64と燃焼器30の間の導管が長いと、燃焼器30に送出中の燃料の温度を比較的迅速に調整することができない。この遅延は、この部分の導管が、燃料温度が変化することに抵抗するヒートシンク特性を有すること、かつ/または、温度調整された燃料を燃焼器30に送出する前に、既に導管内にある燃料を排出する必要があること、によって生じることが理解される。
【0024】
場合によっては、従来システムが、従来のガスクロマトグラフ66または他の同様の装置を含むこともある。当業者なら理解するとおり、供給燃料の個々の成分の組成および/または供給燃料の発熱量を決定するために、ガスクロマトグラフ66を使用して、供給燃料を試験することができる。より具体的には、ガスクロマトグラフ66を使用して、供給燃料の試料を採取し、その各種成分の相対量を測定することができる。このようにして、従来のシステムは、供給燃料中の異なる炭化水素の分解を判定し、供給燃料の発熱量に関するデータを提供することができる。しかしながら、一般に、ガスクロマトグラフ66および従来のシステムで一般的に使用される他の同様の試験装置に関連するかなりの時間遅延が生じる。すなわち、クロマトグラフ66が供給燃料から試料を採取してから、関連するまたは必要な試験結果、あるいは燃料の化学組成または発熱量に関する情報を制御システムに提供するまでの間に、かなりの遅延が生じる。クロマトグラフ(および/または従来のシステムにおいて同じ目的で一般に使用される他の同様の装置)に関連するこの遅延は比較的に大きく(しばしば数分またはそれ以上)、後により詳細に論じるとおり、しばしば、エンジン制御設定に対する変更が必要になった後で提供される(すなわち「適時」でない試験結果)。言い換えると、試験結果が提供されるのが遅すぎる。クロマトグラフおよび/または他の同様の装置は、供給燃料の発熱量に関して、直ちに使用可能な適時の情報を提供せず、これにより、エンジンの目標修正ウォッベ指数範囲の外側でエンジンに燃料が送出される可能性がある。これにより、エンジンの損傷、ランバックまたは他の性能問題が生じる可能性がある。多くの場合、この遅延は、上で論じた温度遅れによって悪化する。
【0025】
当業者なら理解するとおり、燃焼タービンシステム20、ならびに後に説明する、すなわち図5から10で説明する例示的な実施形態の燃焼タービンシステムは、示した構成要素の他に、合体フィルタ(coalescing filter)、燃料ガス洗浄装置(fuel gas scrubber)、始動加熱器(start−up heater)など、他の構成要素を含むこともできる。しかしながら、これらの要素の包含および構成は、本明細書に記載した発明の動作にとって重要ではなく、したがって添付図には示されないことが理解される。
【0026】
図5から10は、本出願の例示的な実施形態を示す。図5から10に示したシステムの構成要素の多くは、図4のシステムに関して上で説明した構成要素と実質的に同じかまたは同様である。そのため、明瞭かつ簡潔にするために、共通の構成要素に対しては、図4で使用した参照符号を、図5から10でも使用する。燃焼タービンシステム70は、従来の設計と同様に、ロータシャフト24によって圧縮機26およびタービン28に接続された発電機22を含む。圧縮機26とタービン28の間に燃焼器30を配置することができる。供給空気が入る入口が提供されるように、圧縮機26に、空気取入れ管路32を接続することができる。第1の導管が、圧縮機26によって圧縮された空気を燃焼器30へ導くことができ、燃焼器30で、この圧縮空気を使用して、供給燃料を燃焼させることができる。その結果生じた熱ガス流は、タービン28を通って膨張することができ、タービン28では、このエネルギーが、前述のとおり、回転するシャフト24の機械エネルギーに変換される。次いで、この回転するシャフトのエネルギーを使用して、圧縮機26および発電機22を駆動し、それにより、それぞれ供給圧縮空気および電気を生成することができる。しかしながら、この燃焼タービンエンジン用途は例示のためのものであり、本発明は、他の燃焼タービンエンジン用途で使用することもできる。
【0027】
本出願の例示的な一実施形態によれば、エンジンに対する目標MWI値を燃料が満たすように、システムオペレータまたは制御ユニットが、燃焼器30に送出される燃料の温度を適時に制御することができるように、燃焼タービンシステム70が構成される。前述のとおり、燃焼タービンエンジンは一般に、発熱量に関係するある種の特性を有する燃料を使用して動作するように設計される。総発熱量、総エネルギーまたはウォッベ指数レーティングとも呼ばれることがある燃料の発熱量は一般に、燃料が燃焼したときに放出される熱量またはエネルギー量を表す。しかしながら、燃焼タービンエンジン用途では、ノズルに送出される燃料の温度を考慮した場合に、所与の圧力比で燃料ノズルを通って燃焼している燃料が放出するエネルギー量を、より正確に表現することができる。燃料の温度を考慮した、または燃料の温度を補償した燃料特性は一般に、修正ウォッベ指数レーティングないしMWIレーティングと呼ばれる。本明細書で使用するとき、修正ウォッベ指数ないしMWIは、ノズルに送出される燃料の温度を考慮し、またはノズルに送出される燃料の温度を補償した、所与の圧力比で燃料ノズルを通って燃焼している燃料が放出するエネルギー量を表現する燃料の尺度を広く指すことが意図されている。したがって、燃焼タービンエンジンは一般に、特定の修正ウォッベ指数レーティングを有する燃料、またはある許容修正ウォッベ指数レーティング範囲に含まれる燃料で動作するように設計される。本明細書で使用するときには、それに対応するように燃焼タービンエンジンが設計される特定の修正ウォッベ指数レーティングまたは許容修正ウォッベ指数レーティング範囲をともに、「目標修正ウォッベ指数範囲」ないし「目標MWI範囲」と呼ぶ。燃焼器に送出されている燃料の温度を変化させ、または制御する(それによって燃料の修正ウォッベ指数レーティングを変化させ、または制御する)ことができるようにすることは、そのエンジンが、そのエンジンの目標MWI範囲内の燃料を使用していることを保証する有用な方法である。
【0028】
