説明

デジタル磁気抵抗センサー

【課題】デジタル磁気抵抗センサーを提供する。
【解決手段】 第1磁性体部と、外部磁場によって磁化され、第1磁性体との間で発生する磁気力によって弾性的に変形されて第1磁性体部と選択的に接触及び離隔される第2磁性体部と、を備え、第1磁性体部と第2磁性体部との間の抵抗値の変化を検出する磁気抵抗センサーである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気抵抗センサーに係り、詳細には、外部磁場の変化による二つの磁性体間の電気抵抗の変化を利用して磁場を検出する磁気抵抗センサーに関する。
【背景技術】
【0002】
現在、情報記録装置として広く使われるハードディスクドライブ(HDD:Hard Disc Drive)は、磁性材料を情報記録媒体として使用する。磁化方向を調節して情報を記録し、このとき、磁化方向によって発生する磁場を磁気センサーで検出して情報を再生する方式を使用している。したがって、高い記録密度を具現するためには、記録密度の上昇に対応して小さくなる磁極から発生する磁場をいかに効率的に検出するかが重要な要素となる。
【0003】
効率的な磁場の検出のために磁場の変化による磁性物質の電気抵抗値の変化を利用して磁場を検出する方式が広く利用されて来ており、特に、磁場検出性能の向上のための努力によってAMR(Anisotropic Magneto Resistance)、GMR(Giant Mangeto Resitance)、TMR(Tunneling Magneto Resistance)など多様な磁気抵抗方式のセンサーが開発されてきた。このような開発を通じて、1〜2%の磁気抵抗比を表す初期AMR方式のセンサーから現在10%ほどの磁気抵抗比を有するGMR方式のセンサーに発展し、最近には、40%ほどの磁気抵抗比を有するTMR方式のセンサーが商用化を控えている。
【0004】
しかし、TMR方式センサーの性能を超えて自乗インチ当たり数テラビット(Tb/in)ほどの集積度を有する磁気記録媒体の情報を正確に再生するためには、それより高い磁気抵抗比を有する磁気抵抗センサーが要求される。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明が解決しようとする課題は、外部磁場の有無または極の方向によって、約数千%以上の不連続的な抵抗値の変化を示す高抵抗比の磁気抵抗センサーを提供することである。
【課題を解決するための手段】
【0006】
本発明によるデジタル磁気抵抗センサーは、第1磁性体部と、外部磁場によって磁化され、前記第1磁性体との間で発生する磁気力によって弾性的に変形されて前記第1磁性体部と選択的に接触及び離隔される第2磁性体部と、を備える。前記第1磁性体部と第2磁性体部との間の抵抗値の検出は、一般的な磁気抵抗センサーの抵抗値検出手段による。
【0007】
材料の面で、前記第1磁性体部は、少なくとも一部分が硬磁性材料、軟磁性材料または半硬質磁性材料(semi-hard magnetic)からなり、前記第2磁性体部は、少なくとも一部分が軟磁性材料または半硬質磁性材料からなる。硬磁性材料としては、例えば、アルニコ(鉄にアルミニウム、ニッケル、コバルトを添加した合金)、希土類磁石または硬質フェライトなどが使用され、軟磁性材料としては、例えば、保磁力が50 Oe以下である鉄−シリコン合金、パーマロイ(ニッケル−鉄合金)、鉄−コバルト−ホウ素のような非晶質磁性合金、鉄−タンタル−窒素のようなナノ結晶合金または軟質フェライトなどが使用され得る。また、前記軟磁性材料の代りに、保磁力が約5ないし50 Oeほどである半硬質磁性材料も使用され得る。軟磁性材料及び半硬質磁性材料は、磁気記録媒体から出る磁場について十分に規定された領域でのみ反応できるように、直角磁化曲線を有することが望ましい。
【0008】
形状及び構造の面で、前記第1及び第2磁性体部のうち少なくとも何れか一つは、弾性変形可能な磁性材料を利用して一体に形成され、磁性部材及び前記磁性部材と連結されて弾性的に変形されることによって、前記磁性部材の位置を変化させる弾性部材が結合された構造で提供されてもよい。
