説明

ドロップレット生成及び検出装置、並びにドロップレット制御装置

【課題】ドロップレットの位置を検出する。
【解決手段】ドロップレット生成及び検出装置は、帯電ドロップレットを出力するドロップレット生成器と、帯電ドロップレットの軌道の近傍に配置された磁気回路であって、導電体のコイルを含む磁気回路と、コイルに流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサと、検出信号に基づいて帯電ドロップレットを検出する信号処理回路と、を含んでもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ドロップレット生成及び検出装置、並びにドロップレット制御装置に関する。
【背景技術】
【0002】
近年、半導体プロセスの微細化に伴って光リソグラフィにおける微細化が急速に進展しており、次世代においては、60nm〜45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。そのため、例えば、32nm以下の微細加工の要求に応えるべく、波長13nm程度のEUV光を生成するための装置と縮小投影反射光学系とを組み合わせた露光装置の開発が期待されている。
【0003】
EUV光を生成するための装置としては、一般に、ターゲットにレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)方式装置、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)方式装置、及び軌道放射光が用いられるSR(Synchrotron Radiation)方式装置の3種類が知られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許出願公開第2005/205810号公報
【概要】
【0005】
本開示の一態様によるドロップレット生成及び検出装置は、帯電ドロップレットを出力するドロップレット生成器と、帯電ドロップレットの軌道の近傍に配置された磁気回路であって、導電体のコイルを含む磁気回路と、コイルに流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサと、検出信号に基づいて帯電ドロップレットを検出する信号処理回路と、を含んでもよい。
【0006】
本開示の一態様によるドロップレット制御装置は、導電体のコイルを含む磁気回路と、コイルに流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサと、ドロップレットセンサからの検出信号に基づいて、ドロップレット生成器から出力される帯電ドロップレットを検出する信号処理回路と、帯電ドロップレットの軌道を制御するための軌道制御部と、を含んでもよい。
【0007】
本開示の一態様による極端紫外光生成用チャンバは、極端紫外光源装置に用いられる極端紫外光生成用チャンバであって、チャンバ本体と、帯電ドロップレットをチャンバ本体の内部に出力するドロップレット生成器と、帯電ドロップレットの軌道の近傍に配置された磁気回路であって、導電体のコイルを含む磁気回路と、コイルに流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサと、ドロップレットセンサからの検出信号に基づいて、帯電ドロップレットを検出する信号処理回路と、帯電ドロップレットの軌道を制御する軌道制御部と、を含んでもよい。
【0008】
本開示の一態様によるドロップレットの位置制御方法は、極端紫外光源装置に用いられる帯電ドロップレットの位置を制御する方法であって、導電体のコイルを含む磁気回路と、コイルを流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサを、帯電ドロップレットの軌道の近傍に配置することと、ドロップレット生成器から帯電ドロップレットを出力させることと、ドロップレットセンサからの検出信号に基づいて、信号処理回路により帯電ドロップレットを検出することと、電界発生部により、帯電ドロップレットの軌道の一部を含む領域に軌道と交差する方向の電界を発生させることと、を含んでもよい。
【図面の簡単な説明】
【0009】
【図1】図1は、第1実施形態に係るEUV光生成用チャンバが適用されるEUV露光システムの全体構成を概略的に示す。
【図2】図2は、ドロップレットセンサの斜視図である。
【図3A】図3Aは、帯電ドロップレットの位置を検出する原理を示す模式図である。
【図3B】図3Bは、帯電ドロップレットの位置を検出する原理を示すタイミングチャートである。
【図4】図4は、複数のドロップレットセンサの配置を概略的に示す。
【図5】図5は、複数のドロップレットセンサの出力を示すタイミングチャートである。
【図6】図6は、帯電ドロップレットの位置を検出する処理を示すフローチャートである。
【図7】図7は、第2実施形態に係るドロップレット生成及び検出装置の全体図である。
【図8】図8は、第3実施形態に係り、帯電ドロップレットの軌道を制御するための軌道制御部の構成を概略的に示す。
【図9】図9は、ドロップレット制御装置の全体図である。
【図10】図10は、帯電ドロップレットの位置を制御する処理を示すフローチャートである。
【図11】図11は、第4実施形態に係り、帯電ドロップレット生成器の一部を示す断面図である。
【図12】図12は、第5実施形態に係り、ドロップレットセンサ群の側面図である。
【図13A】図13Aは、第6実施形態に係り、ドロップレットセンサのコアを曲面に形成する場合の検出原理を示す説明図である。
【図13B】図13Bは、ドロップレットセンサのコアを曲面に形成する場合の検出原理を示すタイミングチャートである。
【図14】図14は、第7実施形態に係り、コアを有しないドロップレットセンサの斜視図である。
【実施の形態】
【0010】
以下、添付の図面を参照して、本開示の実施形態を詳細に説明する。本開示の実施形態によれば、帯電ドロップレットの位置が比較的長期間にわたって、比較的高精度に検出され得る。
【0011】
本開示の実施形態では、帯電ドロップレットの有する電荷に着目し、磁気回路を用いて帯電ドロップレットを検出してもよい。さらに、本開示の実施形態では、帯電ドロップレットに電界を作用させることにより、帯電ドロップレットの軌道(進行方向)を制御してもよい。
【0012】
以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
【0013】
第1実施形態