図5から10のいくつかの実施形態は、本発明で使用することができるいくつかの代替熱源を示すことに留意されたい。特に明示した場合を除き、本発明は、これらの熱源およびそれらの等価物を代替熱源として含むことが意図されており、それらはそれぞれ、後に論じるある利点を有する。さらに、図には特に示されてはいないが、本発明は、図4のシステムに関して上で説明した熱源(すなわち、タービンエンジンの排出ガスから熱を得る熱交換器。この熱交換器は、熱水または水蒸気が、エンジンの排出ガスによって加熱される熱伝達流体を構成する、熱水加熱器または水蒸気加熱器を含むことができる)と同じまたは同様の熱源を使用することができる。示されているように、図5の実施形態は、油浴または水浴加熱器71を含む。当業者なら理解するとおり、従来の浴加熱器71は、熱交換器を通過する燃料を加熱するために熱交換器内で使用される加熱された熱伝達流体を含み、熱伝達流体は、水、またはより高温用には熱油とすることができる。浴加熱器71は、加熱器と熱交換器との間で熱伝達流体を循環させるポンプ72を含むことができる。浴加熱器71用の供給燃料は、燃料管路50(図示せず)から抜き取ることができる。浴加熱器71を使用する利点の1つは、タービンエンジンからの熱を使用することなく、燃料管路50の供給燃料を加熱することができることである。このことは、タービンエンジンからの熱を実質的に利用できないエンジン始動中に有利な場合があることが理解される。
【0029】
燃料源(図示せず)から燃焼器30へ、燃料管路50が延びることができる。前述の従来のシステムと同様に、前述のとおり供給燃料を加熱することができる浴加熱器71を貫いて熱交換部分52が延びるように、燃料管路50を構成することができる。
【0030】
図5の燃焼タービンシステム70はさらに、冷レッグバイパス(cold leg bypass)76を含むことができる。冷レッグバイパス76は、前述のバイパス燃料管路60と、ある種の態様で、同様であることができる。示されているように、冷レッグバイパス76は、上流フォーク62と呼ぶことがある、燃料管路50の熱交換部分52の上流の点、および燃料混合接合部64と呼ぶことがある、燃料管路50の熱交換部分52の下流の別の点で、燃料管路50に接続する。このようにして、冷レッグバイパス76は、供給燃料が、浴加熱器71の熱交換部分52で加熱されることなく燃焼器30まで移動することができる代替経路またはバイパス経路を形成する。
【0031】
後により詳細に説明するとおり、燃料管路50の熱交換部分52および冷レッグバイパス76を通って流れる燃料の量を、1つまたは複数の従来の弁の動作によって、管理し、制御し、または操作することができ、弁はそれぞれ、異なる流量レベルの燃料が弁を通過することを可能にする少なくとも複数の流量設定を有することができる。一部の実施形態では、燃焼タービンシステム70が、これらの2つの代替経路間の流量レベルを、燃料管路50内または冷レッグバイパス76内に配置することができる従来の単一の二方弁によって制御することができる。他の実施形態では、図5に示すように、燃焼タービンシステム70が、冷レッグバイパス76および燃料管路50の熱交換部分52を通る流量レベルを、従来の2つの二方弁、すなわち冷レッグバイパス76上に配置された冷レッグ弁78および燃料管路50上に配置された熱レッグ弁79によって、より正確に制御することができる。示されているとおり、熱レッグ弁79は、燃料管路50上の、上流フォーク62の下流、燃料混合接合部64の上流に配置することができる。さらに、図8に示し、図8に関する部分で論じるように、熱レッグ弁79および冷レッグ弁78の代わりに、従来の三方弁90を使用することもできる。
【0032】
従来の手段および方法に従って、図5に示すように熱レッグ弁79および冷レッグ弁78を含むことができるこれらの弁の動作および設定を、制御ユニット82によって制御することができる。より具体的には、冷レッグバイパス76および燃料管路50の熱交換部分52を通る燃料流を調節する弁の設定を、制御ユニット82から受け取る信号に従って制御することができる。後により詳細に論じる制御ユニット82は、1つまたは複数の弁の動作に関係した制御論理を含む電子装置、またはコンピュータによって実施される装置を備えることができる。この制御論理、および/または制御ユニット82が監視する1つまたは複数の動作パラメータ(後により詳細に論じる)に従って、制御ユニット82は、1つまたは複数の弁に電子信号を送り、それにより、その1つまたは複数の弁の設定を制御することができる。このようにして、この1つまたは複数の弁を制御して、冷レッグ弁78を通る流量を低減させ、燃料管路50の熱交換部分52を通る流量を増大させることができ、あるいは、冷レッグ弁78を通る流量を増大させ、燃料管路50の熱交換部分52を通る流量を低減させることができる。
【0033】
燃料管路50の熱交換部分52を通過する供給燃料の割合を操作することによって、燃焼器30に送出される供給燃料の温度(したがってMWIレーティング)を制御することができることが理解される。例えば、燃焼器に送出される供給燃料の温度を増大させたい(それによってMWIレーティングを低減させたい)場合には、より高い割合の供給燃料が、燃料管路50の熱交換部分52を通して導かれるように、この1つまたは複数の弁を制御することができる。これにより、燃料混合接合部64の下流の燃料温度が増大する。あるいは、燃焼器に送出される供給燃料の温度を低下させたい(それによってMWIレーティングを増大させたい)場合には、より低い割合の供給燃料が、燃料管路50の熱交換部分52を通して導かれるように、この1つまたは複数の弁を制御することができる。これにより、燃料混合接合部64の下流の燃料温度が低下することが理解される。
【0034】
本発明の例示的な一実施形態によれば、燃焼タービンシステム70はさらに、高速発熱量計74を含むことができる。本明細書で使用されるとき、高速発熱量計74は、天然ガスなどの燃料を試験し、試験結果または試験対象燃料の発熱量に関するデータを迅速に提供する目的に使用することができる機器または装置を含むと定義される。さらに、本明細書で使用するとき、試験結果を「迅速に」提供することとは、試験結果を適時に提供すること、または、本発明の他の実施形態に関しては、本明細書に明記された期間内に試験結果を提供することと定義される。