【0009】
本発明の一面による磁気抵抗素子は、基板上に形成された第1磁性層と、前記第1磁性層上に部分的に形成された絶縁層と、一部は、前記絶縁層の上面に接し、残りの部分は、前記絶縁層の外に延び、その延びた部分が第1磁性層の一部と対面する第2磁性層と、を備え、前記第2磁性層は、外部磁場によって磁化され、前記第1磁性層との間で発生する磁気力によって弾性的に変形されて前記第1磁性層と選択的に接触及び離隔されることを特徴とする。
【0010】
本発明の他の一面による磁気抵抗素子は、基板に一端が固定された第1炭素ナノチューブ弾性部材と、前記第1炭素ナノチューブ弾性部材の自由端に備えられた第1磁性部材と、基板に一端が固定され、前記第1炭素ナノチューブ弾性部材に隣接して備えられた第2炭素ナノチューブ弾性部材と、前記第2炭素ナノチューブ弾性部材の自由端に備えられた第2磁性部材と、を備え、前記第2磁性部材は、外部磁場によって磁化され、前記第1磁性部材との間で発生する磁気力によって変位されて前記第1磁性部材と選択的に接触及び離隔されることを特徴とする。
【発明の効果】
【0011】
本発明によるデジタル磁気抵抗センサーは、外部磁場の有無または極の方向によって、約数千%以上の不連続的な抵抗値の変化を表せる。また、それにより、高集積化された磁気情報を正確に再生させうる。
【発明を実施するための最良の形態】
【0012】
以下、添付された図面を参照しつつ、本発明によるデジタル磁気抵抗センサーの実施形態を詳細に説明する。望ましい実施形態の説明を通じて本発明の特徴及び長所をさらに明確に理解できる。添付された図面で、同じ符号は、同じ部材または部分を表す。
図1及び図2は、本発明の第1実施形態による磁気抵抗センサーを示す概略図である。本発明の第1実施形態によるセンサー100は、基板101と、前記基板101上に形成された第1磁性層102と、前記第1磁性層102上に部分的に形成された絶縁層104と、前記絶縁層104の上側に配置される第2磁性層105と、を備え、前記第2磁性層105は、その一部が前記絶縁層104の上面に接し、残りの部分は、前記絶縁層104の外に延び、その延びた部分が第1磁性層102の一部と対向するように形成される。すなわち、前記第2磁性層105は、前記第1磁性層102との間に空いている空間106をおいて、その端部が厚さ方向に弾性的に動ける構造を有する。
【0013】
前記第1磁性層102及び第2磁性層105は、主に軟磁性材料からなり、単層または多層薄膜形態で提供されうる。すなわち、前記第1磁性層102及び第2磁性層105は、軟磁性材料薄膜であって、スパッタリング法、真空蒸発法、または電気メッキ法によって形成されうる。薄膜の厚さには制限がないが、前記第2磁性層105の端部が小さな大きさの磁気力に対して速かに反応させるためには、薄いことが望ましい。また、望ましくは、磁気記録媒体に近い端部をとがって形成して磁気記録媒体から出る磁場をとがったチップ領域に集中させうる。
【0014】
前記第1磁性層102及び第2磁性層105が何れも軟磁性材料からなる場合、第2磁性層105は、前記図1に示したように、外部磁場の影響を受けない状態で前記第1磁性層102側に反って機械的な接触をなすように形成される。このような機械的接触は、前記第2磁性層105に内蔵されたスプリング特性によるものであって、偶発的な動きによって分離せずに維持させることが望ましい。
【0015】
このようなスプリング特性は、多様な方法で具現されうるが、その例として、熱膨張係数の異なる材料を前記第2磁性層105の一面に重ねて覆って機械的なストレスを与えるか、または前記第2磁性層105の一面にイオンを注入して反らせてもよい。
本発明による全ての磁気抵抗センサーは、通常の磁気抵抗センサーと同様に抵抗検出部を有し、これは、前記第1磁性体部及び前記第2磁性体部と連結されて抵抗値を検出する。本実施形態によるセンサーの抵抗検出部301は、前記第1磁性体部である第1磁性層102及び前記第2磁性体部である第2磁性層105に連結され、以下の他の実施形態でも(たとえ図面に示されていないとしても)、このように第1及び第2磁性体部に対応する構造に連結された抵抗検出部を有する。