図1〜図6を参照に第1実施形態を説明する。図1は、第1実施形態に係るEUV光生成用チャンバが適用されるEUV露光システム1の全体構成を概略的に示す。EUV露光システム1は、例えば、EUV光生成用チャンバ装置2と、ドライバレーザ装置3と、EUV露光装置4とを含んでもよい。
【0014】
EUV光生成用チャンバ装置2は、例えば、チャンバ10、「帯電ドロップレット生成器」としてのドロップレットジェネレータ20、コレクタミラー30、回収部50、レーザ集光光学系60、ビームダンプ70、取付部80、ドロップレットセンサ群101等を備えてもよい。また、EUV光生成用チャンバ装置2は、ドロップレット位置検出回路102に接続されていてもよい。EUV光生成用チャンバ装置2は、ドライバレーザ装置3と共に、EUV光生成システムを構成してもよい。
【0015】
まず、EUV光生成システムの全体動作を説明し、次に、ドロップレットの位置を検出する方法について説明する。
【0016】
チャンバ10内部は、低圧状態に保持されてもよい。チャンバ10の内部で生成されるEUV光は、チャンバ10とEUV露光装置4との間に位置する接続部6内に設定される中間集光点(IF)に集光されて、EUV露光装置4に出力されてもよい。
【0017】
ドロップレットジェネレータ20は、取付部80を介してチャンバ10に取り付けられてもよい。取付部80は、例えば、断熱性能と、チャンバ内を低圧に保持するための圧力保持性能とを有する部材で構成されてもよい。取付部80は、さらに電気的絶縁性を備えてもよい。
【0018】
ドロップレットジェネレータ20は、例えば、本体部21、ノズル部22、第1電極23、及び第2電極40等を備えてもよい。ノズル部22は、本体部21の先端側に設けられてもよい。ノズル部22には、開口部を有する絶縁部材22aが固定されてもよい。第1電極23は、絶縁部材22aから所定ギャップ離間して設けられてもよい。第2電極40は、図示しない絶縁部材を介して第1電極23から所定ギャップ離間して設けられてもよい。第1電極23にはパルス電圧生成回路104が接続され、第2電極40には定電圧源105が接続されてもよい。
【0019】
本体部21内には、ドロップレットの材料となる物質(ターゲット物質200)が収容されてもよい。ターゲット物質200としては、例えば、錫(Sn)等が使用されてもよいが、これに限定されない。本体部21内のターゲット物質200は、図示しないヒータ等の加熱装置によって加熱されて、溶融状態になっていてもよい。なお、本体部21内の全てのターゲット物質200が常時溶融状態である必要はなく、少なくとも、ノズル部22から出力される時点で溶融状態になっていればよい。
【0020】
このようなドロップレットジェネレータ20から、帯電したドロップレット201を出力させてもよい。例えば、ドロップレットジェネレータ20、ターゲット物質200、およびチャンバ10をグランド電位に設定しておき、パルス電圧生成回路104により、第1電極23に所定タイミングで、グランド電位と異なる所定のパルス電位を印加してもよい。
【0021】
第1電極23は、先端に出力口が形成されたノズル部22に対向して設けられてもよい。第1電極23はリング状であってもよい。第1電極23にパルス電位が印加されると、静電気力により、ノズル部22から溶融状態のターゲット物質200が僅かに突出し得る。その突出したターゲット物質200には電界が集中するため、強力な静電気力が作用し得る。これにより、ターゲット物質200がノズル部22の外部に引き出され得る。引き出されたターゲット物質200は、ドロップレット201となり得る。このように、静電気力により外部に出力されたドロップレット201は、帯電している。
【0022】
あるいは、ドロップレットジェネレータ20は、ターゲット物質200に物理的圧力を加えることで、ノズル部22から溶融状態のターゲット物質200を僅かに突出させるように構成されてもよい。例えば、ノズル部22の側壁に圧電素子を設け、その圧電素子を所定タイミングで変形させることにより、ノズル部22からターゲット物質200を僅かに突出させてもよい。ターゲット物質200がノズル部22から突出した状態となった後、第1電極23にパルス電位を印加すると、上記同様にターゲット物質200をノズル部22から出力され得る。この場合も、出力されたドロップレット201は帯電している。
【0023】
ノズル部22から出力されたドロップレット201は、帯電しているため、第2電極40に電位が印加されることによって生成される電界によって加速され、プラズマ生成領域PPに向けて移動し得る。
【0024】
ドロップレット201がプラズマ生成領域PPに到達するタイミングに合わせて、ドライバレーザ装置3から出力されたレーザ光LBがドロップレット201に照射されてもよい。ドライバレーザ装置3は、例えば、COパルスレーザ装置として構成されてもよい。
【0025】
ドライバレーザ装置3から出力されるレーザ光LBは、ドライバレーザ装置3とチャンバ10とを接続するレーザ光路管5内を通過して、チャンバ10内に入射してもよい。レーザ光LBは、レーザ集光光学系60とコレクタミラー30に設けられる貫通孔31とを介して、ドロップレット201に照射されてもよい。
【0026】
ドロップレット201にレーザ光LBが照射されるとプラズマ202が生成され、プラズマ202からはEUV光が放射され得る。EUV光は、コレクタミラー30の反射面32で反射されて、中間集光点IFに集光されてもよい。
【0027】
ビームダンプ70は、貫通孔31を通過するレーザ光LBの進行方向に設けられてもよく、ドロップレット201に照射されないレーザ光LBのエネルギーを吸収して熱エネルギーに変換してもよい。このため、ビームダンプ70の過熱を抑制するために、ビームダンプ70には冷却機構が設けられてもよい。ビームダンプ70以外の他の部品も、レーザ光LBの散乱光やプラズマ202の輻射による過熱を抑制するために冷却が必要な場合、または、冷却が好ましい場合は、冷却機構が設けられてもよい。
【0028】
ドロップレット201にレーザ光LBが照射されると、プラズマ202の生成にともなって、デブリが発生する場合がある。デブリは、レーザ光LBが照射された後のドロップレット201の残渣を含み得る。デブリは、ドロップレットジェネレータ20に対向してチャンバ10内に設けられる回収部50に回収されてもよい。さらに、ドロップレットジェネレータ20から出力される複数のドロップレット201のうち、レーザ光LBが照射されなかったドロップレット201も、回収部50に回収されてもよい。
【0029】
ドロップレットセンサ群101は、ドロップレットジェネレータ20とプラズマ生成領域PPとの間であって、ドロップレット201の軌道203上に設けられてもよい。ドロップレットセンサ群101の詳細な配置は、図4を参照に後述する。