【0035】
一部の実施形態では、高速燃料発熱計74がガス熱量計を含むことができる。当業者なら理解するとおり、ガス熱量計は、燃料の発熱量を測定する機器である。前述のとおり、本明細書では、総発熱量、総エネルギーまたはウォッベ指数レーティングとしても知られている燃料の発熱量を、燃料が燃焼したときに放出される熱量またはエネルギー量を一般に表すと定義する。一部の実施形態では、本発明の高速発熱量計74が、本明細書に記載された他の動作要件を満たすように構成された装置および/または他の同様の装置、すなわちウォッベメータ、ガス熱量計または発熱量トランスミッタを含むことができる。示されているように、一部の実施形態では、高速発熱量計74を、上流フォーク62の上流に配置することができるが、他の実施形態では、冷レッグバイパス76上などの他の位置も可能である。
【0036】
一部の実施形態では、高速発熱量計74を、動作時に、燃焼器30に送出されている供給燃料の試料を定期的に採取し、供給燃料の発熱量を試験するように構成することができる。高速発熱量計74による供給燃料の定期的な試験は、長くとも約60秒ごとに実施することができる。より好ましい他の実施形態では、高速発熱量計74による供給燃料の定期的な試験を、長くとも約30秒ごとに実施することができる。よりいっそう好ましい他の実施形態では、高速発熱量計74による供給燃料の定期的な試験を、長くとも約15秒ごとに実施することができる。
【0037】
前述のとおり、高速発熱量計74は、比較的に短い期間内に燃料の試験を完了させ、燃料の発熱量に関するデータを提供するように構成することができる。一部の実施形態では、高速発熱量計74が、試験試料を採取し、試験手順を開始してから遅くとも約2分以内に発熱量試験を完了させ、結果を提供するように構成された装置を備える。より好ましい他の実施形態では、試験試料を採取し、試験手順を開始してから遅くとも約1分以内に発熱量試験を完了させ、結果を提供するように、高速発熱量計74を構成することができる。よりいっそう好ましい他の実施形態では、試験試料を採取し、試験手順を開始してから遅くとも約30秒以内に発熱量試験を完了させ、結果を提供するように、高速発熱量計74を構成することができる。理想的には、他の実施形態では、試験試料を採取し、試験手順を開始してから遅くとも約10秒以内に発熱量試験を完了させ、結果を提供するように、高速発熱量計74を構成することができる。高速発熱量計74と制御ユニット82は一般に、電子的に通信するように構成することができる。より具体的には、高速発熱量計74は、供給燃料の発熱量の試験に関するデータを、従来の手段および方法に従って、制御ユニット82に送ることができる。
【0038】
燃焼タービンシステム70はさらに、燃料送出システム(図示せず)内の1つまたは複数の位置で供給燃料の温度を測定する従来の機器を含むことができる。例えば、発熱量を決定し、制御ユニット82に送信するのと同時に、供給燃料の温度を測定することができるように、高速発熱量計74と同じ位置において、熱電対または他の温度測定機器を高速発熱量計74に含め、かつ/または高速発熱量計74に組み込むこともできる。この位置において、この温度測定は、本明細書では「非加熱燃料温度」と呼ぶ温度、すなわち、加熱または重大な加熱の前の燃料の温度を提供する。熱交換部分52の出口と燃料混合接合部64との間に、第2の熱電対または他の温度測定機器を配置することができる。この温度測定は、本明細書では「加熱燃料温度」と呼ぶ温度、すなわち、加熱された後の燃料の温度を提供する。燃焼器30の入口または燃焼器ガス制御弁65の入口に、第3の熱電対または他の機器を配置することができる。この温度測定は、本明細書では「混合燃料温度」と呼ぶ温度、すなわち、燃料混合接合部64の概ね下流および/または燃焼器30の入口の燃料の温度を提供する。温度を測定するこれらの機器は、測定した温度データを、従来の手段および方法に従って、制御ユニット82に送ることができる。
【0039】
前述のとおり、従来のシステムでは、燃料混合接合部と燃焼器ガス制御弁65/燃焼器30の入口との間の導管ないし燃料管路の距離が、比較的に長い。(なお、「燃焼器ガス制御弁65」は、燃焼器30の直ぐ上流および燃焼器30の直ぐ近くにある制御弁を指すことが意図されており、したがって、「燃焼器30の入口」と実質的に相互に交換可能に使用されて、供給燃料が燃焼器30に導入されるおおよその位置を表す。具体的には、本明細書で意図されているとおり、「燃焼器ガス制御弁65」への言及は、燃焼器30の入口への言及とほぼ同じである。したがって、何らかの理由で燃焼器30の直ぐ上流または燃焼器30の直ぐ近くに制御弁を持たないシステムでは、本明細書における「燃焼器ガス制御弁65」への言及は、その代わりに燃焼器30の入口への言及を意味する。)燃料混合接合部64と燃焼器ガス制御弁65の間の距離が長いときには、燃焼器30に送出されている供給燃料の温度を迅速に変化させることがより困難になることが理解される。これは、長い導管は一般に、温度を迅速に変化させることに抵抗するヒートシンクを形成するため、および/または、燃料温度のかなりの変化(したがって燃料のMWIレーティングのかなりの変化)が燃焼器ガス制御弁65/燃焼器30の入口で感知されるまでには、長い導管を実質的にフラッシングしなければならないためである。その結果、従来のシステムでは、燃料温度を変化させるための処置がとられてから、その結果生じた変化が、燃焼器ガス制御弁65/燃焼器30の入口で感知されるまでの間に、かなりの遅延が生じる。
【0040】