【0016】
本発明の第1実施形態による磁気抵抗センサーの動作を説明すれば、次の通りである。図2は、前記第1実施形態によるセンサー100の一側に磁気記録媒体10の上向き極情報領域11が接近した状態を示す。前記センサー100に上向き極の磁界が印加されれば、軟磁性の前記第1磁性層102及び第2磁性層105に同一に上向き極の磁界が形成される。したがって、前記第1磁性層102と第2磁性層105との間に斥力が発生して、前記第2磁性層105が前記第1磁性層102から遠ざかる方向に弾性変形されて相互離隔される。
【0017】
前記磁性層が相互接触しているとき、これらの間の電気抵抗は0に近く、相互離隔されているとき、これらの間の電気抵抗は、無限に近いので、本実施形態によるセンサー100は、不連続的な信号を発生させうる。
【0018】
図3は、本発明の第2実施形態による磁気抵抗センサーを示す概略図である。本発明によるセンサーは、前記第1磁性層102及び前記第2磁性層105の対向面のうち少なくとも一側に絶縁膜をさらに備え、本発明の第2実施形態によるセンサー110は、前記第1磁性層102の上面、すなわち、第2磁性層105と対向する面に絶縁膜103を有する。前記絶縁層104及び絶縁膜103は、何れも電気絶縁性材料で形成されるが、前記絶縁膜103は、前記第1磁性層102と第2磁性層105との間でトンネリングバリヤの役割を行うものであって、相対的に薄いことが望ましい。このような絶縁性材料としては、酸化アルミニウム、酸化マグネシウムなどの酸化絶縁物、または窒化物、フッ化物が使用され得る。
【0019】
外部磁場が印加されていない場合、前記第1磁性層102と第2磁性層105とが相異なる方向に磁化されて、これらの間に引力が発生し、それにより、第2磁性層105が前記第1磁性層102上の絶縁膜103に接触される。このとき、前記第1及び第2磁性層102,105は、トンネリング構造を形成し、前記抵抗検出部301は、トンネリング抵抗値を検出する。前記センサー110に磁場が印加されれば、前記第1実施形態によるセンサー100と同様に、前記第1及び第2磁性層が相互離隔され、したがって、前記トンネルリング抵抗値より少なくとも数倍ないし数十倍以上大きい抵抗値が検出される。
【0020】
図4は及び図5は、本発明の第3実施形態による磁気抵抗センサーを示す概略図である。本実施形態によるセンサー120は、前述した第1実施形態によるセンサー100と構造上同一であるが、その材料に差がある。本実施形態によれば、第1磁性層102は、硬磁性材料からなり、第2磁性層105は、主に軟磁性材料からなる。軟磁性材料の代わりに、半硬質磁性材料が使用され得るということは前述した通りである。
【0021】
図4に示したように、本発明の第3実施形態によるセンサー120に下向き極情報領域12が接近すれば、第2磁性層105には、材料の性質によって同じ下向き極の磁界が形成される。したがって、硬磁性材料として下向き極を維持する第1磁性層102との間に斥力が作用して、前記第2磁性層105は、二つの磁性層102,105が離隔される方向に変形される。逆に、図5に示したように、前記センサー120に上向き極情報領域が接近すれば、第1磁性層102は、硬磁性材料であって下向き極を維持し、第2磁性層105には、上向き極の磁気が形成され、前記二つの磁性層102,105の間に引力が作用して互いに機械的に接触する。この場合、前記図3に示したトンネリング構造に比べても接触時に顕著に低い抵抗値を表して、高抵抗比の実現に有利である。
【0022】