【0030】
ドロップレット位置検出回路102は、信号処理回路を含んでもよい。ドロップレット位置検出回路102は、ドロップレットセンサ群101を構成するドロップレットセンサ110及び120と電気的に接続されてもよい。ドロップレット位置検出回路102は、ドロップレットセンサ110及び120の少なくともいずれかからの検出信号を処理して、帯電したドロップレット201の位置を算出してもよい。
【0031】
なお、第1電極23及び第2電極40へ印加される電位は、ドロップレットコントローラ(図9参照)からの制御信号に基づいて制御されてもよい。
【0032】
図2は、1つのドロップレットセンサの斜視図である。図2を参照に、第1ドロップレットセンサ110を例に挙げて説明する。後述の第2ドロップレットセンサ120,第3ドロップレットセンサ130及び第4ドロップレットセンサ140も、第1ドロップレットセンサ110と基本的に同様に構成されてもよい。
【0033】
第1ドロップレットセンサ110は、例えば、コア111、コイル113、電流計116等を備えてもよい。コア111の材質は、例えば、フェライト、ファインメット、ネオジム磁石、サマリウムコバルト磁石、軟鉄等の強磁性材料でよい。コア111の形状は、開口部112を有するループ状に形成されてもよい。開口部112の形状は、上面から見て環状、長方形、三角形、多角形等のように種々の枠形状でよい。さらに、後述のように、平面的なコアに代えて、曲面状のコアが用いられてもよい。
【0034】
換言すると、コア111は、磁性材料によって閉じた環状となるように形成され、その開口部112を帯電したドロップレット201が通過するように配置されるのが好ましい。
【0035】
コイル113は、コアの少なくとも一部に巻回されてもよい。コイル113の両端は抵抗114に接続されてもよい。電圧計115は、抵抗114の両端間の電圧を検出してもよい。
【0036】
磁性体から形成されるコア111の開口部112を帯電ドロップレット201が矢示203方向に通過すると、コア111内に磁束が発生し得る。その磁束により、コイル113には誘導起電力が生じて、コイル113を誘導電流が流れ得る。この誘導電流は、抵抗114の両端間に電圧を生じさせ、その電圧は電圧計115によって計測されてもよい。つまり、抵抗114及び電圧計115により、ドロップレット201が通過したときに生じる誘導電流を検出するための電流計116が構成されてもよい。電流計116は誘導電流波形を反映した検出信号を、例えばドロップレット位置検出回路102(図1参照)に出力してもよい。
【0037】
ここで、コア111によって構成される磁気回路の磁路長を短くできれば、即ち、コア111を小型化できれば、ドロップレット201が開口部112を通過した場合にコイル113に流れる電流の値を大きくすることができる。また、ドロップレット201の電荷量を大きくできれば、コイル113を流れる電流の値を大きくすることができる。第1実施形態では、静電気力を用いてドロップレット201をドロップレットジェネレータ20から引き出す構成が採用されている。これにより、小径なドロップレット201を帯電させることができる。1つの例として、コア111の幅Wを0.6mmに設定し、長さLを0.85mmに設定してもよい(L=W√2)。上記数値は単なる例示で、本開示は上記数値に限定されない。
【0038】
図2に示す例では、コア111を上面から見て閉じた長方形状の枠に形成しているが、上述の通り、円形、楕円形、多角形等の種々の形状に形成してもよい。つまり、コア111は、帯電したドロップレット201がコア111の近傍を通過する際に、コア111内に磁束が生じる形状及び材質であればよい。
【0039】
図3A及び図3Bは、磁気回路によりドロップレット201の位置を検出する原理を示す。ここでは、第1ドロップレットセンサ110を例に挙げて説明するが、第2ドロップレットセンサ120も同様の原理でドロップレット201の位置を検出してもよい。
【0040】
例えば、Y軸上のY=0の位置を、ドロップレット201が通過すべき軌道のY方向の基準位置としてもよい。ドロップレット201がY方向において基準位置(Y=0)を通過する場合、Y方向の位置ずれ量は0と検出されてもよい。
【0041】
図3Bのグラフでは、縦軸はコイル113を流れる電流を示し、横軸は時間を示す。つまり、当該グラフは検出信号の電流波形及び検出信号の検出タイミングを示す。検出タイミングは、例えば電流波形がピークとなる時刻としてもよい。ただし、これに限らず、電流波形の電流値がピークの半値となる時刻、または、電流波形の電流値が所定電流値以上となる時刻としてもよい。
【0042】
基準時刻Tは、ドロップレット201の位置ずれ量を計測するための基準となる時刻を示してもよい。一例として、ドロップレットコントローラ(図9参照)の制御信号に基づいてパルス電圧生成回路104(図1参照)からドロップレットジェネレータ20の第1電極23にパルス電位が印加されるタイミングを、基準時刻Tとしてもよい。または、ドロップレットジェネレータ20から、プラズマ生成領域PPまでのドロップレット201の軌道203上の何処かの位置に配置された他のセンサ(例えば、後述の第3ドロップレットセンサ130)をドロップレット201が通過した時刻を基準時刻Tとしてもよい。
【0043】
基準時間ty0は、ドロップレット201がY方向における基準位置を通過した場合の第1ドロップレットセンサ110による検出信号の検出時刻と、基準時刻Tとの時間差としてもよい。
【0044】
第1ドロップレットセンサ110は、ドロップレット201の軌道203に直交する平面に対して、所定角度θだけ傾いて配置されるのが好ましい。より詳しくは、第1ドロップレットセンサ110は、ドロップレット201の軌道203をZ軸とした場合、X軸(図3Aの紙面に直交する軸)を中心として、所定角度θだけ傾斜するように配置されるのが好ましい。
【0045】
所定角度θの傾斜を利用して、Y方向のドロップレット位置を計測してもよい。例えば、ドロップレット201aがY方向における基準位置(Y=0)を通過しない場合を考える。この場合、第1ドロップレットセンサ110におけるドロップレット201aの通過位置に対応するY方向の位置と、基準位置(Y=0)との距離に応じて、基準時刻Tからドロップレット201aが第1ドロップレットセンサ110を通過する時刻までの時間tが、基準時間ty0に対して変化し得る。これに伴って、検出信号が出力されるタイミングも変化し得る。つまり、第1ドロップレットセンサ110を所定角度θ傾斜して配置することにより、基準位置(Y=0)から通過位置までの距離を、基準時間ty0と時間tとの時間差として検出してもよい。