さらに、従来の燃焼タービンシステムでは一般に、供給燃料の温度を変化させる能力におけるこの遅延が、供給燃料の発熱量データを得るために使用されているガスクロマトグラフまたは他の同様の装置から供給燃料の発熱量データを得ることに関連する典型的な遅延によって悪化する。その結果、従来の燃焼タービンシステムは、供給燃料の発熱量の変化を検出する遅延を経験することがあり、この遅延は次いで、燃焼器30に供給されている燃料の温度を変化させる際に一般に生じる第2の遅延によっていっそう悪化することがある。後により詳細に説明するように、本発明の例示的な実施形態に従って動作するように構成された燃焼タービンシステムは、供給燃料の発熱量データを制御ユニット82により適時かつ迅速に提供するように構成することができる高速発熱量計74を使用することによって、これらの遅延の問題を緩和し、または実質的に排除する。
【0041】
さらに、本発明の例示的な実施形態は冷レッグバイパス76を提供し、冷レッグバイパス76は、燃料温度の変化(およびその結果生じる燃料のMWIレーティングの変化)を燃焼器30の入口でより迅速に感知することができるように、燃料が、燃料管路50の熱交換部分52をバイパスすることを可能にする。本発明の一部の実施形態では、燃料混合接合部64(すなわち所望の温度にするために非加熱供給燃料と加熱供給燃料を混合する位置)を、燃料混合接合部64と燃焼器ガス制御弁65/燃焼器30の入口との間の導管の長さが短くなるように配置することによって、この結果を達成することができる。前述のとおり、導管のこの長さを短くすることにより、加熱燃料と非加熱燃料との混合が、燃焼器ガス制御弁65/燃焼器30の入口の直ぐ近くで起こり、それによって一般に、燃焼器30に到達する燃料の温度を比較的に迅速に変化させることができる。
【0042】
さらに、一部のケースでは、加熱燃料と非加熱燃料が混合される位置と燃焼器ガス制御弁65/燃焼器30の入口との間に、最低限の距離を残すべきであることも判明した。この最低限の距離は、燃料が燃焼器30に送出され、燃焼器30内で燃焼する前に、燃料温度が供給燃料全体を通して比較的に均一になるように、加熱燃料と非加熱燃料とが十分に混合することを可能にする。供給燃料全体を通して燃料温度を比較的に均一にすることは、より良好なエンジン性能、特に燃焼器30の動作に対するより良好なエンジン性能を促進することが理解される。これらの競合する考慮事項を考慮して、本明細書に記載された発明の一部として、導管の長さの好ましい範囲を決定した。したがって、好ましい一部の実施形態では、燃料混合接合部64と燃焼器ガス制御弁65/燃焼器30の入口との間の導管の長さが、約2から20メートルとなるように、燃料混合接合部64を配置することができる。より好ましくは、燃料混合接合部64と燃焼器ガス制御弁65/燃焼器30の入口との間の導管の長さが、約4から15メートルとなるように、燃料混合接合部64を配置することができる。理想的には、燃料混合接合部64と燃焼器ガス制御弁65/燃焼器30の入口との間の導管の長さが、約6から10メートルとなるように、燃料混合接合部64を配置することができる。これらの範囲はそれぞれ、性能の向上を提供する。前述のとおり、供給燃料の温度を制御する位置と燃焼器のおおよその入口との間の導管の長さを短くすると、温度(したがって燃料のMWIレーティング)をより迅速に変化させることができる(すなわち、フラッシングまたはパージの必要量が低減し、ヒートシンクの働きをする導管が短くなる)。また、最低限の導管距離を維持することによって、2つの供給燃料の十分な混合が達成される。
【0043】
図6から10は、本発明の代替実施形態を示す。図6から10に示す燃焼タービンシステムは、多くの態様において同様であり、ほぼ同じように機能することが理解される。そのため、それぞれの議論は、主として、いくつかの差異に焦点を合わせる。
【0044】
次に図6を参照すると、変更された構成を有する燃焼タービンシステム70が示されている。図5に関して説明したシステムと同様に、システムの熱源は、油浴または水浴加熱器71とすることができる。しかしながら、図6のシステムは、本明細書では第2の冷レッグバイパスまたは下流冷レッグバイパス85と呼ぶ追加のバイパス燃料管路を含む。冷レッグバイパス85は、上流フォーク62の下流に位置するバイパス(すなわち、燃料管路50の熱交換部分52をバイパスする燃料管路)を含むことができる。上流端において、下流冷レッグバイパス85は、第2のフォーク86で燃料管路50と接続することができる。下流端において、下流冷レッグバイパス85は、燃料管路50の熱交換部分52の下流のある点で燃料管路50と接続することができる。第2のフォーク86に、従来の三方弁87を配置することができる。三方弁87は、熱交換部分52に導かれる燃料の量、および下流冷レッグバイパス85を通して導かれる燃料の量を制御することができる。
【0045】
タービンエンジンの機能に依存する熱源(例えば、図6の浴加熱器71の熱がタービンエンジンの排出ガスから取り出される場合)は変動しやすいこと、すなわち、タービンエンジンの負荷または出力に応じて変動する熱量を生成することがあることが理解される。これらの場合、下流冷レッグバイパス85は、加熱供給燃料が燃料混合接合部64に到達する前に、加熱供給燃料の温度を制御し、または調節する追加の手段を提供することができる。具体的には、例えば、タービンエンジンが高出力レベルで動作しているために浴加熱器71が高温で動作している場合に、燃料が、下流冷レッグバイパス85を経由して熱交換部分52をバイパスすることを可能にすることができる。このようにして、燃料混合接合部64に到達する加熱供給燃料の温度を、より安定し、予測可能なものにすることができ、これにより、最終的に、燃料混合接合部64の下流の供給燃料の温度をより効率的かつ効果的に制御することができる。図6の変更された構成を、本明細書に記載された他の熱源とともに使用することもできることが理解される。一般に、他の態様に関しては、図6に示した燃焼タービンシステム70は、図5に関して上で説明したシステムと同じように動作することができる。
【0046】
次に図7を参照すると、変更された構成を有する燃焼タービンシステム70が示されている。すなわち、図7のシステムに対する熱源は、直接燃焼加熱器87である。当業者なら理解するとおり、直接燃焼加熱器87は一般に、供給燃料を燃焼させ、熱交換器を使用して、この燃焼による熱で、燃料管路50を流れる燃料を加熱する装置を含む。このように、直接燃焼加熱器87は、供給燃料を加熱するために使用する熱交換部分52を提供するように構成することができる。直接燃焼加熱器87を使用する利点の1つは、燃焼タービンエンジンからの入熱を必要とすることなく、燃料管路50の供給燃料を加熱することができることである。このことは、タービンエンジンからの熱を実質的に利用できないエンジン始動中に有利な場合があることが理解される。