図6ないし図8は、本発明の第4実施形態による磁気抵抗センサーを示す概略図である。本発明の第4実施形態によるセンサー200は、基板20と前記基板にそれぞれ一端が固定された一対の炭素ナノチューブ弾性部材50、すなわち、第1炭素ナノチューブ弾性部材51及び第2炭素ナノチューブ弾性部材52を有する。前記一対の炭素ナノチューブ弾性部材50の自由端には、それぞれ磁性部材80が備えられる。このとき、第1炭素ナノチューブ弾性部材51の第1磁性部材81は、硬磁性材料からなり、第2炭素ナノチューブ弾性部材52の第2磁性部材82は、軟磁性材料からなることが望ましい。
【0023】
前記第1及び第2炭素ナノチューブ弾性部材51,52の固定端は、前記基板20の第1及び第2電極21,22にそれぞれ固定されることが望ましく、前記第1及び第2電極21,22は、絶縁体23によって相互に電気的に絶縁されることが望ましい。前記第1及び第2電極21,22は、抵抗検出部301の両端にそれぞれ連結される。このように一端が基板20に固定されたセンサー200は、前記磁性部材80が記録媒体の情報領域に形成された磁界の影響を受ける程度に記録媒体10に隣接して配置されうる。
【0024】
本実施形態によるセンサー200のサイズは、数ないし数十nmスケールに小さくなりうる。例えば、1Tb/inほどの集積度で保存された記録媒体の情報領域のサイズ(直径12nmほど)に対応するために、前記一対の炭素ナノチューブ弾性部材50は、約5〜10nmの間隔を有し得る。
【0025】
本実施形態によるセンサー200の作動原理を説明すれば、次の通りである。前記第1磁性部材81の極方向は、上向きでも下向きでも関係ないが、ここでは、上向き極を例として説明する。図7に示したように、記録媒体10の下向き極情報領域12が第2磁性部材82に対応する位置に到達すれば、前記下向き極情報領域11の磁界の影響を受けて前記第2磁性部材82に同じ下向き極の磁界が形成される。このとき、前記第1磁性部材81と第2磁性部材52とは、それぞれ上向き極及び下向き極を有するので、これらの間に引力が発生する。このような引力によって、第1及び第2炭素ナノチューブ弾性部材51,52は、互いに近づく方向にベンディングされ、したがって、前記第1磁性部材81と第2磁性部材82とが接触される。
【0026】
一方、図8に示したように、記録媒体10の上向き極情報領域11が第2磁性部材82に対応する位置に到達すれば、前記上向き極情報領域11の磁界の影響を受けて前記第2磁性部材82に同じ上向き極の磁界が形成される。このとき、前記第1磁性部材81及び第2磁性部材52が何れも上向き極を有するので、これらの間に斥力が発生する。このような斥力によって、第1及び第2炭素ナノチューブ弾性部材51,52は、互いに遠ざかる方向にベンディングされる。
【0027】
無限に近い前記第1電極21と第2電極22との間の抵抗値は、このような接触によって0に近い値に不連続的に減少する。したがって、本実施形態によるセンサー200は、記録媒体10に記録されたデジタル情報に相応する離散信号を発生させうる。
前記磁性部材80は、ナノ粒子、ナノ線、またはナノシートなど、少なくとも一次元が数ないし数十nmのサイズを有するナノ構造からなる。前記炭素ナノチューブ弾性部材の末端に固定された状態で備えられ得る構造ならば十分である。
【0028】
本発明の多様な実施形態による磁気抵抗センサーは、前述した特徴及び長所によってそれぞれハードディスクドライブ(HDD)などの磁気情報記録装置に使用され得る。磁気情報記録装置は、磁気記録媒体と、前記磁気記録媒体の所定領域を磁化させ情報を記録する磁気記録ヘッド、及び前記情報領域に保存された磁気情報を感知して再生する磁気読み取りヘッドを有するものであって、本発明による磁気抵抗センサーは、磁気読み取りヘッドとして使用され得る。特に、デジタル情報を記録する磁気情報記録装置に非常に有用である。
【0029】
以上、本発明による望ましい実施形態が説明されたが、これは、例示的なものに過ぎず、当業者ならば、これから多様な変形及び均等な他の実施形態が可能であるという点が分かるであろう。したがって、本発明の保護範囲は、特許請求の範囲によって決定されねばならない。
【産業上の利用可能性】
【0030】
本発明は、HDDなどの磁気情報記録装置関連の技術分野に適用可能である。