【0046】
これに対し、後述する第3ドロップレットセンサ130及び第4ドロップレットセンサ140のように、軌道203に直交する平面と平行にドロップレットセンサを配置する場合を考える。この場合、ドロップレット201の通過位置がずれたとしても、ドロップレットセンサ130及び140のコイルに電流が流れるタイミングの変化が微小となるようにドロップレットセンサ130及び140を構成できるので、ドロップレット201がドロップレットセンサを通過する時刻を検出したい場合には有用であると考えられる。
【0047】
ドロップレットの位置は、以下のように算出してもよい。計測対象のドロップレット201aが第1ドロップレットセンサ110の開口部112を通過した時刻と、基準時刻Tとの時間差を時間tとする。時間tと基準時間ty0との時間差をTとすると、Tは次式(1)で表される。
=t−ty0・・・・・・・・・・・・・・・式(1)
また、ドロップレット201の速度V及び所定角度θが既知であれば、ドロップレット201のY方向における基準位置に対する位置Pは次式(2)を用いて算出できる。
=V・T/tanθ・・・・・・・・・・・・式(2)
以上のようにY方向におけるドロップレット位置を算出できる。
【0048】
計算を簡単にするために、所定角度θを45度に設定してtanθ=1としてもよい。この場合、コア111は、長さLが幅Wの√2倍となるように構成されるのが好ましい。
【0049】
ドロップレット201の速度Vが既知でない場合がある。この場合、基準時間ty0の計測位置間の距離L(基準時刻Tを計測する位置から第1ドロップレットセンサ110までの距離)を計測しておくのが好ましい。距離Lを計測することにより、次式(3)を用いて速度Vを算出することができる。
V=L/ty0・・・・・・・・・・・・・・・・式(3)
【0050】
図4は、ドロップレットセンサ群101の構成を概略的に示す。図4に示す構成では、説明のためドロップレット201の理想的な軌道、または、設計により決定された軌道を、直線状の軌道203と仮定する。その上で、この軌道203をZ軸としたXYZ座標系を用いて説明する。第1実施形態では、3つのドロップレットセンサ110,120及び130が設けられてもよい。図4の左側の図は、Y−Z平面での断面における構成を示し、図4の右側の図は、X−Z平面での断面における構成を示す。
【0051】
第1ドロップレットセンサ110は、X軸を中心として所定角度θだけ傾斜して設けられてもよい。第1ドロップレットセンサ110は、例えば、第3ドロップレットセンサ130のドロップレット進行方向下流側に設けられてもよい。第1ドロップレットセンサ110の電流計116は、ドロップレット201のY軸方向の位置ずれに応じたタイミングで、検出信号を出力してもよい。
【0052】
検出信号は、電流計116によって計測された誘導電流の時間変化を反映した信号でよい。例えば、検出信号は電流信号や電圧信号でもよい。電流計116が増幅機能を備えていればアナログ信号でもよい。電流計116がAD変換機能を備えていればデジタル信号でもよい。また、電流計116がフォトカプラ等を備えていれば、光信号でもよい。
【0053】
第2ドロップレットセンサ120は、Y軸を中心として所定角度θだけ傾斜して設けられてもよい。第2ドロップレットセンサ120の電流計126は、ドロップレット201のX軸方向の位置ずれに応じたタイミングで、検出信号を出力してもよい。図4では、第1ドロップレットセンサ110のドロップレット進行方向下流側に第2ドロップレットセンサ120が配置されているが、本開示はこれに限られない。第2ドロップレットセンサ120の下流側に第1ドロップレットセンサ110が配置されてもよい。
【0054】
第3ドロップレットセンサ130は、ドロップレット位置の算出に用いる基準時刻Tを検出するためのセンサでよい。第3ドロップレットセンサ130は、第1実施形態ではドロップレットジェネレータ20のノズル22側に位置して、軌道203に直交する平面と平行に配置されてもよい。第1実施形態では、第3ドロップレットセンサ130の電流計136は、ドロップレット201の通過タイミングを基準時刻Tとして検出してもよい。
【0055】
第3ドロップレットセンサ130は、第1ドロップレットセンサ110のドロップレット進行方向上流側に設けられているが、本開示はこれに限られない。第3ドロップレットセンサ130は、第1ドロップレットセンサ110と第2ドロップレットセンサ120の間に設けられてもよい。または、第3ドロップレットセンサ130は、第2ドロップレットセンサ120の下流側に、即ち、プラズマ生成領域PP側に設けられてもよい。
【0056】
図5は、ドロップレットセンサ110,120及び130から出力される電流値を示すタイミングチャートである。
【0057】
第3ドロップレットセンサ130の電流計136は、ドロップレット201が第3ドロップレットセンサ130を通過した場合に、検出信号を出力してもよい。その検出信号(第3検出信号)は、ドロップレット位置検出回路102に入力されてもよい。
【0058】
第3ドロップレットセンサ130を通過したドロップレット201は、第1ドロップレットセンサ110を通過してもよい。第1ドロップレットセンサ110の電流計116は、ドロップレット201が通過した場合に検出信号を出力してもよい。その検出信号(第1検出信号)は、ドロップレット位置検出回路102に入力されてもよい。
【0059】
ドロップレット位置検出回路102は、第3検出信号が例えばピークとなる時刻を基準時刻Tとしてもよい。また、第1検出信号が例えばピークとなる時刻と基準時刻Tとの時間差を時間tとしてもよい。基準時刻Tから、第1ドロップレットセンサ110のY軸方向の基準位置(Y=0)において電流ピーク値が検出される時刻までの時間をY方向における基準時間ty0とする。Y方向における基準時間ty0は、ドロップレット位置検出回路102に予め設定されているのが好ましい。
【0060】
第1ドロップレットセンサ110を通過したドロップレット201は、さらに第2ドロップレットセンサ120を通過してもよい。第2ドロップレットセンサ120の電流計126は、ドロップレット201が通過した場合に、検出信号を出力してもよい。その検出信号(第2検出信号)は、ドロップレット位置検出回路102に入力されてもよい。
【0061】
基準時刻Tから、第2ドロップレットセンサ120によって電流ピーク値が検出されるまでの時間をtとする。また、基準時刻Tから、X軸方向の基準位置(X=0)において電流ピーク値が検出される時刻までの時間をX方向基準時間tx0とする。X方向における基準時間tx0は、ドロップレット位置検出回路102に予め設定されているのが好ましい。