【0047】
次に図8を参照すると、変更された別の構成を有する燃焼タービンシステム70が示されている。示されているように、図8に示すシステムは、燃料混合接合部64に三方弁90が追加されていることを除いて、図7に示したシステムと実質的に同様である。三方弁90は一般に、冷レッグ弁78および熱レッグ弁79の代わりを務め、従来の適当な三方弁90を含むことができる。当業者なら理解するとおり、これらの2つの二方弁の動作と同様に、三方弁90は、燃料混合接合部64の下流の燃料の温度が希望どおりに調節され、制御されるように、燃料混合接合部64での燃料の混合を制御することができる。図8の構成は、本明細書で論じた他のシステムの一部として使用することもできる。
【0048】
次に図9を参照すると、変更された別の構成を有する燃焼タービンシステム70が示されている。示されているとおり、図9のシステムに対する熱源は電気加熱器91である。当業者なら理解するとおり、電気加熱器91は一般に、熱交換器に熱を供給する電気加熱要素を含む。電気加熱器91の加熱要素は、供給燃料を加熱するのに使用する熱交換部分52を提供するように構成することができる。電気加熱器91を使用する利点の1つは、タービンエンジンからの排熱を使用することなく、供給燃料を加熱することができることである。このことは、タービンエンジンからの熱を実質的に利用できないタービンエンジンの始動中に有利な場合がある。
【0049】
次に、図10を参照すると、変更された別の構成を有する燃焼タービンシステム70が示されている。示されているとおり、図10のシステムに対する熱源はヒートパイプ熱交換器94である。ヒートパイプ熱交換器94は一般に、タービン排出ガスが流れる排出ガス導管96内から延びる複数の伝導性パイプ95を含むことができる。伝導性パイプ95は、燃料流を加熱するのに使用することができるように、タービン排出ガスの熱を伝導することができる。すなわち、ヒートパイプ熱交換器94は、供給燃料を加熱するのに使用する熱交換部分52を提供するように構成することができる。ヒートパイプ熱交換器94を使用する利点には、熱交換部分52が燃焼タービンエンジンに近いことが含まれる。これにより、導管の長さを最小化することができ、タービンエンジンの始動工程が始まった後、短時間で熱源を使用することができる。さらに、ヒートパイプ熱交換器94は、タービン排出ガスと供給燃料との間の分離を維持し、なおかつ、排出ガスの熱を使用して供給燃料を加熱することができるという利点を提供する。従来の水蒸気または熱水加熱器を含む他の熱源を使用することもできる。水蒸気または熱水加熱器は、加圧型または非加圧型とすることができる。水蒸気または熱水加熱器は、別個のボイラから熱を得ることができ、または、タービンエンジンの排出ガスによって加熱することができる。
【0050】
前述のとおり、制御ユニット82は、1つまたは複数の動作パラメータを監視し、1つまたは複数の弁の機能を制御することができるプログラム論理を有することができ、このプログラム論理は、供給燃料が、本発明の例示的な実施形態に従って、前述のとおり本明細書では目標MWI範囲と呼ぶ好ましいMWIレーティングで、または好ましいMWIレーティング範囲内で燃焼器に送出されるように、1つまたは複数の弁の機能を制御することができる。当業者なら理解するとおり、後に詳細に説明するアルゴリズム、制御プログラム、論理流れ図および/またはソフトウェアプログラムは、燃焼器に送出される燃料の温度を制御することによって、燃焼器に送出される供給燃料のMWIレーティングが目標MWI範囲に入るように、燃焼タービンエンジンシステムの変化する動作パラメータを監視するように開発することができる。当業者なら理解するとおり、このようなシステムは、上で論じたように、関連するタービンエンジン動作パラメータを監視する複数のセンサおよび機器を含むことができる。これらのハードウェア装置および機器は、制御ユニット82などの従来の、コンピュータによって実施される制御システムにデータおよび情報を送り、このような制御システムを制御し、操作することができる。すなわち、従来の手段および方法に従って、制御ユニット82などの制御システムは、燃焼タービンシステム70からデータを受け取り、かつ/または取得し、そのデータを処理し、燃焼タービンシステムのオペレータと通信し、かつ/あるいは、システムのさまざまな機械装置を、一組の命令または論理流れ図に従って制御することができ、この一組の命令または論理流れ図は、当業者なら理解するとおり、制御ユニット82が操作するソフトウェアプログラムの部分を構成することができ、本発明の一実施形態を構成する。
【0051】
図11は、論理流れ図100を示す。当業者なら理解するとおり、論理流れ図100は、制御ユニット82によって実現し、実行することができる。一部の実施形態では、制御ユニット82が、適当な任意の高性能固体スイッチングデバイスを含むことができる。制御ユニット82はコンピュータとすることができるが、これは単に、本出願の範囲に含まれる適当な高性能制御システムの例にすぎない。例えば、限定はされないが、制御ユニット82は、シリコン制御整流器(SCR)、サイリスタ、MOS制御サイリスタ(MCT)および絶縁ゲートバイポーラトランジスタのうちの少なくとも1つを含むことができる。制御ユニット82は、全体的なシステムレベルの制御を実行するメインまたは中央プロセッサセクションと、中央プロセッサセクションの制御下で、さまざまな異なる特定の組合せ、機能および他の処理を専門に実行する別個の複数のセクションとを有する、ASICなどの単一の特殊目的集積回路として実現することもできる。この制御ユニットを、離散要素回路またはPLD、PAL、PLAなどのプログラマブルロジックデバイスを含む、ハードワイヤード電子回路または論理回路などのさまざまな別個の専用またはプログラム可能な集積回路またはデバイス、あるいは他の電子回路またはデバイスを使用して実現することもできることを、当業者は理解するであろう。制御ユニット82は、マイクロプロセッサ、マイクロコントローラなどの適当にプログラムされた汎用コンピュータ、またはCPU、MPUなどの他のプロセッサデバイスを、単独で、あるいは1つまたは複数の周辺データおよび信号処理装置とともに使用して実現することもできる。一般に、有限状態機械が論理流れ図100を実現する能力を有する任意の装置または同様の装置を、制御ユニット82として使用することができる。データ/信号処理能力およびデータ/信号速度を最大にするために、分散処理アーキテクチャが好ましいことがある。