【図面の簡単な説明】
【0031】
【図1】本発明の第1実施形態による磁気抵抗センサーを示す概略図である。
【図2】本発明の第1実施形態による磁気抵抗センサーを示す概略図である。
【図3】本発明の第2実施形態による磁気抵抗センサーを示す概略図である。
【図4】本発明の第3実施形態による磁気抵抗センサーを示す概略図である。
【図5】本発明の第3実施形態による磁気抵抗センサーを示す概略図である。
【図6】本発明の第4実施形態による磁気抵抗センサーを示す概略図である。
【図7】本発明の第4実施形態による磁気抵抗センサーを示す概略図である。
【図8】本発明の第4実施形態による磁気抵抗センサーを示す概略図である。
【符号の説明】
【0032】
100 センサー
101 基板
102 第1磁性層
104 絶縁層
105 第2磁性層
106 空間
301 抵抗検出部

【特許請求の範囲】
【請求項1】
第1磁性体部と、
外部磁場によって磁化され、前記第1磁性体との間で発生する磁気力によって弾性的に変形されて、前記第1磁性体部と選択的に接触及び離隔される第2磁性体部と、を備えるデジタル磁気抵抗センサー。
【請求項2】
前記第1及び第2磁性体部は、それぞれ少なくとも一部分が軟磁性材料または半硬質磁性材料からなることを特徴とする請求項1に記載の磁気抵抗センサー。
【請求項3】
前記第1磁性体部は、少なくとも一部分が硬磁性材料からなり、
前記第2磁性体部は、少なくとも一部分が軟磁性材料または半硬質磁性材料からなることを特徴とする請求項1に記載のデジタル磁気抵抗センサー。
【請求項4】
前記第2磁性体部は、弾性的に変形される軟磁性材料で一体に形成されたことを特徴とする請求項1に記載のデジタル磁気抵抗センサー。
【請求項5】
前記第2磁性体部は、
磁性部材と、
基板に対して一端が固定されるとともに、前記磁性部材に他端が連結されて弾性的に変形されることによって、前記磁性部材の位置を変化させる弾性部材と、を備えることを特徴とする請求項1に記載のデジタル磁気抵抗センサー。
【請求項6】
前記第1磁性体部は、
硬磁性部材と、
基板に対して一端が固定されるとともに、前記硬磁性部材に他端が連結されて弾性的に変形されることによって、前記硬磁性部材の位置を変化させる弾性部材と、を備えることを特徴とする請求項5に記載のデジタル磁気抵抗センサー。
【請求項7】
前記第2磁性体部の厚さは、前記第1磁性体部の厚さより薄いことを特徴とする請求項1に記載の磁気抵抗センサー。
【請求項8】
前記第2磁性体部は、記録媒体に隣接して配置される端部を備え、前記端部は、とがっているチップを有することを特徴とする請求項1に記載の磁気抵抗センサー。
【請求項9】
基板上に形成された第1磁性層と、
前記第1磁性層上に部分的に形成された絶縁層と、
前記絶縁層の上面に一部が接するとともに、前記絶縁層の外部に残りの部分が延びてなり、その延びた部分が第1磁性層の一部と対面する第2磁性層と、を備え、
前記第2磁性層は、
外部磁場によって磁化され、前記第1磁性層との間で発生する磁気力によって弾性的に変形されて前記第1磁性層と選択的に接触及び離隔されることを特徴とするデジタル磁気抵抗センサー。
【請求項10】
前記第1及び第2磁性層は、それぞれ少なくとも一部分が軟磁性材料または半硬質磁性材料からなることを特徴とする請求項9に記載のデジタル磁気抵抗センサー。
【請求項11】
前記第1磁性層は、硬磁性材料からなり、
前記第2磁性層は、軟磁性材料または半硬質磁性材料からなることを特徴とする請求項9に記載のデジタル磁気抵抗センサー。
【請求項12】
前記第1磁性層及び前記第2磁性層の対向面のうち少なくとも一側に絶縁膜をさらに備えることを特徴とする請求項9に記載のデジタル磁気抵抗センサー。
【請求項13】
前記絶縁膜は、酸化アルミニウム、酸化マグネシウム、窒化物、またはフッ化物のうち何れか一つであることを特徴とする請求項12に記載の磁気抵抗センサー。
【請求項14】
基板に一端が固定された第1炭素ナノチューブ弾性部材と、
前記第1炭素ナノチューブ弾性部材の自由端に備えられた第1磁性部材と、