【0062】
ドロップレット位置検出回路102は、ドロップレットセンサ110,120及び130からの検出信号に基づいて、ドロップレット201のY軸方向の位置ずれ量及びX軸方向の位置ずれ量を算出してもよい。ドロップレット位置検出回路102は、例えば、ハードウェア回路のみから構成されてもよいし、または、マイクロプロセッサ及びメモリ等を備えるマイクロコンピュータシステムとして構成されてもよい。
【0063】
図6は、ドロップレット位置検出回路102により実行される、ドロップレットの位置を検出するための処理を示すフローチャートである。
【0064】
ドロップレット位置検出回路102は、第3ドロップレットセンサ130から検出信号が入力されたか否かを監視してもよい(S11)。ドロップレットジェネレータ20から出力されたドロップレット201が第3ドロップレットセンサ130を通過した場合に、第3ドロップレットセンサ130から検出信号が出力されてもよい。検出信号は、ドロップレット位置検出回路102に入力されてもよい。
【0065】
ドロップレット位置検出回路102は、第3ドロップレットセンサ130から検出信号が入力された場合、例えば電流値がピークとなる時刻を基準時刻Tとして記憶してもよい。さらに、ドロップレット位置検出回路102は、第1ドロップレットセンサ110の検出信号及び第2ドロップレットセンサ120の検出信号を取得してもよい(S12)。第1ドロップレットセンサ110から検出信号を取得した時刻と基準時刻Tとの差がtとなり、第2ドロップレットセンサ120から検出信号を取得した時刻と基準時刻Tとの差がtとなる。
【0066】
ドロップレット位置検出回路102は、Y軸方向の時間差Tと、X軸方向の時間差Tとを算出してもよい(S13)。Y軸方向の時間差Tは、上述の通り、式(1)から求めることができる。同様に、X軸方向の時間差Tは、式(4)から求めることができる。
=t−tx0・・・・・・・・・・・・・・・式(4)
【0067】
ドロップレット位置検出回路102は、Y軸方向のドロップレット位置Pと、X軸方向のドロップレット位置Pとを算出してもよい(S14)。ドロップレット位置検出回路102は、Y軸方向の時間差Tに所定係数kを乗じることにより、ドロップレット201のY軸方向の位置Pを次式(5)から求めてもよい。
=k・T・・・・・・・・・・・・・・・・・式(5)
同様に、ドロップレット位置検出回路102は、X軸方向の時間差Tに所定係数kを乗じることにより、ドロップレット201のX軸方向の位置Pを次式(6)から求めてもよい。
=k・T・・・・・・・・・・・・・・・・・式(6)
【0068】
ここで、所定係数kとは、ドロップレット201が基準位置(Y=0またはX=0)を通過する場合の所要時間(ty0,tx0)と実際の所要時間(t,t)との時間差を位置に変換するための係数である。所定係数kは次式(7)から求められる。
k=V/tanθ・・・・・・・・・・・・・・・・式(7)
第1実施形態では、θを45度に設定するため、tanθ=1となる。従って、所定係数kは、ドロップレット速度Vに等しい。
【0069】
このように構成される第1実施形態では、帯電したドロップレット201が磁気回路(ドロップレットセンサ110,120及び130)を通過する際に生じる誘導起電力を利用して、ドロップレット201を検出してもよい。従って、磁気回路に多少のデブリが付着しても、ドロップレット201を検出することができるであろう。これにより、光学的にドロップレットの位置を検出する構成に比べて、第1実施形態では、ドロップレット201の位置を比較的長時間にわたって、比較的高精度に計測可能である。
【0070】
第1実施形態では、ドロップレットセンサ110及び120が、軌道203に直交する平面に対して所定角度θだけ傾けて配置されてもよい。従って、位置ずれのない基準位置(Y=0またはX=0)を通過するときの基準時間と実際の所要時間との差に基づいて、ドロップレット201の位置を正確に算出可能である。
【0071】
さらに、第1実施形態では、所定角度θを45度に設定するため、ドロップレット位置を容易に算出可能である。
【0072】
第2実施形態
図7を参照して第2実施形態を説明する。第2実施形態を含む以下の実施形態は、第1実施形態の変形例に相当し得る。従って、第1実施形態との相違点を中心に説明する。図7は、ドロップレットセンサ群の配置をY−Z平面で示す。
【0073】
図7に示す構成においては、上述の図4に示す構成に第4ドロップレットセンサ140が追加されている。第4ドロップレットセンサ140は、例えば、第2ドロップレットセンサ120よりもプラズマ生成領域PP側に設けられてもよい。図示の例に限らず、第4ドロップレットセンサ140は、第3ドロップレットセンサ130と離間して設けられていればよい。例えば、第1ドロップレットセンサ110と第2ドロップレットセンサ120との間に第4ドロップレットセンサ140を設けてもよい。
【0074】
ドロップレット201が第4ドロップレットセンサ140を通過した場合に、第4ドロップレットセンサ140の電流計146は検出信号を出力してもよい。
【0075】
「信号処理回路」としてのドロップレット位置及び速度検出回路103には、ドロップレットセンサ110,120,130及び140からの検出信号が入力されてもよい。ドロップレット位置及び速度検出回路103は、ドロップレット201が所定の観測面(コアの開口)を通過するときの位置及びその時の速度を検出するための回路でよい。
【0076】
ドロップレット位置及び速度検出回路103は、ドロップレット位置検出回路102と同様に、ハードウェア回路として構成されてもよいし、マイクロコンピュータシステムとして構成されてもよい。
【0077】
ここで、第3ドロップレットセンサ130と第4ドロップレットセンサ140との間の、軌道203に平行な方向における距離をDとする。ドロップレット201が第3ドロップレットセンサ130を通過し、ドロップレット位置及び速度検出回路103が検出信号を検出するタイミングをtd3とする。ドロップレット201が第4ドロップレットセンサ140を通過し、ドロップレット位置及び速度検出回路103が検出信号を検出するタイミングをtd4とする。
【0078】
第4ドロップレットセンサ140をドロップレット201が通過するときの速度Vは、次式(8)から求めることができる。
V=D/(td3−td4)・・・・・・・・・・・・式(8)