【0052】
論理流れ図100は、ステップまたはブロック102から始めることができる。ステップ102で、制御ユニット82は、上で論じた任意の方法に従って、燃焼タービンシステム70、特に燃焼タービンシステム70の燃料送出システムの動作パラメータに関するデータを受け取り、監視し、記録することができる。前述のとおり、これらの動作パラメータは、供給燃料の発熱量(これは例えば、上流フォーク62の上流に配置された高速発熱量計74を介して測定することができる)、燃料送出システム内のさまざまな位置における供給燃料の温度(これは例えば、上で論じた非加熱温度測定値、加熱温度測定値および/または燃焼器入口温度測定値を含むことができる)、および/または冷レッグバイパス76および燃料管路50の熱交換部分52を通る流量に関する測定値(これは例えば、これらの導管を通る流量を制御する任意の弁の設定を含むことができ、さらに、例えば冷レッグバイパス76および/または燃料管路50内に配置された従来の圧力変換器によって測定することができる、これらの任意の導管内で測定された燃料圧力測定値を含むことができる)の1つまたは複数の動作パラメータを含むことができる。ステップ102から、処理はステップ104に進むことができる。動作パラメータの測定、監視および/または記録は、連続的にまたは一定の間隔で実施することができ、あるいは、ステップ104を他のステップに接続する直接の線が図11にあるか否かに関わらず、論理流れ図100の複数のステップのうちの任意のステップの全体を通じて、更新されたデータまたはその時点のデータを使用することができる。
【0053】
ステップ104で、供給燃料の発熱量のその時点の測定値が与えられた場合に、処理は、目標MWI範囲を満たすために、その温度または温度範囲で燃焼器30に送出すべき供給燃料の許容温度または許容温度範囲を決定することができる。前述のとおり、燃焼タービンエンジンは一般に、ある発熱量または発熱量範囲を有する燃料で動作するように設計される。より具体的には、エンジンは、目標MWI範囲に対応するように設計することができる。実際問題として、エンジンの供給燃料の発熱量は一般に変動する。燃料の温度を変化させることによって、目標MWI範囲を満たすように、変動する発熱量レベルを補償することができる。具体的には、エンジンの燃焼器へ送出される燃料が、それに対応するようにエンジンが設計された所定のMWIレーティングまたは好ましいMWIレーティングにあり、または所定のMWIレーティング範囲内または好ましいMWIレーティング範囲内にあるように、供給燃料の温度を上げ、または下げることによって、供給燃料のMWIレーティングを調整することができる。前述のとおり、本明細書では、それに対応するようにエンジンが設計された燃料の所定のMWIレーティングまたは好ましいMWIレーティング、あるいは所定のMWIレーティング範囲または好ましいMWIレーティング範囲をともに、目標MWI範囲と呼ぶ。当業者なら理解するとおり、燃焼タービンエンジンは、目標MWI範囲と一致するMWIレーティングで燃料が燃焼器に送出されたときに、より良好に、例えばより効率的に、またはより確実に動作する。目標MWI範囲外の燃焼器に燃料を送出する(すなわち、これは、燃焼器に送出されている燃料の温度が目標MWI範囲内のMWIレーティングを生成しないときに起こることがある)と、エンジン性能およびエンジン効率の損失が生じ、かつ/または、タービン構成要素が損傷する可能性がある。さらに、前述のとおり、適切な範囲外の燃料を燃焼器30に送出すると、ガスタービン「ランバック」状況に陥ることがあり、ランバック状況に陥ると、エンジンは一般に、エンジン出力を大幅に低減させる予防的ステップを自動的に実行するため、ランバック状況は非常に望ましくないことがある。この予防的処置は、燃料のMWIレーティングが推奨範囲外にあるときに起こる可能性がある潜在的な損傷を最小化するために実行されるが、出力の急落も、非常に望ましくない別の問題を引き起こす可能性がある。
【0054】
燃料のMWIレーティングと燃料の温度とは逆の関係にある。すなわち、燃料の温度が増大すると、MWIレーティングは低下する。あるいは、燃料の温度が低下すると、MWIレーティングは増大する。したがって、例えば、燃料の発熱量が「X」であると仮定し、それに対応するようにタービンエンジンが設計された目標MWI範囲が与えられたとすると、MWIレーティングを目標MWI範囲内に維持するために燃料を送出することができる許容される温度範囲は、「Z」から「Y」まで温度範囲を構成する。供給燃料の発熱量が値(X+10)まで増大した場合には一般に、MWIレーティングを目標MWI範囲内に維持するためにこの燃料を送出することができる許容される温度範囲は一般に、ある温度範囲、例えば(Z−20)から(Y−20)までの温度範囲に低下する。したがって、燃焼タービンエンジンは一般に、燃料の発熱量が与えられた場合に、その温度または温度範囲で燃焼器に送出すべき燃料の許容または推奨温度および/あるいは許容または推奨温度範囲(すなわちMWIレーティングを目標MWI範囲内に維持する温度範囲)を有する。ステップ104では、以後「目標温度範囲」と呼ぶこの好ましい温度または好ましい温度範囲あるいは推奨温度または推奨温度範囲を決定する。要するに、目標温度範囲は、目標MWIレーティング内の燃料が燃焼器に送出されたときに、燃料のMWIレーティングを、高速燃料発熱量計74によって測定された発熱量測定値に基づいて維持する温度値または温度範囲である。処理は次いでステップ106へ進むことができる。