基板に一端が固定され、前記第1炭素ナノチューブ弾性部材に隣接して備えられた第2炭素ナノチューブ弾性部材と、
前記第2炭素ナノチューブ弾性部材の自由端に備えられた第2磁性部材と、を備え、
前記第2磁性部材は、
外部磁場によって磁化され、前記第1磁性部材との間で発生する磁気力によって変位されて、前記第1磁性部材と選択的に接触及び離隔されることを特徴とするデジタル磁気抵抗センサー。
【請求項15】
前記第1磁性部材は、硬磁性物質からなり、
前記第2磁性部材は、軟磁性物質または半硬質磁性物質からなることを特徴とする請求項14に記載のデジタル磁気抵抗センサー。
【請求項16】
前記基板は、相互絶縁された第1電極と第2電極とを備え、
前記第1及び第2炭素ナノチューブ弾性部材の固定端は、それぞれ第1及び第2電極に固定されたことを特徴とする請求項14に記載のデジタル磁気抵抗センサー。
【請求項17】
前記第1磁性部材は、硬磁性を帯びたナノ粒子、ナノ線、またはナノシートのうち何れか一つであることを特徴とする請求項14に記載のデジタル磁気抵抗センサー。
【請求項18】
前記第2磁性部材は、軟磁性または半硬質磁性を帯びたナノ粒子、ナノ線、またはナノシートのうち何れか一つであることを特徴とする請求項14に記載のデジタル磁気抵抗センサー。
【請求項19】
前記第1及び第2炭素ナノチューブ弾性部材は、一字型に形成され、弾性的にベンディングされることを特徴とする請求項14に記載のデジタル磁気抵抗センサー。
【請求項20】
磁気記録媒体の情報領域に記録された磁気情報を感知して再生信号を発生させる磁気読み取りヘッドにおいて、
基板上に形成された第1磁性層と、
前記第1磁性層上に部分的に形成された絶縁層と、
前記絶縁層の上面に一部が接するとともに、前記絶縁層の外部に残りの部分が延びてなり、その延びた部分が第1磁性層の一部と対面する第2磁性層と、
前記第1磁性層に一端が接続されるとともに、前記第2磁性層に他端が接続されて、両端間の抵抗値を検出する抵抗検出部と、を備え、
前記第2磁性層は、
外部磁場によって磁化され、前記第1磁性層との間で発生する磁気力によって弾性的に変形されて、前記第1磁性層と選択的に接触及び離隔されることを特徴とする磁気読み取りヘッド。
【請求項21】
前記外部磁場は、前記磁気記録媒体の情報領域によって発生することを特徴とする請求項20に記載の磁気読み取りヘッド。
【請求項22】
磁気記録媒体の情報領域に記録された磁気情報を感知して再生信号を発生させる磁気読み取りヘッドにおいて、
基板に一端が固定された第1炭素ナノチューブ弾性部材と、
前記第1炭素ナノチューブ弾性部材の自由端に備えられた第1磁性部材と、
基板に一端が固定され、前記第1炭素ナノチューブ弾性部材に隣接して備えられた第2炭素ナノチューブ弾性部材と、
前記第2炭素ナノチューブ弾性部材の自由端に備えられた第2磁性部材と、
前記第1炭素ナノチューブ弾性部材の固定端に一端が連結されるとともに、前記第2炭素ナノチューブ弾性部材の固定端に他端が連結されて、両端の抵抗値を検出する抵抗検出部と、を備え、
前記第2磁性部材は、
外部磁場によって磁化され、前記第1磁性部材との間で発生する磁気力によって変位されて、前記第1磁性部材と選択的に接触及び離隔されることを特徴とする磁気読み取りヘッド。
【請求項23】
前記外部磁場は、前記磁気記録媒体の情報領域によって発生することを特徴とする請求項22に記載の磁気読み取りヘッド。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2006−284571(P2006−284571A)
【公開日】平成18年10月19日(2006.10.19)
【国際特許分類】
【出願番号】特願2006−71655(P2006−71655)
【出願日】平成18年3月15日(2006.3.15)
【出願人】(390019839)三星電子株式会社 (8,520)
【氏名又は名称原語表記】Samsung Electronics Co.,Ltd.
【Fターム(参考)】