図6のS14を参照に述べたように、ドロップレット201の位置を算出するためにドロップレット速度Vを用いてもよい。第2実施形態では、ドロップレット速度Vを定期的にまたは不定期に計測することにより、より正確にドロップレット201の位置を求めることが可能である。
【0079】
第3実施形態
図8〜図10を参照して第3実施形態を説明する。第3実施形態では、ドロップレット201の軌道を修正するための軌道制御部150が設けられてもよい。
【0080】
軌道制御部150は、例えば、第1電極対151A及び151B、第2電極対152A及び152B、並びに、各電極対間に所定の電位差を生成するための電位差制御器153X及び153Yを備えてもよい。
【0081】
第1電極対151A及び151Bは、X軸方向に離間して設けられてもよい。第2電極対152A及び152Bは、Y軸方向に離間して設けられてもよい。第1電極対を構成する一方の平板電極151Aと他方の平板電極151Bとの間のギャップと、第2電極対を構成する一方の平板電極152Aと他方の平板電極152Bとの間のギャップとは、同一寸法Gに設定されてもよい。
【0082】
第1電極対151A及び151Bによりドロップレット201の軌道(進行方向)を修正する方法を説明する。第2電極対152A及び152Bによる軌道修正の方法は、第1電極対151A及び151Bによる軌道修正の方法と同様であるため、説明は省略する。
【0083】
ドロップレット201は、電荷Qを有し得る。電位差制御器153Xにより、平板電極151Aと平板電極151Bとの間には、一方の平板電極151Aから他方の平板電極151Bに向かって所定の電位勾配を有する電界Eが生成されてもよい。
【0084】
第1電極対151A及び151Bの間にドロップレット201が進入すると、ドロップレット201には、クーロン力Fが作用し得る(式(9))。
F=QE・・・・・・・・・・・・・・・・・・・式(9)
【0085】
一方の平板電極151Aの電位をP、他方の平板電極151Bの電位をPとすると、電界Eは、第1電極対151A及び151B間の電位差(=P−P)をギャップGの寸法で割った値として算出されてもよい(式(10))。
E=(P−P)/G・・・・・・・・・・・・・式(10)
【0086】
電荷Qを有する帯電ドロップレット201が電界E中に進入すると、上述のクーロン力Fが作用し得る。クーロン力Fの方向は、電荷Qの極性により、矢印で示す電界Eの方向と同一又は反対の方向となり得る。ドロップレット201の質量をm、クーロン力Fによりドロップレットに付与される加速度をaとすると、クーロン力Fは、F=maの式で表される。この式と、式(9)及び式(10)とにより、以下の式が成立する(式(11))。
a=Q(P−P)/(mG)・・・・・・・・式(11)
【0087】
第1電極対151A及び151Bによる電界の生成領域に到達する直前の帯電ドロップレットの位置をD(x,z)とし、このときの帯電ドロップレットの速度をV(Vx0,Vz0)とする。なお、x及びzはそれぞれX方向及びZ方向における帯電ドロップレットの位置であり、Vx0及びVz0はそれぞれX方向及びZ方向における帯電ドロップレットの速度成分である。
第1電極対151A及び151BのZ方向の長さをLとし、第1電極対151A及び151Bからプラズマ生成領域となる目標ドロップレット位置D(x,z)までのZ方向の距離をLとする。
【0088】
帯電ドロップレットが電界E中を通過する時間tは、次の式で表される(式(12))。
=L/Vz0・・・・・・・・・・・・・・・式(12)
【0089】
帯電ドロップレットが電界E中を通過した後、目標ドロップレット位置Dに到達するまでの時間tは、次の式で表される(式(13))。
=L/Vz0・・・・・・・・・・・・・・・式(13)
【0090】
帯電ドロップレットが電界E中を通過した直後のX方向の速度Vx1は、次の式で表される(式(14))。
x1=at+Vx0・・・・・・・・・・・・・・式(14)
【0091】
帯電ドロップレットが電界E中を通過した直後のX方向の位置xは、次の式で表される(式(15))。
=a(t/2+Vx0+x・・・式(15)
【0092】
帯電ドロップレットのX方向の目標位置xは、次の式で表される(式(16))。
=Vx1+x・・・・・・・・・・・・・・式(16)
【0093】
以上の式(16)を満足するように、第1電極対151A及び151Bの電位P及びPを調節することにより、目標位置に帯電ドロップレットを到達させることが可能となる。
【0094】
図9は、軌道制御部150を図4に示した構成に追加した場合の説明図である。第2ドロップレットセンサ120と、プラズマ生成領域PPとの間に、軌道制御部150が設けられてもよい。つまり、ドロップレット201の位置を検出する機構(ドロップレットセンサ110,120及び130)とプラズマ生成領域PPとの間に、軌道制御部150が設けられてもよい。
【0095】
ドロップレットの軌道をX軸方向に修正するための第1電極対151A及び151Bは、X方向電位差制御器153Xに電気的に接続されてもよい。ドロップレットの軌道をY軸方向に修正するための第2電極対152A及び152Bは、Y方向電位差制御器153Yに電気的に接続されてもよい。電位差制御器153X及び153Yは、ドロップレットコントローラ100に電気的に接続されてもよい。
【0096】
ドロップレットコントローラ100は、ドロップレットジェネレータ20の動作を制御するための装置でよい。これに加えて、第1電極23および第2電極40に印加される電位の制御を行ってもよい。また、第3実施形態のドロップレットコントローラ100は、ドロップレットセンサ110,120及び130からの検出信号に基づいて、ドロップレット201のX軸方向の位置及びY軸方向の位置を検出する機能を有してもよい。さらに、第3実施形態のドロップレットコントローラ100は、ドロップレット201の位置検出結果に基づいて、電位差制御器153X及び153Yに制御信号を出力する機能を有してもよい。
【0097】
図10は、ドロップレットコントローラ100により実行される、ドロップレット制御処理を示すフローチャートである。最初に、ドロップレットコントローラ100は、図6で述べたドロップレット位置検出処理を実行してもよい(S10)。
【0098】
ドロップレットコントローラ100は、S10で算出されたドロップレット位置を取得し(S21)、予め設定される目標位置(プラズマ生成領域PPの位置)との偏差を求めてもよい(S22)。
【0099】
ドロップレットコントローラ100は、S22で算出された偏差を0にするための制御量(所定の電位差)を、X軸方向及びY軸方向について算出してもよい(S23)。ドロップレットコントローラ100は、電位差制御器153X及び153Yに、S23で算出された制御量の信号を与えてもよい(S24)。