【0055】
ステップ106で、(ステップ102の連続的な動作の部分として測定され、監視される)燃焼器30の入口で測定された供給燃料の温度が与えられた場合、処理は、燃焼器のおおよその入口における供給燃料の温度が、ステップ104で計算した目標温度範囲にあり、または目標温度範囲内にあるかどうかを判定することができる。燃焼器の入口における供給燃料の温度が、目標温度範囲にあり、または目標温度範囲内にあると判定された場合、処理はステップ104に戻ることができる。燃焼器の入口における供給燃料の温度が、目標温度範囲になく、または目標温度範囲内にないと判定された場合、処理はステップ108に進むことができる。
【0056】
ステップ108で、制御ユニットは、燃焼器の入口における供給燃料の温度が、目標温度範囲にあり、または目標温度範囲内にあるように、冷レッグ弁78および/または熱レッグ弁79の設定を操作することができる。例えば、燃焼器に送出されている燃料の温度を低下させる必要があると判定された場合(すなわち燃焼器入口または燃焼器入口付近の測定温度が目標温度範囲よりも高い場合)には、供給燃料のより大きな部分が、燃料管路50の熱交換部分52をバイパスするように、冷レッグ弁78および/または熱レッグ弁79の設定を操作することができる。これにより、混合接合部64の下流の供給燃料の温度が低下することが理解される。あるいは、燃焼器に送出されている燃料の温度を高くする必要があると判定された場合(すなわち燃焼器入口または燃焼器入口付近の測定温度が目標温度範囲よりも低い場合)には、供給燃料のより小さな部分が、燃料管路50の熱交換部分52をバイパスするように、冷レッグ弁78および/または熱レッグ弁79の設定を操作することができる。これにより、混合接合部64の下流の供給燃料の温度が増大することが理解される。当業者なら理解するとおり、これらの2つの二方弁の代わりに、三方弁90を使用して、加熱燃料と非加熱燃料の混合を同様の方法で制御することができる。
【0057】
ステップ110で、ステップ108で実行した処置の結果である、燃焼器30の入口で測定された供給燃料の温度が与えられた場合、処理は、燃焼器の入口における供給燃料の温度が、ステップ104で計算した目標温度範囲内にあるかどうかを判定する。燃焼器の入口における供給燃料の温度が、目標温度範囲内にある(それによって目標MWI範囲内の燃料を生成している)と判定された場合、処理はステップ112に進むことができる。しかしながら、燃焼器の入口における供給燃料の温度が、依然として目標温度範囲内にない(それによって目標MWI範囲内の燃料を生成することができない)と判定された場合、処理はステップ108に進むことができ、ステップ108で、弁76、78(または場合によっては三方弁90)をもう一度調整することができる。処理は、燃焼器に送出されている燃料の温度が、目標温度範囲にあるか、または目標温度範囲内に入るまで、ステップ108とステップ110の間の制御ループを繰り返すことができる。
【0058】
ステップ112で、処理を終了とすることができる。あるいは、ステップ102に戻って、処理を再び開始することができる(図示せず)。
【0059】
図11の処理要素の例は、一例として示したものであり、他の処理および流れ図実施形態は、それよりも少ないまたはそれよりも多くの要素またはステップを有することができ、このような要素またはステップは、本発明の他の実施形態に基づく代替構成に従って配置することができる。当業者なら理解するとおり、いくつかの例示的な実施形態に関して上で説明した多くのさまざまな特徴および構成を選択的に適用して、本発明の他の可能な実施形態を形成することもできる。簡潔にするため、および当業者の技能を考慮して、それぞれの可能な繰返しは本明細書では詳細には論じないが、下記の複数の特許請求項が包含する全ての組合せおよび可能な実施形態は、本出願の部分を構成することが意図されている。さらに、本発明の例示的ないくつかの実施形態の上記の説明から、当業者は、改良、変更および修正に気づくであろう。さらに、添付の特許請求項は、当業者の技能の範囲に含まれるこのような改良、変更および修正をカバーすることが意図されている。さらに、以上の説明は、本出願に記載された実施形態だけに関係するものであること、ならびに、下記の特許請求項およびそれらの等価物によって定義される本出願の趣旨および範囲から逸脱することなく、数多くの変更および修正を本明細書に加えることができることは明白である。
【符号の説明】
【0060】
10 ガスタービンエンジン
11 軸流圧縮機
12 タービン
13 燃焼器
14 圧縮機動翼
15 圧縮機静翼
16 タービン動翼
17 タービン静翼
20 燃焼タービンシステム
22 発電機
24 ロータシャフト
26 圧縮機
28 タービン
30 燃焼器
32 空気取入れ管路
40 排出ガススタック
50 燃料管路
52 熱交換部分
60 バイパス燃料管路
62 上流フォーク
63 上流燃料バイパス制御弁
64 燃料混合接合部
65 燃焼器ガス制御弁
66 ガスクロマトグラフ
70 燃焼タービンシステム
71 油浴または水浴加熱器
72 ポンプ
74 高速発熱量計
76 冷レッグバイパス
78 冷レッグ弁
79 熱レッグ弁
82 制御ユニット
85 下流冷レッグバイパス
86 第2のフォーク
87 三方弁
87 直接燃焼加熱器
90 三方弁
91 電気加熱器
94 ヒートパイプ熱交換器
95 伝導性パイプ
96 排出ガス導管

【特許請求の範囲】
【請求項1】
燃焼タービンエンジン用の燃料送出システムにおいて、
燃料源および前記燃焼タービンエンジンの燃焼器(30)に接続された燃料管路(50)であって、前記燃料を前記燃焼器(30)に送出する前に前記燃料を加熱するために熱源(71、87、91、94)との間で熱を伝達するように配置された熱交換部分(52)を有する燃料管路(50)と、
前記燃料の発熱量を測定するように配置された高速発熱量計(74)と、