【0100】
これにより、第1電極対151A及び151B間には、所定の電位差が生成され、ドロップレット201の軌道203xは軌道203xに変化し得る。同様に、第2電極対152A及び152B間には、他の所定の電位差が生成され、ドロップレット201の軌道203yは、軌道203yに変化し得る。これにより、第3実施形態では、ドロップレット201の軌道を修正して、ドロップレット201をプラズマ生成領域PPに到達させることができる。なお、第3実施形態は、図7を参照に述べた第2実施形態と組み合わされてもよい。
【0101】
また、電界を用いてクーロン力によってドロップレット201の軌道を修正する場合に限らず、他の物理的な力によってドロップレット201の軌道を修正してもよい。例えば、ドロップレット201の軌道の一部を含む領域に磁場を生成する装置を備え、ローレンツ力によってドロップレット201の軌道を修正してもよい。
【0102】
第4実施形態
図11を参照して第4実施形態を説明する。図11は、帯電ドロップレット生成器のドロップレット出力部及びその付近を示す断面図である。第4実施形態では、帯電したドロップレット201を生成して加速するための機構(第1電極23及び第2電極40)と、ドロップレット201の位置を検出するための機構(ドロップレットセンサ110,120,130及び140)と、ドロップレット201の軌道を制御するための機構(軌道制御部150の平板電極151A,151B,152A及び152B(図示せず))とが一体的に構成されてもよい。
【0103】
ノズル22の先端側には、筒状の支持部90が設けられてもよい。支持部90の内部には、第1電極23と、第2電極40と、ドロップレットセンサ110,120,130及び140と、平板電極151A,151B,152A及び152Bとが設けられてもよい。
【0104】
ドロップレットセンサ110,120,130及び140並びに平板電極151A,151B,152A及び152Bは、絶縁体91によって、支持部90内に固定されてもよい。第1電極23及び第2電極40は、それぞれ別の絶縁体92及び93によって支持部90内に取り付けられてもよい。
【0105】
ドロップレットセンサ110,120,130及び140を支持部90に固定するためのセンサ取付部材は、平板電極151A,151B,152A及び152Bを支持部90に固定するための電極取付部材と別に構成されてもよい。その場合、センサ取付部材は、例えば、アルミニウム合金等の非磁性体材料から構成されてもよい。
【0106】
第4実施形態では、電極23,40,151A,151B,152A及び152Bとドロップレットセンサ110,120,130及び140とが一体化されるため、それらを互いに正確に位置決めすることが可能となる。
【0107】
第5実施形態
図12を参照して第5実施形態を説明する。第5実施形態では、ドロップレット201の位置を検出するための機構(ドロップレットセンサ110a,120a,130a及び140a)が、セラミック等の非磁性体材料で形成された筒状体94の周囲に固定されてもよい。筒状体94は、例えば、アルミナ(Al)、窒化アルミニウム(TiN)等によって構成されてもよい。ドロップレットセンサ110a,120a,130a及び140aは、ドロップレットセンサ110,120,130及び140と形状が異なる以外、同様に構成されてもよい。
【0108】
第5実施形態においても、ドロップレットセンサ110a,120a,130a及び140aが一体化されるので、それらを互いに正確に位置決めすることが可能となる。
【0109】
また、筒状体94の側面に穴94a〜94hを形成し、導電体113Aをこれらの穴に通過させてコイルを構成してもよい。これにより、ドロップレットセンサ110a,120a,130a及び140aを簡単な構成で近接させて配置することができる。さらに、構成が簡単なので各コアを小型化しやすい。このため、磁気回路の磁路長を短くすることができ、帯電ドロップレットの検出感度を向上させることができる。
【0110】
第6実施形態
図13A及び図13Bを参照して第6実施形態を説明する。第6実施形態では、曲面状のコア111bを用いてもよい。例えば、コア111bを第1ドロップレットセンサ110bに適用した場合を例に挙げて説明する。コア111bは、開口部112bを有するループ状に形成されてもよい。開口部112bが形成される面は、曲面であってもよい。曲面が或る関数によって記述できる場合、ドロップレット201のY軸方向の位置と通過タイミングtとの関係は幾何学的に決定できる。例えば、ドロップレット201のY軸方向の位置は、Y=f(t−ty0)という式から算出することができる。X軸方向の位置も同様にして算出できる。
【0111】
このように、磁気回路が形成される面は平面である必要はなく、関数または数値で形状を近似することができるのであれば、曲面でもよい。
【0112】
第7実施形態
図14を参照して第7実施形態を説明する。第7実施形態では、ドロップレットセンサがコアを有していなくてもよい。例えば、図14に示すように、第1ドロップレットセンサ110cにおいて、コアを有さないソレノイドコイル113cで磁気回路117を構成してもよい。帯電ドロップレット201の軌道203の周りには、帯電ドロップレット201の通過時に磁場204が形成され得る。ソレノイドコイル113cによって構成された磁気回路117に囲まれる領域内を、帯電ドロップレット201が通過すると、この磁場204により、ソレノイドコイル113cに誘導起電力が生成され得る。この誘導起電力を電流計116によって検出することにより、帯電ドロップレット201の通過を検出することができる。
【0113】
上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
【0114】
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
【符号の説明】
【0115】
1:EUV露光システム1、2:EUV光生成用チャンバ装置2、3:ドライバレーザ装置、4:EUV露光装置、10:チャンバ本体、20:ドロップレットジェネレータ、23:第1電極、30:コレクタミラー、40:第2電極、100:ドロップレットコントローラ、101:ドロップレットセンサ群、102:ドロップレット位置検出回路、103:ドロップレット位置及び速度検出回路、110,120,130,140:ドロップレットセンサ、201:ドロップレット、PP:プラズマ生成領域

【特許請求の範囲】
【請求項1】
帯電ドロップレットを出力するドロップレット生成器と、
前記帯電ドロップレットの軌道の近傍に配置された磁気回路であって、導電体のコイルを含む前記磁気回路と、前記コイルに流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサと、
前記検出信号に基づいて前記帯電ドロップレットを検出する信号処理回路と、
を含む、ドロップレット生成及び検出装置。
【請求項2】
前記磁気回路は、前記帯電ドロップレットの軌道を囲んで配置された、請求項1に記載のドロップレット生成及び検出装置。
【請求項3】
前記磁気回路は、ループ状の磁性材料によって構成されたコアをさらに含み、
前記導電体は、前記コアに少なくとも1回巻かれて前記コイルを構成している、請求項1に記載のドロップレット生成及び検出装置。
【請求項4】
前記コアは、非磁性材料によって構成された筒状体に固定された、請求項3に記載のドロップレット生成及び検出装置。
【請求項5】
前記ドロップレット生成器は、
前記帯電ドロップレットが出力される開口部と、
前記開口部からみて前記帯電ドロップレットの出力方向側に設けられ、所定電位が印加される電極と、
を含む、請求項1に記載のドロップレット生成及び検出装置。
【請求項6】
前記磁気回路は、そのループ面が、前記帯電ドロップレットの軌道に対して所定角度傾斜するように配置された、請求項1に記載のドロップレット生成及び検出装置。
【請求項7】
前記信号処理回路は、前記電流検出器からの前記検出信号の出力タイミングに基づいて、前記帯電ドロップレットが前記磁気回路の近傍を通過した位置を計測する、
請求項6に記載のドロップレット生成及び検出装置。
【請求項8】
前記少なくとも一つのドロップレットセンサは、第1ドロップレットセンサと、第2ドロップレットセンサとを含み、
前記第1ドロップレットセンサの前記磁気回路と前記第2ドロップレットセンサの前記磁気回路とは、それぞれのループ面が、互いに異なる方向に前記帯電ドロップレットの軌道に対して傾斜して配置される、
請求項1に記載のドロップレット生成及び検出装置。
【請求項9】
前記信号処理回路は、
前記第1ドロップレットセンサからの前記検出信号の出力タイミングに基づいて、前記帯電ドロップレットが前記第1ドロップレットセンサを通過する位置の第1の方向における位置ずれ量を計測し、
前記第2ドロップレットセンサからの前記検出信号の出力タイミングに基づいて、前記帯電ドロップレットが前記第2ドロップレットセンサを通過する位置の第2の方向における位置ずれ量を計測する、
請求項8に記載のドロップレット生成及び検出装置。
【請求項10】
前記少なくとも一つのドロップレットセンサは、第1ドロップレットセンサと、第3ドロップレットセンサとを含み、
前記第1ドロップレットセンサの前記磁気回路は、前記帯電ドロップレットの軌道に対して所定角度傾斜するように配置され、
前記第3ドロップレットセンサの前記磁気回路は、そのループ面が、前記帯電ドロップレットの軌道に対して前記所定角度より垂直に近い角度で配置され、
前記信号処理回路は、前記第1ドロップレットセンサからの前記検出信号の出力タイミングと、前記第3ドロップレットセンサからの前記検出信号の出力タイミングとの時間差に基づいて、前記帯電ドロップレットが前記第1ドロップレットセンサの前記磁気回路の近傍を通過した位置を計測する、
請求項1に記載のドロップレット生成及び検出装置。
【請求項11】
前記少なくとも一つのドロップレットセンサは、前記第3ドロップレットセンサから離間して設けられる第4ドロップレットセンサをさらに含み、
前記信号処理回路は、前記第3ドロップレットセンサからの前記検出信号の出力タイミングと、前記第4ドロップレットセンサからの前記検出信号の出力タイミングとに基づいて、前記帯電ドロップレットの速度を検出する、
請求項10に記載のドロップレット生成及び検出装置。
【請求項12】
導電体のコイルを含む磁気回路と、前記コイルに流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサと
前記ドロップレットセンサからの検出信号に基づいて、ドロップレット生成器から出力される帯電ドロップレットを検出する信号処理回路と、
前記帯電ドロップレットの軌道を制御するための軌道制御部と、
を含む、ドロップレット制御装置。
【請求項13】
極端紫外光源装置に用いられる極端紫外光生成用チャンバであって、
チャンバ本体と、
帯電ドロップレットを前記チャンバ本体の内部に出力するドロップレット生成器と、
前記帯電ドロップレットの軌道の近傍に配置された磁気回路であって、導電体のコイルを含む前記磁気回路と、前記コイルに流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサと、
前記ドロップレットセンサからの検出信号に基づいて、前記帯電ドロップレットを検出する信号処理回路と、
前記帯電ドロップレットの軌道を制御する軌道制御部と、
を含む、極端紫外光生成用チャンバ。
【請求項14】
極端紫外光源装置に用いられる帯電ドロップレットの位置を制御する方法であって、
導電体のコイルを含む磁気回路と、前記コイルを流れる電流を検出して検出信号を出力する電流検出器と、を含む少なくとも一つのドロップレットセンサを、前記帯電ドロップレットの軌道の近傍に配置することと、
ドロップレット生成器から前記帯電ドロップレットを出力させることと、
前記ドロップレットセンサからの前記検出信号に基づいて、信号処理回路により前記帯電ドロップレットを検出することと、
電界発生部により、前記帯電ドロップレットの軌道の一部を含む領域に前記軌道と交差する方向の電界を発生させることと、
を含む、ドロップレットの位置制御方法。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図14】
image rotate


【公開番号】特開2012−216486(P2012−216486A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2011−164161(P2011−164161)
【出願日】平成23年7月27日(2011.7.27)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成22年度 独立行政法人新エネルギー・産業技術開発機構「次世代半導体材料・プロセス基盤(MIRAI)プロジェクト/次世代半導体材料・プロセス基盤(MIRAI)プロジェクト(石特会計)/EUV光源高信頼化技術開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(300073919)ギガフォトン株式会社 (227)
【Fターム(参考)】