前記燃料管路(50)の前記熱交換部分(52)をバイパスする代替燃料管路(60)を含む冷レッグバイパス(76)であって、前記熱交換部分(52)の上流に配置された上流フォーク(62)および前記熱交換部分(52)の下流に配置された燃料混合接合部(64)にて、前記燃料管路(50)に接続された冷レッグバイパス(76)と、
前記熱交換部分(52)を通して導かれている燃料の量および前記冷レッグバイパス(76)を通して導かれている燃料の量を制御する手段と
を備え、
前記冷レッグバイパス(76)を通して導かれる燃料の量および前記熱交換部分(52)を通して導かれる燃料の量を制御する前記手段による変更によって、前記燃焼器(30)の入口の上流で前記入口の直ぐ近くに配置された燃料弁を含む燃焼器ガス制御弁(65)における燃料温度が、比較的に短時間のうちに変化するように、前記燃料混合接合部(64)が、前記燃焼器ガス制御弁(65)の十分に近くに配置されており、前記燃焼器ガス制御弁(65)に到達する前に、前記燃料が、実質的に均一な温度に十分に混合されるように、前記燃料混合接合部(64)が、前記燃焼器ガス制御弁(65)から十分に離れた位置に配置されている
燃料送出システム。
【請求項2】
前記燃焼タービンエンジンが、
燃焼のために空気を圧縮する圧縮機(26)であって、圧縮機(26)から圧縮空気を受け取り、前記燃料送出システムから燃料を受け取る前記燃焼器(30)が接続されており、前記燃料が、前記燃焼器(30)内で燃焼し、燃焼ガスを発生させる、圧縮機(26)と、
前記燃焼器(30)に接続されたタービン(28)であって、タービン(28)を駆動する前記燃焼ガスを受け取るように構成されており、前記燃焼ガスがタービン(28)から排出される、タービン(28)と
を備え、
前記燃料を加熱する前記熱源(71、87、91、94)が、水浴加熱器(71)、熱油浴加熱器、直接燃焼加熱器(87)、電気加熱器(91)、ヒートパイプ熱交換器(94)、水蒸気加熱器、熱水加熱器、および前記燃焼タービンエンジンの排出ガスの熱を使用する熱交換器のうちの1つを含む、
請求項1記載の燃料送出システム。
【請求項3】
前記制御手段が制御ユニット(82)を含み、
前記制御手段が、前記冷レッグバイパス(76)上に配置された二方冷レッグ弁(78)、前記燃料管路(50)上に配置された二方熱レッグ弁(79)、および燃料混合接合部(64)に配置された三方弁(90)のうちの少なくとも1つを含み、
前記制御ユニット(82)が、前記高速発熱量計(74)から発熱量試験の結果を受け取るように構成されており、
前記燃料の一部が前記熱交換部分(52)を通して導かれ、前記燃料の一部が前記冷レッグバイパス(76)を通して導かれ、その結果、前記燃料混合接合部(64)の下流で、前記燃料に対する目標温度範囲が維持されるように、前記弁のうちの少なくとも1つの弁の設定を制御するよう、前記制御ユニット(82)が構成されており、
前記燃料に対する前記目標温度範囲が、前記燃料の測定された発熱量が与えられた場合に、前記燃料が目標修正ウォッベ指数範囲を含む温度を含み、
前記目標修正ウォッベ指数範囲が、その修正ウォッベ指数レーティングの燃料を前記燃焼タービンエンジン内で使用することが好ましい、少なくとも1つの所定の修正ウォッベ指数レーティングを含む、
請求項1又は2記載の燃料送出システム。
【請求項4】
前記制御ユニット(82)が、
前記目標温度範囲を考慮して、前記燃料混合接合部(64)の下流の燃料温度を増大させる必要がある場合に、前記弁のうちの少なくとも1つ弁を、前記燃料管路(50)の前記熱交換部分(52)を通して導かれる燃料の部分を増大させるように制御し、
前記目標温度範囲を考慮して、前記燃料混合接合部(64)の下流の燃料温度を低下させる必要がある場合に、前記弁のうちの少なくとも1つ弁を、前記燃料管路(50)の前記熱交換部分(52)を通して導かれる燃料の部分を減少させるように制御する
ように構成されている、請求項3記載の燃料送出システム。
【請求項5】
前記高速発熱量計(74)が、試験工程を開始してから約30秒以内に発熱量試験の結果を提供する装置を含み、
前記燃料送出システムが、前記燃料を一定の間隔で試験するように構成されており、前記一定の間隔が約30秒未満である、
請求項1乃至4のいずれか1項記載の燃料送出システム。
【請求項6】
燃料温度を測定し、燃料温度測定値を前記制御ユニット(82)に送信する複数の燃料温度装置をさらに含み、前記燃料温度装置が、少なくとも、前記冷レッグバイパス(76)内または前記上流フォーク(62)の上流のある点で測定される冷燃料温度、前記熱交換部分(52)と前記燃料混合接合部(64)との間のある点で測定される熱燃料温度、および前記燃料混合接合部(64)と前記燃焼器(30)の入口との間のある点で測定される混合燃料温度を測定するように配置されている、請求項3記載の燃料送出システム。
【請求項7】
前記燃料混合接合部(64)と前記燃焼器ガス制御弁(65)との間の燃料管路(50)の長さが約2から20メートルとなるように、前記燃料混合接合部(64)が配置された、請求項1乃至6のいずれか1項記載の燃料送出システム。
【請求項8】
前記燃料混合接合部(64)と前記燃焼器ガス制御弁(65)との間の燃料管路(50)の長さが約4から15メートルとなるように、前記燃料混合接合部(64)が配置された、請求項1乃至6のいずれか1項記載の燃料送出システム。
【請求項9】
前記燃料混合接合部(64)と前記燃焼器ガス制御弁(65)との間の燃料管路(50)の長さが約6から10メートルとなるように、前記燃料混合接合部(64)が配置された、請求項1乃至6のいずれか1項記載の燃料送出システム。
【請求項10】
前記熱交換部分(52)をバイパスする第2の代替燃料管路を含む下流バイパス(85)をさらに備え、
前記下流バイパス(85)が、前記上流フォーク(62)の下流、前記熱交換部分(52)の上流にある第1の位置、および前記燃料混合接合部(64)の上流、前記熱交換部分(52)の下流にある第2の位置で、前記燃料管路(50)に接続されている、
請求項1乃至9のいずれか1項記載の燃料送出システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate